
The Design Space Layer: Supporting Early Design Space Exploration for
Core-Based Designs*

ABSTRACT

A novel library layer, called the “design space layer,” is pro-
posed, aimed at supporting both, IP-based and traditional “in-
house” design methodologies, during early design space explo-
ration. Strategies for effectively pruning the large design spaces
characteristic of system-on-chip designs, and for transparently
retrieving information on cores adequate for implementing the
system components, are supported by the proposed layer. The
layer is self-documented and highly compartmentalized into
hierarchies of classes of design objects, and is thus easily scal-
able. A design space layer developed for encryption applications
is presented and discussed in some detail.

1 Introduction
The trend towards developingcore-based, system-on-chip solu-
tions for complex application specific systems is clearly irrevers-
ible. Increasing the level of design integration is quite attractive
from a reliability, power consumption, and unit-cost perspective.
The use of cores, i.e., macro-cells developed by third party IP
providers, can lead to significant decreases in design cost and in
time-to-market. Reflecting the tremendous opportunities created
by this emerging trend in the design of application specific sys-
tems, the number of IP providers is booming -- more than sev-
enty two are listed in [1], offering over 1000 reusable blocks.

This paper proposes a new librarylayer, to be implemented on
top of conventional reuse libraries (see Fig. 1), aimed at support-
ing both,IP-based and traditional “in-house” design methodolo-
gies, during early design space exploration. Specifically, the
objective is to assist designers in systematically considering rele-
vant alternative implementations for the various components of a
system-on-chip architecture. Accordingly, it will be shown that
the proposed library layer, called thedesign space layer, allows
for cores, that are good candidates for implementing specific sys-
tem components, to be quickly and transparently selected from
reuse libraries. Furthermore, when no adequate cores are avail-
able, it will be shown that the proposed layer can still assist the
conceptual designof the corresponding system components, i.e.,
the specification of the fundamental design options that should
be adopted for such components, in order to meet the required
performance, silicon area, power consumption, etc.

As its name suggests, the proposed layer creates a representation
of the design space, i.e., the space of all feasible (alternative)
implementations for the object under design. Note that such a
representation is notexplicit, since the actual alternative designs
may or may not exist in the reuse libraries that underlie the layer.
The design space is thusimplicitly represented bydiscriminating

the areas of design decision, ordesign issues, that are on the
basis of the creation of such alternatives. An example of one
such design issue is “implementation style,” discriminating
between hardware and software designs. Note that the cores
available in the reuse library correspond to “points” in the design
space represented in the layer. Accordingly, they are logically
indexed (i.e., referenced) via these same areas of design deci-
sion. Some regions of the design space may be thus populated by
a large number of cores, while others may not.

The proposed layer is aimed at supporting strategies for system-
atically pruning large design spaces and for retrieving informa-
tion on available cores (i.e., reusable designs) complying with
the system’s requirements and with the design decisions made so
far. Indeed, each design decision made with respect to a specific
architectural component, during conceptual design, corresponds
to a pruning of the component’s design space. The reusable
designs that fall outside the selected region, i.e., those cores
which do not comply with such a decision, are immediately
eliminated from consideration. Critical information on theset of
reusable designs that do comply with the decision, including
ranges of performance and power consumption, can be then
directly provided to the designer. In some cases, directly reusable
designs may not be available in the reuse libraries, i.e., the set of
“readily available” design points (within the selected design
space region) is empty. In such cases, the proposed design space
layer still assists the designer in undertaking conceptual design,
adequately supported by early estimation tools, whenever such
tools are available.

As shown in Fig. 1, the proposed design space layer can be logi-
cally connected to any number of reuse libraries, i.e., transpar-
ently index/reference designs residing in different libraries.
Ideally, each design environment should thus develop its own
design space layer, tailored to the application domains of inter-
est, and then use such a layer to reference available cores, stored
in reuse libraries maintained by the IP-providers themselves.

The remainder of the paper is organized as follows. Section 2
gives an overview of the fundamental support mechanisms pro-
vided by the proposed layer for assisting conceptual design and
core selection during the definition of system-on chip architec-
tures. Previous work is discussed in Section 3. The proposed
modeling framework is described in more detail in Section 4.
Section 5 presents a detailed case study on the development of a
design space layer forencryption applications. Some conclu-
sions are given in Section 6.

