The Design Space Layer: Supporting Early Design Space Exploration fc
Core-Based Designhs

Helvio P. Peixoto and Margarida F. Jacome Ander Royo and Juan C. Lopez
ECE Dept., The University of Texas at Austin ECE Dept., Technical University of Madrid
Austin, TX 78712 Madrid, Spain
{peixotoljacome}@ece.utexas.edu {ander|lopez}@die.upm.es
ABSTRACT the areas of design decision, design issuesthat are on the

) _) basis of the creation of such alternatives. An example of one
A novel library layer, called the “design space layer is pro-sych design issue is “implementation style,” discriminating
posed, aimed at supporting both, IP-based and traditional “inpetween hardware and software designs. Note that the cores
house” design methodologies, during early design space explavailable in the reuse library correspond to “points” in the design
ration. Strategies for effectively pruning the large design spacegpace represented in the layer. Accordingly, they are logically
characteristic of system-on-chip designs, and for transparentijdexed (i.e., referenced) via these same areas of design deci-
retrieving information on cores adequate for implementing thejon. Some regions of the design space may be thus populated by
system components, are supported by the proposed layer. ThRirge number of cores, while others may not.

layer is self-documented and highly compartmentalized inti L . .
hierarchies of classes of design objects, and is thus easily sca?€ Proposed layer is aimed at supporting strategies for system-

able. A design space layer developed for encryption applicatiogdically pruning large design spaces and for retrieving informa-
is presented and discussed in some detail. tion on available cores (i.e., reusable designs) complying with

. the system’s requirements and with the design decisions made so
1 Introduction far. Indeed, each design decision made with respect to a specific

The trend towards developirgre-basedsystem-on-chigolu- architectural component, during conceptual design, corresponds

tions for complex application specific systems is clearly irreverd® @ pruning of the component's design space. The reusable
ible. Increasing the level of design integration is quite attractive€Signs that fall outside the selected region, i.e., those cores
from a reliability, power consumption, and unit-cost perspectivéhich do not comply with such a decision, are immediately
The use of cores, i.e., macro-cells developed by third party @iminated from consideration. Critical information on sle¢of
providers, can lead to significant decreases in design cost andgysable designs that do comply with the decision, including

time-to-market. Reflecting the tremendous opportunities creatéga”geS of performance and power consumption, can be then
by this emerging trend in the design of application specific sy&ireéctly provided to the designer. In some cases, directly reusable
g_e&gns may not be available in the reuse libraries, i.e., the set of

tems, the number of IP providers is booming -- more than se} ! / - ° ; e >
enty two are listed in [1], offering over 1000 reusable blocks. readily available” design points (within the selected design

_ .) space region) is empty. In such cases, the proposed design space
This paper proposes a new libraayer, to be implemented on |ayer still assists the designer in undertaking conceptual design,
top of conventional reuse libraries (see Fig. 1), aimed at suppogidequately supported by early estimation tools, whenever such
ing both,IP-basedand traditional ih-housé design methodolo- tools are available.

gies, during early design space exploration. Specifically, th - . .
objective is to assist designers in systematically considering reig-s shown in Fig. 1, the proposed design space layer can be logi-

vant alternative implementations for the various components of@&lly connected to any number of reuse libraries, i.e., transpar-
system-on-chip architecture. Accordingly, it will be shown tha€Ntly index/reference designs residing in different libraries.

the proposed library layer, called tHesign space layeallows !deally, each design environment should thus develop its own
for cores, that are good candidates for implementing specific syeSign space layer, tailored to the application domains of inter-

tem components, to be quickly and transparently selected fraf§t @nd then use such a layer to reference available cores, stored

reuse libraries. Furthermore, when no adequate cores are avAiireuse libraries maintained by the IP-providers themselves.

able, it will be shown that the proposed layer can still assist tiehe remainder of the paper is organized as follows. Section 2
conceptual desigaf the corresponding system components, i.egives an overview of the fundamental support mechanisms pro-
the specification of the fundamenta_ll design options that ShO_ ed by the proposed layer for assisting conceptual design and
be adopted for such components, in order to meet the requirggre selection during the definition of system-on chip architec-
performance, silicon area, power consumption, etc. tures. Previous work is discussed in Section 3. The proposed
As its name suggests, the proposed layer creates a represent eling framework is described in more detail in Section 4.
of the design spacei.e., the space of all feasible (alternative)>€Ction S presents a detailed case study on the development of a
implementations for the object under design. Note that suchdgSign space layer fancryption applicationsSome conclu-
representation is neplicit, since the actual alternative designsSIONs are given in Section 6.
may or may not exist in the reuse libraries that underlie the layer. An Overview of the Design Space L ayer
The design space is thinsplicitly represented bgiscriminating . . .

As alluded to in the previous section, the proposed layer creates

A an implicit representation of the design space, i.e., the space of
N Dwgn Spacel_ayer — | o all possible alternatives for the design at hand. Such a design
: . space representation is based on the design formalism described
-¥A —YA— YA - in [2]. The cornerstone of this formalism is the conceptatdiss
' Reuse Libraries ' of design objectsExamples of classes of design objects are
: |Librarz A||Librarx B|| Library C| : “Adders,” “Inverse Discrete Cosine Transform” (IDCT) blocks
Ei » T | [3], “"MPEG Il encoders/decoders” [4], and “embedded RISC
ig. 1 Logical Organization of the Design Space Layer and "
Reuse Libraries processors.

* This research project is sponsored by NSF, under CAREER
Grant No. MIP-9624321.

Class of Design Objects: IDCT Reusable IDCT Design Objects arcak
re

- — o 1 IDCT1 _IDCT?2 IDCT 5 4

Design Space at Algorithm Lev[él | | A L 1, ‘r 1 - ‘F\ | \j‘ Algorithm 3. (]

_ — ——
Design Space at RT level Il ‘ | | > | | | | ‘ |- ‘ | |IRT 2 .1

| \ \ \ [|

Design Space at logic level [] | ; ' J1---1T JlLogic 5.

, . [P [ey e ey ==
Design Space at Physical IeveIL\ _ \J L\ _ \J L\ _ L -—- L\ _ L Physical Delay

(a) Design Space Layer Based on level of Abstraction (b) Library of Reusable Designs (c) Evaluation Space

Fig. 2 Design Space Layer Strictly Based on Abstraction

A class of design objects is an abstraction used to implicitlglesign dateof a particular view of an IDCT core, the boxes in
define the design space encompassing all feasible implemenfég. 2(a) enumerate thareas of design decisioand corre-

tions of a specific behavior or functionality. For example, theponding design options) that have to be considered at each level
“Adder” class of design objects abstracts all possible addef abstraction, when designing an IDCT. Accordingly, each of
implementations, each of which is a point in the design spadhe IDCT cores would thus be discriminated first at the algorithm
called an addaidesign objectAlternative designs are differenti- level, then at the RT level, etc. Naturally, one would still need to
ated within the “Addertlassby the various areas of design deci-decide on the specifeub-sebf design issues “relevant enough”
sion, ordesign issugghat are relevant to the design of an adderto be considered during conceptual design (from among those
An example of one such design issue is “logic style”, with thelefined at each level). This important point is addressed next,
corresponding design options given by: “ripple-carry,” “carry-while discussing the inherent limitations of this organization.

look-ahead,” “carry-save,” etc. Another example is “IayoutB ; . :

o - : ; h By exploring the design space in such a way, there would be no
?tylte’ with 1t1het corresponding options given by: stano""‘rd'(;e'l'guarantee that the designer would be quickly and coherently
gate-array,” €tc. guided to the best candidate IDCT core(s). For example, Designs
Since the design space for complex application specific systerh@nd 4, with quite distinct area/performance characteristics (see
tends to be large, it is important to provide basic mechanisms kdg. 2(c)), could very well be different implementations of the
enable an effective and systematic pruning of the space. In whedact same IDCT algorithiisay, one using a 0.@%5tandard cell
follows, we argue that the “traditional” concept désign library, and the other using a .8tandard cell library). So, the
abstraction while adequate for driving the top-down design pro-design space regions selected by initially exploring only the
cess, isnadequatdo support the early design space exploratioralgorithm design space could map into quite uninformative
performed during system-on-chip architectural definition. Weegions in the evaluation space, as symbolically shown in Fig.
then discuss the generalization/abstraction features provided a(c).

our layer, aimed at supporting an effective pruning of the desigpne important observation to be made is that, some design issues

space. may only explicitly appear in the design data at the logic or
2.1 Onthelnadequacy of Traditional Design lower levels of abstractiofe.g., “layout style,” “fabrication tech-
Abstraction nology,” etc.), yet they may still havenaajor impacton perfor-

posed into a number of design steps, each of which increasindf{imate objective of the design space exploration performed

refines/details the structural and behavioral descriptions of tR&!liNg conceptual design is to specify fnedamental design
object under design. Specifically, in each step, the design d tionsto be adopted for a design object (during its detailed top-

characterizing the design object at a given level of abstraction @@Wn design), so that its required performance, power consump-
refined into an equivalent representation at a lower level ¢PM €iC., can be achieved. Thus lower level decisions such as
abstraction. Examples of levels of abstraction traditionallf€S€ may actually need to be considered very early in design
adopted indigital designare algorithm, register-transfer (RT), SPaCce exploration process.

logic, and physical. At the end of the design process, the desigr2 A Design Space L ayer Based on Specialization/
data is naturally partitioned into such levels of abstraction, creaGener alization

ing the various views of the design object. The decision on which design issues need to be considered dur-
However, such a compartmentalized notion of abstractioatis ing conceptual design (and used to discriminate the designs)
the most convenient way to organize data in order to suppahould be based on their impact onfthares of meriof interest

early design space exploration. Fig. 2 will be used to illustrate this will allow for a coherent organization of designs, reflect-
this point. Consider for example that five IDCT hard-cores armg their actual proximity in thevaluation spaceConsider
available in the reuse library. The boxes shown in Fig. 2(b) synagain the five IDCT cores. (Assume, for simplicity, that all such
bolically denote how theletailed design datéor each of the cores can support the specific “word size,” “precision,” and other
IDCT cores would bgartitionedinto the four levels of abstrac- requirements posed by the application.) Intuitively, one would
tion: algorithm, RT, logic, and physical. expect to see Designs 1 through 5 discriminated into the clusters/

For the sake of the discussion, let us assume that the des ups as shown in Fig. 3(b). This means that the designer

. . : - Id first be presented with the design issues that result in the
space layer would be defined strictly with respect to this hierar: U . AL
chical organization of data. As shown in Fig. 2(a), we would i Lgnlflcantly difierent area/performance ranges exhibited by the

In top-down design methodologies, the design process is deco@@mce’ silicon area, and power consumption. Recall that, the

this case define four “sub-classes” for the IDCT class -- the fir uster_t{1t,2,5} a”f'tghe cluster {354}' é)nl%{ aftt?]r tge designter
sub-class would represent ttesign space of the IDC3t the mmits to one of Nese ranges, by adopting the design options
algorithm level and the second, third, and fourth sub-classeat arecommorto the designs within the corresponding cluster,
would represent it at the RT, the logic and the physical levelghould options that further discriminate between the designs
respectively. So, while each box in Fig. 2(b) denotesiétailed ithin a single cluster be considered. This is symbolically shown

in Fig. 3(a). and/or (3) it may impact the comparative efficiency of such algo-

We now discuss how this is achieved in our proposed desié\llhms'

space layer. Let us revisit the notion of a class of design objec&o far we have mostly focused on hardware designs but software
and introduce the notion ofgeneralizedtlass of design objects. implementations pose no significant challenge to our modeling
A generalized class of design objects is one that considers onlframework. For example, consider again Fig. 4. The design issue
subsetof the design issues that need to be addressed in ordettddbe used for further discriminating the “software” generalized
complete conceptual desigrA hierarchy of such generalized class would be “programmable platform,” with options such as
design classes can be thus constructed, starting with more géembedded RISC processor” and “embedded digital signal pro-
eral classes and increasingly specializing them, thus definimgssor.” These platforms would be then further discriminated.
increasingly “specific” design space regions, and correspondifighe software routines and the processor cores themselves, would
families of design objects, see Fig. 3. be the “reusable designs”.