2 An Overview of the Design Space Layer
As alluded to in the previous section, the proposed layer creates
an implicit representation of the design space, i.e., the space of
all possible alternatives for the design at hand. Such a design
space representation is based on the design formalism described
in [2]. The cornerstone of this formalism is the concept of aclass
of design objects. Examples of classes of design objects are
“Adders,” “Inverse Discrete Cosine Transform” (IDCT) blocks
[3], “MPEG II encoders/decoders” [4], and “embedded RISC
processors.”

Design Space Layer

Fig. 1 Logical Organization of the Design Space Layer and the
Reuse Libraries

Reuse Libraries
Library A Library B Library C

* This research project is sponsored by NSF, under CAREER
Grant No. MIP-9624321.

Helvio P. Peixoto and Margarida F. Jacome
ECE Dept., The University of Texas at Austin

Austin, TX 78712
{peixoto|jacome}@ece.utexas.edu

Ander Royo and Juan C. Lopez
ECE Dept., Technical University of Madrid

Madrid, Spain
{ander|lopez}@die.upm.es

RT

Logic

IDCT 1 IDCT 2 IDCT 5

Fig. 2 Design Space Layer Strictly Based on Abstraction

Area

Delay

12

3

5

4

Physical

Design Space at RT level

Class of Design Objects: IDCT

Design Space at Algorithm Level

Design Space at logic level

Design Space at Physical level

Algorithm

Reusable IDCT Design Objects

(a) Design Space Layer Based on level of Abstraction (b) Library of Reusable Designs (c) Evaluation Space

A class of design objects is an abstraction used to implicitly
define the design space encompassing all feasible implementa-
tions of a specific behavior or functionality. For example, the
“Adder” class of design objects abstracts all possible adder
implementations, each of which is a point in the design space,
called an adderdesign object.Alternative designs are differenti-
ated within the “Adder”class by the various areas of design deci-
sion, ordesign issues, that are relevant to the design of an adder.
An example of one such design issue is “logic style”, with the
corresponding design options given by: “ripple-carry,” “carry-
look-ahead,” “carry-save,” etc. Another example is “layout
style,” with the corresponding options given by: “standard-cell,”
“gate-array,” etc.

Since the design space for complex application specific systems
tends to be large, it is important to provide basic mechanisms to
enable an effective and systematic pruning of the space. In what
follows, we argue that the “traditional” concept ofdesign
abstraction, while adequate for driving the top-down design pro-
cess, isinadequate to support the early design space exploration
performed during system-on-chip architectural definition. We
then discuss the generalization/abstraction features provided in
our layer, aimed at supporting an effective pruning of the design
space.

2.1 On the Inadequacy of Traditional Design
Abstraction
In top-down design methodologies, the design process is decom-
posed into a number of design steps, each of which increasingly
refines/details the structural and behavioral descriptions of the
object under design. Specifically, in each step, the design data
characterizing the design object at a given level of abstraction is
refined into an equivalent representation at a lower level of
abstraction. Examples of levels of abstraction traditionally
adopted indigital design are algorithm, register-transfer (RT),
logic, and physical. At the end of the design process, the design
data is naturally partitioned into such levels of abstraction, creat-
ing the various views of the design object.

However, such a compartmentalized notion of abstraction isnot
the most convenient way to organize data in order to support
early design space exploration. Fig. 2 will be used to illustrate
this point. Consider for example that five IDCT hard-cores are
available in the reuse library. The boxes shown in Fig. 2(b) sym-
bolically denote how thedetailed design data for each of the
IDCT cores would bepartitioned into the four levels of abstrac-
tion: algorithm, RT, logic, and physical.

For the sake of the discussion, let us assume that the design
space layer would be defined strictly with respect to this hierar-
chical organization of data. As shown in Fig. 2(a), we would in
this case define four “sub-classes” for the IDCT class -- the first
sub-class would represent thedesign space of the IDCTat the
algorithm level, and the second, third, and fourth sub-classes
would represent it at the RT, the logic and the physical levels,
respectively. So, while each box in Fig. 2(b) denotes thedetailed

design data of a particular view of an IDCT core, the boxes in
Fig. 2(a) enumerate theareas of design decision (and corre-
sponding design options) that have to be considered at each level
of abstraction, when designing an IDCT. Accordingly, each of
the IDCT cores would thus be discriminated first at the algorithm
level, then at the RT level, etc. Naturally, one would still need to
decide on the specificsub-setof design issues “relevant enough”
to be considered during conceptual design (from among those
defined at each level). This important point is addressed next,
while discussing the inherent limitations of this organization.