This generalization/specialization hierarchy is to be constructethis concludes our overview, which, for clarity, has been mostly

based on common functionality at a desired level of abstractiogualitative. Still, it should be clear by now that the above design

detail, and also on similarities of alternative designs with respespace layer should not be defined in an ad hoc way. Systematic

to achievable ranges of performance, power consumption, etoechanisms are needed for creating self documented, scalable

So, as shown in Fig. 3(a), all IDCT designs would firgjdrer- design space layers, tailored to the target application domains

alizedinto a single family of design objects, since they impleand the needs of each individual design environment. This is the

ment the same basic function. The IDCT family would then beopic of Sections 4 and 5.

further specialized, by identifying the design issues and correy .

sponding option®n the basiof the similar ranges of perfor- 3 Previous Work

mance and silicon area exhibited by the two clusters of desigrighe Virtual Socket Interfac€VSI) alliance [5] was recently

as shown in Fig. 3(a), and so forth. created to address the challenges posed by core-based system-
: i ._on-a-chip designs. Even if the most well known effort of the

In this paper we argue that the ability to create such generali 5| alliance has so far been the definition aftandard on-

tion/specialization hierarchies is fundamental to supportingl,= : :
) : ; ; 1ip bus working groups have also been formed in the areas
enabling a systematic exploration of large design spaces. Mod Esystem level design, manufacturing related test, intellectual

ing mechanisms are proposed in order to systematically defi operty protection, mixed signal design, and implementation/

such hierarchies (see Section 4). verification. The VSI alliance efforts towards defining

A simplified design space layer for the IDCT class is given in theequired and recommended design practices for IPs, covering
Fig. 4. Recall that such a design space layer is supposed to defagic design, physical design, test, and communication proto-
a strategy for systematically pruning the design space for IDCdols (bus interfaces), will facilitate the task of developing the
designs, and simultaneously accessing available IDCT coregesign space layer proposed in this paper. Specifically, the
The “top” IDCT generalized class contains the definition of th@roduced standards and recommendations will be instrumen-
transform -- all available IDCT cores are thus indexed througtal in defining the complete set of requirements and areas of
this node. design decision that must be specified for each reusable core.

Many different IDCT algorithms can be found in the litera-A number of reuse methodologies have been reported in the lit-
ture.[3] Such algorithms, obviously all derived from the samerature, geared towards defining parametrized HDL components
basic mathematical definition of the transform, have howeveso as to increase the opportunities for reuse (e.g, [7]). Note that
different critical paths, different numbers of operations, precisuchdesign datashould reside in ieuse library(see Fig. 1), and
sions, etc. The speed, power consumption, and other applicatidse then properly indexed/referenced, via the design space layer
specific requirements, should thus ultimately dictate which algg@roposed in this paper. In [8], a methodologyréarse by adap-
rithmic implementation of the transform is most suitable for eactation was proposed which relies on a feature-based model. The
design. selection of design objects is performed using heuristic similarity

The proposed layer should thus support suchigarithm-level functions. The aim and scope of our work is different from the

design space exploration, whenever required. However, 420V€ in two fundamental ways. First, in order to create an
Open” design space layer, capable of referencing populations of

shown in Fig. 4, the design issue “implementation style” pre- . ; : : ;
cedes the design issue “aigorithm.” suggesting that: (1) its overores which are constantly increasing, or changing, our focus is

all impact on performance is more significant than that of thplacednoton the design objects themselves, bulesign space

« L o . . : L at contains such objects. Moreover, our emphasis sipn

algonth][n %es!‘grr 'SS-L;]e’ (Zd) it may impact the def|n|t|19 nhof t|h%)orting trade-off expk])ration as opposed to eﬁjtomating the

ﬁfﬁ'rggsm%ryt o%lyar%glfe rgense: '8\,?]5]5 lijr%’p?é?ﬁé?\?é?jeir? hta%\i‘,gr?election of reusable designs. In [9], an environment is proposed
O supportearly estimatiorof performance, power consumption,

Generalized IDCT dlass Are etc. The attractiveness of this approach relies on its “light

S 4 weight,” i.e., on the small effort required to create the infrastruc-
= 3 ture required by the self-contained estimation environment. As
= |
N 1 i discussed in Section 2, our proposed design space layer has an
I 2 M aim andscopedifferent from those in [9].
0 s
& i Mathematical
| -~ cDO: 1DCT
Delay Implementation style
Generalization/Specialization (b) Evaluation Space
(I-élli)erarchy ‘ Hardward ‘ Software‘
Fig. 3 Design Space Layer Based on Generalization/Specializ: Algorithm
| Family 1 |« « «| Familyn |

1. The definition was simplified, for clarity. In section 4 we provide the precise) — -
definition of a generalized class of design objects. Fig. 4 Organization of Design Space for an IDCT

4 A Modeing Framework for Creating Design throughout the entire design process.

Space L ayers Note that the properties discussed above may not bel¢anot

For simplicity, classes of design objects have so far been prieeed to beentirely independent from each other. For example,
sented as “atomic black-boxes.” They are not, however, the fingbe designer may make a design decision that, later on, proves to
grain modeling construct provided in our design space represdpe inconsistentwith the performance requirements, suggesting
tation. At its finest level of granularity, tliesign spaces actu- that a consistency relationship should be established between
ally abstractly characterized (i.e., discretized) by a set @fuch properties. Moreover, some design issues may have a more
behavioral and structurglopertiesor features Such properties significant impact on the figures of merit (i.e., requirements) of
are meta-data used to organize the myriad of design data chariaterest than others, suggesting that such design issues should be
terizing each given design object. They can be classified into: partially orderedin order to allow for a systematic exploration of