By exploring the design space in such a way, there would be no
guarantee that the designer would be quickly and coherently
guided to the best candidate IDCT core(s). For example, Designs
1 and 4, with quite distinct area/performance characteristics (see
Fig. 2(c)), could very well be different implementations of the
exact same IDCT algorithm (say, one using a 0.35µ standard cell
library, and the other using a 0.7µ standard cell library). So, the
design space regions selected by initially exploring only the
algorithm design space could map into quite uninformative
regions in the evaluation space, as symbolically shown in Fig.
2(c).

The important observation to be made is that, some design issues
may only explicitly appear in the design data at the logic or
lower levels of abstraction(e.g., “layout style,” “fabrication tech-
nology,” etc.), yet they may still have amajor impacton perfor-
mance, silicon area, and power consumption. Recall that, the
ultimate objective of the design space exploration performed
during conceptual design is to specify thefundamental design
options to be adopted for a design object (during its detailed top-
down design), so that its required performance, power consump-
tion, etc., can be achieved. Thus lower level decisions such as
these may actually need to be considered very early in design
space exploration process.

2.2 A Design Space Layer Based on Specialization/
Generalization
The decision on which design issues need to be considered dur-
ing conceptual design (and used to discriminate the designs)
should be based on their impact on thefigures of meritof interest
-- this will allow for a coherent organization of designs, reflect-
ing their actual proximity in theevaluation space. Consider
again the five IDCT cores. (Assume, for simplicity, that all such
cores can support the specific “word size,” “precision,” and other
requirements posed by the application.) Intuitively, one would
expect to see Designs 1 through 5 discriminated into the clusters/
groups as shown in Fig. 3(b). This means that the designer
should first be presented with the design issues that result in the
significantly different area/performance ranges exhibited by the
cluster {1,2,5} and the cluster {3,4}. Only after the designer
commits to one of these ranges, by adopting the design options
that arecommon to the designs within the corresponding cluster,
should options that further discriminate between the designs
within a single cluster be considered. This is symbolically shown

in Fig. 3(a).

We now discuss how this is achieved in our proposed design
space layer. Let us revisit the notion of a class of design objects,
and introduce the notion of ageneralizedclass of design objects.
A generalized class of design objects is one that considers only a
subset of the design issues that need to be addressed in order to
complete conceptual design.1 A hierarchy of such generalized
design classes can be thus constructed, starting with more gen-
eral classes and increasingly specializing them, thus defining
increasingly “specific” design space regions, and corresponding
families of design objects, see Fig. 3.

This generalization/specialization hierarchy is to be constructed
based on common functionality at a desired level of abstraction/
detail, and also on similarities of alternative designs with respect
to achievable ranges of performance, power consumption, etc.
So, as shown in Fig. 3(a), all IDCT designs would first begener-
alized into a single family of design objects, since they imple-
ment the same basic function. The IDCT family would then be
further specialized, by identifying the design issues and corre-
sponding optionson the basis of the similar ranges of perfor-
mance and silicon area exhibited by the two clusters of designs,
as shown in Fig. 3(a), and so forth.

In this paper we argue that the ability to create such generaliza-
tion/specialization hierarchies is fundamental to supporting/
enabling a systematic exploration of large design spaces. Model-
ing mechanisms are proposed in order to systematically define
such hierarchies (see Section 4).

A simplified design space layer for the IDCT class is given in the
Fig. 4. Recall that such a design space layer is supposed to define
a strategy for systematically pruning the design space for IDCT
designs, and simultaneously accessing available IDCT cores.
The “top” IDCT generalized class contains the definition of the
transform -- all available IDCT cores are thus indexed through
this node.

Many different IDCT algorithms can be found in the litera-
ture.[3] Such algorithms, obviously all derived from the same
basic mathematical definition of the transform, have however
different critical paths, different numbers of operations, preci-
sions, etc. The speed, power consumption, and other application-
specific requirements, should thus ultimately dictate which algo-
rithmic implementation of the transform is most suitable for each
design.