* behavioral and structuradescriptions,used to define the the design space. A single modeling construct, caittsis-
structure or intended behavior of design objects at valéwus tency constrain(CC), is used to express such ordering and con-

els of design abstractioffor example, an RTL behavioral sistency relgtlonsh|p§ among properties. _
description, written in VHDL or Verilog.); CCs are defined by amdependenset of properties, @ependent

« designrequirementsspecifying the target performance, area,S€t Of properties, andralation. The dependent set can only be
etc. gfor ?he object u%de?dgsign asgwel?l as other “problefiidressed by the designer after the independent set has been
givéns " such, for example, the réquired “word size” for arfddressed. Moreover, when the independent set is modified, the

k 5 oAr aliar” i “ ision” dependent set needs to be re-assessed. A relation defines the type
.‘?ggﬁ_f, b(I)(chg] ultiplier” and the required “precision” for an of dependency between both sets of properties. The relations
. - . defined within a CC can be quite different in nature. Namely,
+ design decisions orestrictions made during conceptual they may be stated exactly, using first principles, or be heuristic.
design with respect to criticalesign issugssuch as the Thay may be quantitative or qualitative. Moreover, they may
implementation style” for the various system components. gjrectly state inconsistencies between specific design options, or
The properties alluded to above are then organized into a hierigentify inferior (i.e., dominated) combinations of such options.
chy of increasinglyspecialized classesf design objectsSo, Detailed examples are given in Section 5.

groups/families of alternative algorithms and/or implementationg il pe shown, CCs are one of the key mechanisms provided
styles, for example, can bmerged/collapsedi.e., “general- ;" oyr modeling framework to support a systematic exploration
ized”) to facilitate thenitial exploration phasesBy doing so, f large design spaces. CCs allow for establishing general con-
they become selectable as a “family of design alternatives,” aRgktency relationships among design options across design
can then be incrementally discriminated, as conceptual des'@%ues, and/or among design issues and requirements. CCs also
progresses. allow for establishing a partial ordering among design issues,
It is important to note that the specialization alluded to above gonsidering the degree to which they impact key requirements,
actually realized at the design issue (i.e., property) I8ater- such as performance, area, etc. Finally, CCs establish also the
alized design issugsollapsing families of alternatives, will thus precise utilization context for early estimation tools, as illus-
precede mordetailed design issugshenever that makes sensetrated in Section 5.2.

from the point of view of aggressively pruning the design spacgefore concluding this section, we will further clarify the differ-
For example, the option “hardware” shown in Fig. 4 for thence petween the coarse-grained “partitioning” of the design
IDCT class, actually results from collapsing all “layout style”snace jmplemented by generalized design issues, and the finer-
and “implementation technology” alternatives, enumerated %?ained design space exploration strategies, implemented by
lower levels of the specialization hierarchy. The generalize@eqjar” design issues and consistency constraints. On one
design issue “implementation style” is thus created in order {954 the options of a generalized design issue typically collapse
differentiate, up-front, the entire family of hardware alternativesy number of options from a number of design issues into single
from the software family. “artificial” (generalized) alternatives -- this is thus a coarse parti-
This organization of properties into a hierarchy of classes dfoning of the design space, discriminating among broad alterna-
design objects defines the design space for the target set of apipties, created with respect tamportant “commonalties/
cation domains. Note that a class of design objects (CDO) ma&jmilarities” in: (1) functionality; and (2) achievable figures of
contain at most one generalized design issue. &giin of a ~ merit. CCs, on the other hand, establish a finer-grairaetg-off
generalized design issue defines a new CDO descending fréiented organization of the design issues defined within each
the original CDO, i.e., definesspecializationof the previous class of design objects. This important difference will be illus-
class. CDOs with no generalized design issue are thus the leti§ed in the following section, in the context of our case study.

of the hierarchy. 5 A Detailed Case Study on Cryptography

ﬁ\s _mentir?ned ?bOV‘T* th_is'hierarcahy ‘éf CDO? p((l)_videsi: also @ \hat follows we present a case-study on the application of our
asic schema for classifying and indexing families of coreg,qgeling framework to cryptography applications, e.g., digital

residing in thereuse libraries Reusable designs (i.e., design; ; ; ;
objects of a certain class) are thus no longer monolithically realgnature and public key encryption and decrypting. [10] These

. 'gglications use, as a basic operation,ntieglular exponentia-
resented and accessed. Instead, as conceptual design progresses, £) : .
it is possible to access families (i.e., groups) of such objectéon. M=modN, typically performed on integers with values up
associated with desiredngesof performance, power consump- to . Modular exponentiation, in turn, usasdular multipli-
tion, etc., down to single properties of individual design objectsation AxBmod M as a basic operation. Due to space limita-
(i.e., down to a single property “value,” say, an HDL model)tions, most of our discussion focuses on modular multiplication.

Thus reuse becomes naturatiergedwith designin that it i Thig case study aims at demonstrating two fundamental points:
not only & mechanism to minimize the need for re-design, b}y the proposegeneralization hierarchiesre instrumental to
also a mechanism to asseinceptual desigmand estimation effectively pruning the design spac as to quickly identify
adequate design space regions; and (2)ade-off oriented

1. For a more detailed discussion on this classification, see [2].

Logic/
Arithmetic

:

| Operator Arlthmetlc- q Brickell I
Modular Exponentiato h | |
| | Montgomery §

Fig. 5 Organization of Classes of Design Objects Fig. 7 Generalization Hierarchy for Modular Multiplication

design space exploratiotan be adequately performed at eactfuestion or of any of its ancestor classes. (Due to space limita-
stageof the traversal of the generalization hierarchy, i.e., withiriions, only a sub-set of representative properties is presented.)
the increasingly narrower/smaller design spaces defined by eagh 5 Requirements for the OMM CDO

specialized class in the hierar order to demonstrate points) } »

(1) and (2) above, the specifics of the design space layer develd. 8 lists some of the requirements specified for the “Operator -
oped for modular multiplication will be presented assuming thadvlodular - Multiplier” CDO, with the corresponding values

a core for implementing modular multiplication is to be selectedaken from the specification in [14Req1, Req2, and Req3 are
So as to meet the specifications given in [11] for a modular expgelf explanatory. Req4 asks the designer to specify if the modulo

nentiation coprocessor to be used in cryptography applicationsis known to be odd. For cryptography applications the modulo is
ber of al védard aul itilier desi known to be prime, and thus odd, so the option “Guaranteed” is
A number of alternativéiardware modular multiplier designs sejected. The target performance is loosely specified in terms of

was developed for this experiment, using the Synopsis Desi i i il
Compiler and the LSI Physical Design Tools and Toolkit for thg nificant performance points. For example, a modular multipl

0.351 G10 library - these designs are summarized in Table ation with a 768-bit operand/modulo should take no more than
(page 8). Thesoftwaremodular multipliers considered in our HS, as |n.d|cated in Reql and Reqb.
case study comprise a set@foutines and a set of highly opti- 5.1.4 Design Issuesfor the OMM CDO

mized assemblyroutines, both executing on a Pentium 60, aShe only Design Issue defined for the “Operator - Modular -
reported in [12]. These alternative implementations are thus th,tiplier” CDO is “Implementation Style,” with options “Hard-
cores (i.e., reusable designs) in our experiment. ware” and “Software.” (see DI1 in Fig).&s in the IDCT exam-

We start by discussing the properties defined in the design spdde, “Implementation Style” is defined as a generalized Design
layer that we have developed, and their organization into a genégsue, i.e., it partitions the design space into two sub-spaces
alization hierarchy. In Section 5.2 we discuss the consisten@%thh, from then on, will be explored independently. Observe
constraints established among such properties. that such partitioning is justified by the fact that hardware and

. N . software designs offer radically different ranges of performance
5.1 Propertiesand Generalization Hierarchy for this application, and thuine-grained trade-offgannot be
5.1.1 Algorithmsfor Modular Multiplication explored based on this Design Issue. Just to give an idea of such

Modular multiplication can be performed using the “Paper anff19€S: Fig. 6 shows the execution timgiaconds) of a single
Pencil” muItipII?cation algorithmr,) followed by a?od M red%c- modular multiplication with an operand length of 1024 bits for

tion. This algorithm, although very intuitive, is usually not used€veral hardware and software destfiie hardware designs
because of g[he size of thegpartif?I/ products and theycarry rippee labeled ac(;:olrdlng th Tl_able 1 -- for eéam_ple, the Iagel #?—664
length of the parallel additions. Brickell proposed in [13] a moré: n?tes amo fu arhmu It'p er const,;clructe us;]ngfa ?]urﬂ ber 0 4 4-
efficient algorithm. It is based on the paper and pencil meth ts_lcef#gsee ourth co dumn n T‘I? b? 1), eac f?WW Ic I asedon
but starts with the most significant digitdgnd performs enod - ¢5'9N (seehseg\on r%\iv n A aM]])ge sortware aterna—d :
M reduction at every partial product. Finally, for applications ir{“’es comprise the Assembler (ASM) and C routines reported in
which the modulév is known to bexdd, another algorithm, due '

to Montgomery [14], can potentially achieve even better effiGiven the value in Req5 (stating that a modular multiplication
ciency. Fig. 10 shows the behavioral description of the Montwith a 768-bit operand should take no more thapsg the
gomery algorithm. Although it requires a pre-computation of theption “Hardware” is selected, i.e., the design space can be
Multiplicative Inverse for the computation of the quoti@(ine immediately pruned so as to encompass only hardware designs.

4) and a post processing (lines 5 and 6), the basic iteration sge& 5 Specialization of the OMM CDO

has great potential for speedup optimizations.) o I evel for th
; ; . Fig. 7 shows the next specialization level for the “Operator -
5.1.2 Hierarchy of Classes of Design Objects Modular - Multiplier” CDO, created by the generalized “imple-
Fig. 5 shows part of the hierarchical organization of classes of
design objects (CDOs) used to define the design space layer for Implementation Style
cryptography applications. The first three levels of the special-Hargware Software
ization hierarchy are thus defined with respect to commonalties
in functionality. Specifically, a generalized class “operator’ is 1.96 1.96 4.32 799 1037 5706 726!

first defined, then it is specialized into “logic/arithmetic” and Design Design Design CIHS CIHS CIOS CIHS
“modular” operators and, finally, the various operators defined#5_16 #2_128 #8 64 ASM ASM Ccode C code

for each class are discriminated. Fig. 6 Execution delay (ips) of a modular multiplication
In what follows we discuss in detail ti@perator - Modular - with 1024 bit operands.
Multiplier (OMM) CDO, shown in gray in the figure. Because of

. . .) . 2. All such requirements adefinedin the layer; during conceptual design, the
theinheritance hierarchysee path in bold), the properties to be™ gesigner enters their correspondijues based on the specification of the
discussed in the following sections may be part of the CDO in system under design.
3. The delays shown in the figure for the Montgomery designs correspond to the
execution delay of the loop (lines 3-4 in Fig. 10). Note that this is the relevant
1. Note that, since generalized design is@agttion the design space, each spe- delay in the context of modular exponentiation.
cialized class in the generalization hierarchy defines a design space region cdn-Design #2 denotes a modular multiplier implementing the Montgomery algo-
tained within that defined by its predecessor class. rithm with radix 2, and using Carry-Save adders.

mentation style” Design Issue discussed in the previous section - 1.1e+0
- accordingly, two new CDOs, “Hardware” and “Software”,

appear as specializations of that previous (generalized) class.
(Ignore for now the second level of specialization also shown in 900009
the same figure.) Given that the “Hardware” option was previ-
ously selected, we will focus on the characterization of the
design space for the sub-hierarchy defined by the “Operator- £ 700000

le+04 #8 8

Brickell designs
800000 #8_16s

Modular-Multiplier-Hardware® (OMM-H) CDO, shown in # 8 _ #8_32

gray in Fig. 7, i.e., we consider in some detail the properties ~ 60000, 35"~ Montgomery designs g gg

defined for this (more specialized) class of design objects. 50000 0 7292

Six Design Issues are defined for the specialized “Operator- *H2_64 oHe 128

Modular-Multiplier-Hardware” CDO, namely: “Layout Style,” 1800 1800 2000 2200 2400 B8R, 2800 3000 3200 3400 3600
“Implementation Technology,” “Algorithm,” “Number of Fig. 9 Evaluation space for Brickell and Montgomery

Slices,” “Slice Width,” and “Radix,” some of which are shown in modular multipliers, assuming 768 bit operands.