The proposed layer should thus support such analgorithm-level
design space exploration, whenever required. However, as
shown in Fig. 4, the design issue “implementation style” pre-
cedes the design issue “algorithm,” suggesting that: (1) its over-
all impact on performance is more significant than that of the
“algorithm” design issue; (2) it may impact the definition of the
options for the “algorithm” design issue, e.g., same of the algo-
rithms may only make sense when implemented in hardware;

1. The definition was simplified, for clarity. In section 4 we provide the precise
definition of a generalized class of design objects.

and/or (3) it may impact the comparative efficiency of such algo-
rithms.

So far we have mostly focused on hardware designs but software
implementations pose no significant challenge to our modeling
framework. For example, consider again Fig. 4. The design issue
to be used for further discriminating the “software” generalized
class would be “programmable platform,” with options such as
“embedded RISC processor” and “embedded digital signal pro-
cessor.” These platforms would be then further discriminated.
The software routines and the processor cores themselves, would
be the “reusable designs”.

This concludes our overview, which, for clarity, has been mostly
qualitative. Still, it should be clear by now that the above design
space layer should not be defined in an ad hoc way. Systematic
mechanisms are needed for creating self documented, scalable
design space layers, tailored to the target application domains
and the needs of each individual design environment. This is the
topic of Sections 4 and 5.

3 Previous Work
The Virtual Socket Interface (VSI) alliance [5] was recently
created to address the challenges posed by core-based system-
on-a-chip designs. Even if the most well known effort of the
VSI alliance has so far been the definition of astandard on-
chip bus, working groups have also been formed in the areas
of system level design, manufacturing related test, intellectual
property protection, mixed signal design, and implementation/
verification. The VSI alliance efforts towards defining
required and recommended design practices for IPs, covering
logic design, physical design, test, and communication proto-
cols (bus interfaces), will facilitate the task of developing the
design space layer proposed in this paper. Specifically, the
produced standards and recommendations will be instrumen-
tal in defining the complete set of requirements and areas of
design decision that must be specified for each reusable core.

A number of reuse methodologies have been reported in the lit-
erature, geared towards defining parametrized HDL components
so as to increase the opportunities for reuse (e.g, [7]). Note that
suchdesign data should reside in areuse library(see Fig. 1), and
be then properly indexed/referenced, via the design space layer
proposed in this paper. In [8], a methodology forreuse by adap-
tation was proposed which relies on a feature-based model. The
selection of design objects is performed using heuristic similarity
functions. The aim and scope of our work is different from the
above in two fundamental ways. First, in order to create an
“open” design space layer, capable of referencing populations of
cores which are constantly increasing, or changing, our focus is
placednot on the design objects themselves, but ondesign space
that contains such objects. Moreover, our emphasis is onsup-
porting trade-off exploration, as opposed to automating the
selection of reusable designs. In [9], an environment is proposed
to support early estimation of performance, power consumption,
etc. The attractiveness of this approach relies on its “light
weight,” i.e., on the small effort required to create the infrastruc-
ture required by the self-contained estimation environment. As
discussed in Section 2, our proposed design space layer has an
aim andscope different from those in [9].

Generalized IDCT class

sp
e

ci
a

liz
a

tio
n

ge
n

e
ra

liz
a

tio
n

Area

Delay

12

3

5

4

(b) Evaluation Space

IDCT
1,2

IDCT
5

IDCT
3,4

(a) Generalization/Specialization
Hierarchy
Fig. 3 Design Space Layer Based on Generalization/Specialization

Software

Family n

CDO: IDCT
Mathematical

Hardware

Implementation style

Algorithm ...

Transform

Fig. 4 Organization of Design Space for an IDCT

Family 1

4 A Modeling Framework for Creating Design
Space Layers
For simplicity, classes of design objects have so far been pre-
sented as “atomic black-boxes.” They are not, however, the finest
grain modeling construct provided in our design space represen-
tation. At its finest level of granularity, thedesign space is actu-
ally abstractly characterized (i.e., discretized) by a set of
behavioral and structuralproperties or features. Such properties
are meta-data used to organize the myriad of design data charac-
terizing each given design object. They can be classified into:1

• behavioral and structuraldescriptions, used to define the
structure or intended behavior of design objects at variouslev-
els of design abstraction (for example, an RTL behavioral
description, written in VHDL or Verilog.);

• designrequirements,specifying the target performance, area,
etc., for the object under design, as well as other “problem
givens,” such, for example, the required “word size” for an
“adder” or “multiplier,” and the required “precision” for an
“IDCT” block;

• design decisions orrestrictions made during conceptual
design with respect to criticaldesign issues, such as the
“implementation style” for the various system components.

The properties alluded to above are then organized into a hierar-
chy of increasinglyspecialized classes of design objects. So,
groups/families of alternative algorithms and/or implementation
styles, for example, can bemerged/collapsed(i.e., “general-
ized”) to facilitate theinitial exploration phases. By doing so,
they become selectable as a “family of design alternatives,” and
can then be incrementally discriminated, as conceptual design
progresses.

It is important to note that the specialization alluded to above is
actually realized at the design issue (i.e., property) level.Gener-
alized design issues, collapsing families of alternatives, will thus
precede moredetailed design issues, whenever that makes sense
from the point of view of aggressively pruning the design space.
For example, the option “hardware” shown in Fig. 4 for the
IDCT class, actually results from collapsing all “layout style”
and “implementation technology” alternatives, enumerated at
lower levels of the specialization hierarchy. The generalized
design issue “implementation style” is thus created in order to
differentiate, up-front, the entire family of hardware alternatives,
from the software family.

This organization of properties into a hierarchy of classes of
design objects defines the design space for the target set of appli-
cation domains. Note that a class of design objects (CDO) may
contain at most one generalized design issue. Eachoption of a
generalized design issue defines a new CDO descending from
the original CDO, i.e., defines aspecialization of the previous
class. CDOs with no generalized design issue are thus the leafs
of the hierarchy.

As mentioned above, this hierarchy of CDOs provides also a
basic schema for classifying and indexing families of cores
residing in thereuse libraries. Reusable designs (i.e., design
objects of a certain class) are thus no longer monolithically rep-
resented and accessed. Instead, as conceptual design progresses,
it is possible to access families (i.e., groups) of such objects,
associated with desiredranges of performance, power consump-
tion, etc., down to single properties of individual design objects
(i.e., down to a single property “value,” say, an HDL model).
Thus reuse becomes naturallymergedwith design, in that it is
not only a mechanism to minimize the need for re-design, but
also a mechanism to assistconceptual design and estimation,

1. For a more detailed discussion on this classification, see [2].

throughout the entire design process.

Note that the properties discussed above may not be (anddo not
need to be) entirely independent from each other. For example,
the designer may make a design decision that, later on, proves to
be inconsistent with the performance requirements, suggesting
that a consistency relationship should be established between
such properties. Moreover, some design issues may have a more
significant impact on the figures of merit (i.e., requirements) of
interest than others, suggesting that such design issues should be
partially ordered in order to allow for a systematic exploration of
the design space. A single modeling construct, called consis-
tency constraint(CC), is used to express such ordering and con-
sistency relationships among properties.

CCs are defined by anindependent set of properties, adependent
set of properties, and arelation. The dependent set can only be
addressed by the designer after the independent set has been
addressed. Moreover, when the independent set is modified, the
dependent set needs to be re-assessed. A relation defines the type
of dependency between both sets of properties. The relations
defined within a CC can be quite different in nature. Namely,
they may be stated exactly, using first principles, or be heuristic.
They may be quantitative or qualitative. Moreover, they may
directly state inconsistencies between specific design options, or
identify inferior (i.e., dominated) combinations of such options.
Detailed examples are given in Section 5.

As will be shown, CCs are one of the key mechanisms provided
in our modeling framework to support a systematic exploration
of large design spaces. CCs allow for establishing general con-
sistency relationships among design options across design
issues, and/or among design issues and requirements. CCs also
allow for establishing a partial ordering among design issues,
considering the degree to which they impact key requirements,
such as performance, area, etc. Finally, CCs establish also the
precise utilization context for early estimation tools, as illus-
trated in Section 5.2.

Before concluding this section, we will further clarify the differ-
ence between the coarse-grained “partitioning” of the design
space implemented by generalized design issues, and the finer-
grained design space exploration strategies, implemented by
“regular” design issues and consistency constraints. On one
hand, the options of a generalized design issue typically collapse
a number of options from a number of design issues into single
“artificial” (generalized) alternatives -- this is thus a coarse parti-
tioning of the design space, discriminating among broad alterna-
tives, created with respect toimportant “commonalties/
similarities” in: (1) functionality; and (2) achievable figures of
merit. CCs, on the other hand, establish a finer-grained,trade-off
oriented organization of the design issues defined within each
class of design objects. This important difference will be illus-
trated in the following section, in the context of our case study.