Fig. 11. performance trade-offs that can be implemented via this algorith-

The first two Design Issues, “Layout Style” (DI5 Fig. 11) and™C parameter.

“Fabrication Technology” (DI6 Fig. 11), basically define theln what follows, we illustrate again the use of generalization,
“meaning” of the generalized “Hardware” option, i.e., discrimi-using the “Operator-Modular-Multiplier-Hardware” class of
nate the “real” design options collapsed/lumped into the “harddesign objects. Consider again the “Algorithm” Design Issue.
ware” category. The designer can now explore combinations &ig. 9 shows the evaluation space for a number of reusable
these two Design Issues, and consider cost-performance atebkigns (available in our reuse library) implementing the Mont-
other trade-offs during such an exploration, so as to identify trggomery and the Brickell algorithmic alternatives. All such
combination of options that is more convenient for the design designs share a common “layout style” (“standard cell”), a com-
hand. Note that each combination of options selected by tmeon fabrication technology (“ 0.35m”), and a common radix
designer (for example, “standard cell” for “layout style,” and(2), but have different “slice widths” and thus “number of slices.”
“0.35 um” for “implementation technologyjilters the set of Note that, in spite of the different performances exhibited by the
cores indexed under the “Operator-Modular-Multiplier-Hard-various designs, resulting from the different “slicing” strategies,
ware” CDO accordingly, thus allowing the designer to considahe relativesuperiority (in area and performancg of the Mont-

the performance ranges and other figures of merit, for each sugbmery algorithm with respect to the Brickell algorithntds-
alternatives- sistent and is significant. This could suggest that solutions based

The selection of the number and the width of the multipliees on the Brickell algorithm are inferior, and thus should not be

; P : idered. This is not the case, since the Montgomery algo-
to be used to build the Modular Multiplier are also importan onst ' : A
Design Issues -- note that given the characteristically Efige- flthm cannot always be used. (Recall that, if the Modulo is not

tive Operand Length¢EOL) in encryption applications (see guaranteed to be odd in a given application, the designer has no

L L ; ther choice but use Brickell's algorithm.) Given the above, it
Reql in Fig. 8), the multiplier ought to be decomposed into ; : ;
nun?qber ofginC()as with widl?hs con?patible with the F':alget:k ould be clear that the selection between both algorithnas is

; : . “fine-grained,” trade-off oriented decisioThis clearly justi-
rate. The designer can thus filter cores with respect to these thegup-front partitioning of the design space bas)(/eé on these
key parameters, in order to explore the design space with resp g alternatives, i.e., the use ofyaneralizedDesign Issue for
to sustainable clock rates vs. overall execution delay (in numb e “Algorithm” Desian Issue
of clock cycles) for a given EOL. 9 9 :

The “Algorithm” Design Issue (DI2 Fig. 11) states that the modAccordineg, Fig. 7 shows thieaf CDOs, defined by the gener-

ular multiplier can be implemented using two different algo_alized Design Issue “Algorithm.” Since our application can use

rithms: “Montgomery” and “Brickell2 Finally, the “Radix” the “superior” Montgomery algorithm, we will focus on the
Design Issue,%lllow;y for the selection of a ra%j/ix other than 2 (ﬂg‘garacae rization of the design space for the sub-hierarchy defined
default value -- see DI3 in Fig. 11), for any of the algorithms ,t.h(%I\(A),\FA)?Q?\BS%Dhﬂgdgr&%wnh?#g'lgéiri;]'g?rdyamomgom'

This last Design Issue thus allows designers to explore the arewY ' 9. 1.

5.1.6 Behavioral Description and Behavioral

g Effective Operaflld LengthOL) =768 aT Decomposition for the OMM-HM CDO
g zsaOfValues:{g |' ,DZ) ‘ nit ot A Behavioral Description(at the algorithmic level of design
& | glOperand Coding 2's Complement abstraction) is provided for the “Operator - Modular - Multiplier
S & SetOfvalues={2's compl., Signed ...} - Hardware - Montgomery” CDO (shown in Fig. 10). The behav-
= % Result Coding Redundant ioral description also characterizes ttoeling typeassumed for
% & |SetOfValues={2's compl., Signed ...} the operands, modulo and result (not shown in Fig. 10). This last
'8 ¥ IModulo is Odd-Guaranteed information is important, since it establishes the possible need
= 65;_’ SetOfValues={Guaranteed, notGuaranteed} for conversions, given the application’s requirements (see Req2
5 == . — and Req3 in Fig. 8).
® 3 LatencySingleOperation 8 .] B
8 | ¢ |setOfvalues=R" [Unit: psec We now addressiesign object decomposition key strategy
o3 Implementation Style Type: Generalized gsﬁd to Ccl)nJrOI d_e?_lgn C?mpIeXIty 'T Iarg%ge(g%ns' .NOteIthatl thfe
a ehavioral description of any complex at a given level o
StOfvalues{Hardware, Software} abstraction) can always be seen abehavioral decomposi-

Fig. 8 Requirements and Design Issues for OOM CDO tion.[2] This is so because the behavior of the complex CDO is

1. Note that, in practice, the designer may be restricted to a sub-set of sug¥Pressed (in itsehavioral descriptionin terms of the behavior
options, but the principle still holds. of other, less complex CDOg$.or example, the behavioral

2. Since the “Paper and Pencil” algorithm is an inferior solution, it was e”midescription of the modular multiplier shown in Fig. 10 utilizes a
nated.)

Loaie o = Toge]
Arithmetic

Carry-look-ahead

Hardwars Operator CDO'’s

Arithmetic Carry-save (restricted to be of
Operator Multiplier N Y the above class)
Modular Exponentiator|

R=0,Q (=08:=r 2B
FOR =1 TO n+1
R=(A ;" R +Q;*M)divr;

Qi =R o*(-M o)™*)modr,
IF (R>M) THEN
R=R-M;

Behavioral
Description

Fig. 10 Supporting Behavioral Decomposition of Complex Design Objects

Montgomery

number ofarithmetic operators, such as adders and multipliers5.2 Consistency Constraints

Some of these operators are critical to the performance of t ; ; ; ; o
modular multiplier, in particular the additions and multiplica-“@thIS section we illustrate the different roles played by consis

tions shown in lines 3 and 4 of Fig. 10.[14]

The conceptual design of suctitical operatorsis realized by

tency constraints in the design space layer. CC1 in Fig. 13
express a consistency relationship between properties, i.e., it
indicates that the modulo must be odd for the Montgomery

addressing Design Issue DI7 shown in Fig. 11, which requiredgorithm. Trade-offs and general heuristics may also be repre-
the selection of the “Behavioral Description” (BD) for each ofsented. CC2, for example, states that the greater the radix, the
the operators. (The character “*” represents a “wild card.” Notsmaller the latency (in number of cycles).As indicated in Fig. 13,
that the expression forces the consideration of “Hardware” redhe relation in CC2 is defined for Montgomery multipliers
izations for those operators.) This design space exploration stipplemented using “Carry-Save” adders. A similar consistency

is thus performed usingther CDOs in the hierarchgi.e., the

constraint is defined for Montgomery multipliers using “Carry-

“Arithmetic” “Adders” and “Multipliers”), as symbolically Look-Ahead” adders, expressing the impact of the unbounded

shown in Fig. 10.

propagation of carries in the multiplier’s latency.

The “Operator - Modular - Multiplier - Hardware - Montgom- CC3 defines the context of utilization of an early estimation tool,
ery” CDO is a leaf node in the specialization hierarchy, i.e., is thdenotedBehaviorDelayEstimatoysed to assign rank to alter-

last level of specialization defined in the design space layarative algorithmic-level behavioral descriptions with respect to
While exploring trade-offs on this leaf CDO, the designer i§$MaxCombinationalDelay.” Estimation tools are useful when no
allowed to revisit theon-generalizedesign Issues defined for suitable hard cores are found in the reuse library. For example,
all of its ancestor CDOs, including “Implementation Technolthe values generated for the (algorithm level) estimation tool in
ogy,” “Radix,” “Number of Slices,” etc. Fig. 12, for example, CC3 should be used to compare alternative solutions with
illustrates some of the trade-offs implemented by the Hardwarespect to combinational delay when no additional design infor-
Montgomery Multiplier cores available in our reuse library, withmation (at physical, logic and RT levels) is available. Hence, the
respect to “Radix,” “Number of Sections,” and also with respegbroposed design space representation defines also the context for
to Adder and Multiplier Implementations. Specifically, “Carry-which specifianetricsandearly estimation toolare to be used.
Look-Ahead” and “Carry-Save” adders are alternatively considObserve that CC3 is applicable to any “Hardware” CDO.

ered, as well as “Multiplexer-Based” multipliers (implementing
multiplications by constants), as alternatives to regular multipli

Finally, constraints may also eliminate inferior solutions. A con-
Sistency constraint could, for example, indicate that the guaran-

ers -- see the corresponding description of each labeled designdR that the modulo is odd is inconsistent with the selection of

Table 1.

Behavioral Decomposition

FOR ALL
Oper:=OPERATORS(BD@*.Hardware)
SetOfValues={SELECT(BD@Oper),USE(Default)};

OMM-HM
D17

Algorithm Type: Generalized

SetOf Values={Montgomery,Brickell}

DI2

Default: Montgomery

Radix

SetOfvalues={ 2'[i 0", 2' < val(EOL)}

DI3

Default: 2

Number of Slices

OMM-H

SetOfvalues={i 0Z*|EOL/i = 0}

Default: 1

Layout Style

SetOfValues={Standard-cell, Gate Array, ...}

Fabrication Technology

DI6 | DI5

SetOfValues={0.7y, 0.344, ...}

Fig. 11 Design Issues for OMM-H and OMM-HMCDOs

the (inferior) “Brickell” algorithm. CC4, shown in Fig. 13, elim-
inates inferior solutions, by stating that when the selected algo-
rithm is the “Montgomery” for EOL 128, only
“CarrySaveAdders” should be used for implementing the addi-
tions in the loop.The solutions eliminated by CC4 are clearly
inferior, due to unbounded propagation of carries (i.e., low per-
formance) and large areas. A similar constraint is also defined to
enforce the use of multiplexer-based multipliers for the same
loop (in this case for any EOL). This concludes our illustrative
example of a design space layer.

As alluded to above, due to space limitations the design space
7000

65000 #4”64
60000
55000
§50000
“45000} #5°64 #3 64
40000)
35000) #2764 #6_64 4164
3000055 50 200 300 350 700

Delgggns)
Fig. 12 Evaluation Space for 64-bit Montgomery multiplicatit
using 64-bit slices

Table 1: Operator - Modular - Multiplier - Hardware: Alternative Designs

#| |E o Slice Width
S5 &8| 5 8 16 2 64 128
g § g 2 % b b b b b b b b b b
o < s | Area |Latency”) CIk" | Area |Latency”| CIk® | Area [Latency”| CIk” | Area |Latency”| CIk®| Area |Latency”| Clk
1] 2| MICLA|N/A | 5436 | 25 | 2.73 8872 62| 364 17420 138 4l17 34401 351 540 63897 Bad | 6.
21 2|M|CSAN/A| 6307 | 27 | 237 12477| 45 | 2.33] 21554] 92 | 2.55|37299| 175 | 2.60] 77905 388 | 2.96
3] 4| M|CLAMUL] 7433 | 38 | 421 12265 45| 493 23987 106 618 47533 262 [7.91 96106 B61 |10
4] 4|M|csAMUL] 9912 | 37 | 3.33| 16969| 41 | 3.72| 34142| 78 | 4.10| 67106| 166 | 4.60|122439 372 | 5.63
5] 4| M|csSAMUX| 9075 | 38 | 3.39] 14359 38 | 3.39 24398 67 3552 46604 138 B.8L 85735 P95 | 4.
6] 4 |M|CLAMUX| 8013 | 35 | 3.84] 11939 40 | 4.43] 18983 86 | 5.7 37829] 201 | 6.08] 69751 499 | 7.67
712 BICLA|N/A | 7326 | 71 | 393 12300 113| 4.33 23370 21y 516 34891 472 6.3/ 73268 1031 | 7
82| B|CSAN/A| 10433] 72 | 3.78] 16927| 120 | 4.30| 26303| 195 | 4.42| 49296| 313 | 4.17

a. M=Montgomery, B=Brickell 0.351 standard cell library

b. Latency and CIk in ns. Latency computed for EOL=Slice width.

exploration discussed in this section only addressed modularethodologies and traditionah*housé design methodologies,
multiplication, one of the critical components of tm@dular duringearly design space exploratiofihe systematic explora-
exponentiation coprocessor of interest [10]. Note, however, théibn of large design spaces is supported by defining a hierarchy
this exploration could have been part of the design space explaf- generalized classes of design objects -- such a hierarchy
ration performed for the main architectural component, i.e., thaefines increasingly specific families of alternative designs (i.e.,
modular exponentiation coprocessor. The exact same behagesign space regions) with respect to the figures of merit of inter-
ioral/structural decomposition mechanisms discussed in Sectiest. When traversed during conceptual design, this generalization
5.1.6 would have supported the transition between the concdperarchy supports an effective design space pruning and trade-
tual design of the main architectural component (i.e., the coproff exploration. The design space representation implemented in
cessor) and the conceptual design of its critical blocks (includirttpe layer is self-documented and highly compartmentalized (into
the modular multiplier). hierarchies of CDOs), and is thus easily scalable. Moreover, it

Note finally that BUS interface requirements must be specf—an be tailored to the needs and resources of each design envi-

fied for eachmain architectural component of a system—on—a—onmem'

chip. Such requirements were not part of our discussion sin&» far we have mostly concentrated on performance vs. area

theywould have tdoe specified for thenodularexponentiation trade-offs. We are currently incorporating power consumption in

architectural component (not for its modular multiplicationour case studies, and investigating the need for supporting the

block). co-existence of different specialization hierarchies, so as to
: : effectively guide designers based on the specific trade-offs they

6 Concluding Remarksand Work in Progress may be interested in locally or globally exploring.

A novel library layer, called the “design space layer,” is Pro References

posed, aimed at effectively supporting bdf;baseddesign [1] http:/Awww.design-reuse.com

[2] M.Jacome and S.Director, “A Formal Basis for Design Process

/Montgomery Algorithm requires odd modulo Planning and ManagementZEE Transactions on Computer-
- Indep_Set={ O=ModulolsOdd@OMM} Aided Design of Integrated Circuits and Systeviad. 15, No.
3 |Dep_Set={ A=Algorithm@OMM} 10, Oct1996. _ _
Relation: InconsistentOptions [3] K.Rao and P.Yip, Discrete Cosine Transform, Academic Press,
(O=NotGuaranteed &=Montgomery) 1990.

[4] D.Gall, “MPEG: A Video Compression Standard for Multime-

/[The > the Radix, thec the latency in #cycles dia Anblications "Comm. ACMVBA. 1994
Indep_Set={ R=Radix@*.Hardware.Montgomery, 5] ht’[p'//B\?WWVSi or’g ' ! '
EOL@Operator, " e .
o - . N [6] V.Preiset all, “Reuse scenario for the VHDL-based hardware
8 CSA o_per£+,||ne.2)@BD@ Hardware. Montgomery} design flow,” in Proceedings of tii@iropean Design Automa-
Dep_Set={L=LatencySingleOpe@OMM} tion Conferencevith EURO-VHDL, Sep 1995.

[7] J.Altmeyer, S.Ohnsorge and B.Schuermann, “Reuse of design
objects in CAD frameworksf[EEE/ACM International Confer-
ence on Computer-Aided Desjigiov 1994.

[8] O.Bentz, J.Rabaey, and D.Lidsky “A dynamic design estimation

Relation: L = 2% EOLCSOperator+

1

/IBehavioral Decomposition impacts delay

{3 |Indep_Set={ B=BehavioralDecomposition@*.Hardware} and exploration environment” In proceedings3dth Design

O |Dep_Set={ MaxCombDelay_R@Operajor Automation Conferenc&CM Press, June 1997.
Reation: MaxComDelay R=BehaviorDelayEstima®)([9] R.Rivest, A.Shamir, and L.Adleman, “A method for obtaining
//Inferior solutions eliminated g'fi'tii'g ;g;natures and public-key cryptosyster@inm. ACM
Indmﬁﬁfégﬁ)ﬁgf ‘f,,rgfjolj]ar Multiplier.Hardware} [10] A.’Royo, J.Moron and J.Lopez “Design and Implementation of a

~ — = - —— : Coprocessor for Cryptography Applications,” In proceedings of

8 Dep_Set—{BD—BehaworglDescrlptlon@OMM-HM} European Design & Tst Conferend®97.
Shorts={Adders-oper(+,line:2) @BD} [11] C.Koc, T.Acar, and B.Kaliski, “Analyzing and Comparing
Relation: InconsistentOptionsAMontgomery & Montgomery Multiplication Algorithms,” IEEE Micrg,
EOL > 32 &\lgorithm@Addersz CS) 16(3):26-33, June 1996.

_ _) [12] E.Brickell, “A fast modular multiplication algorithm with
Fig. 13 Consistency Constraints

application to two key cryptography,” #sdvances in Cryptol-
ogy - CRYPTO'82Chaumet al, Eds. New York: Plenum,
1983.

[13] C.Walter and S.Eldridge, “Hardware Implementation of Mont-
gomery’s modular multiplication algorithmEEE Transaction
on Computers42(2), 1993.