5 A Detailed Case Study on Cryptography
In what follows we present a case-study on the application of our
modeling framework to cryptography applications, e.g., digital
signature and public key encryption and decrypting. [10] These
applications use, as a basic operation, themodular exponentia-
tion, ME modN, typically performed on integers with values up
to 21000. Modular exponentiation, in turn, usesmodular multipli-
cation, AxBmod M, as a basic operation. Due to space limita-
tions, most of our discussion focuses on modular multiplication.

This case study aims at demonstrating two fundamental points:
(1) the proposedgeneralization hierarchies are instrumental to
effectively pruning the design space so as to quickly identify
adequate design space regions; and (2) atrade-off oriented

design space exploration can be adequately performed at each
stage of the traversal of the generalization hierarchy, i.e., within
the increasingly narrower/smaller design spaces defined by each
specialized class in the hierarchy.1 In order to demonstrate points
(1) and (2) above, the specifics of the design space layer devel-
oped for modular multiplication will be presented assuming that
a core for implementing modular multiplication is to be selected,
so as to meet the specifications given in [11] for a modular expo-
nentiation coprocessor to be used in cryptography applications.

A number of alternativehardwaremodular multiplier designs
was developed for this experiment, using the Synopsis Design
Compiler and the LSI Physical Design Tools and Toolkit for the
0.35µ G10 library -- these designs are summarized in Table 1
(page 8). Thesoftware modular multipliers considered in our
case study comprise a set ofC routines and a set of highly opti-
mized assembly routines, both executing on a Pentium 60, as
reported in [12]. These alternative implementations are thus the
cores (i.e., reusable designs) in our experiment.

We start by discussing the properties defined in the design space
layer that we have developed, and their organization into a gener-
alization hierarchy. In Section 5.2 we discuss the consistency
constraints established among such properties.

5.1 Properties and Generalization Hierarchy
5.1.1 Algorithms for Modular Multiplication

Modular multiplication can be performed using the “Paper and
Pencil” multiplication algorithm, followed by amod M reduc-
tion. This algorithm, although very intuitive, is usually not used
because of the size of the partial products and the carry ripple
length of the parallel additions. Brickell proposed in [13] a more
efficient algorithm. It is based on the paper and pencil method
but starts with the most significant digit ofA and performs amod
M reduction at every partial product. Finally, for applications in
which the moduleM is known to beodd, another algorithm, due
to Montgomery [14], can potentially achieve even better effi-
ciency. Fig. 10 shows the behavioral description of the Mont-
gomery algorithm. Although it requires a pre-computation of the
Multiplicative Inverse for the computation of the quotientQ (line
4) and a post processing (lines 5 and 6), the basic iteration step
has great potential for speedup optimizations.

5.1.2 Hierarchy of Classes of Design Objects

Fig. 5 shows part of the hierarchical organization of classes of
design objects (CDOs) used to define the design space layer for
cryptography applications. The first three levels of the special-
ization hierarchy are thus defined with respect to commonalties
in functionality. Specifically, a generalized class “operator” is
first defined, then it is specialized into “logic/arithmetic” and
“modular” operators and, finally, the various operators defined
for each class are discriminated.

In what follows we discuss in detail theOperator - Modular -
Multiplier (OMM) CDO, shown in gray in the figure. Because of
the inheritance hierarchy (see path in bold), the properties to be
discussed in the following sections may be part of the CDO in

1. Note that, since generalized design issuespartition the design space, each spe-
cialized class in the generalization hierarchy defines a design space region con-
tained within that defined by its predecessor class.

question or of any of its ancestor classes. (Due to space limita-
tions, only a sub-set of representative properties is presented.)

5.1.3 Requirements for the OMM CDO

Fig. 8 lists some of the requirements specified for the “Operator -
Modular - Multiplier” CDO, with the corresponding values
taken from the specification in [11].2 Req1, Req2, and Req3 are
self explanatory. Req4 asks the designer to specify if the modulo
is known to be odd. For cryptography applications the modulo is
known to be prime, and thus odd, so the option “Guaranteed” is
selected. The target performance is loosely specified in terms of
significant performance points. For example, a modular multipli-
cation with a 768-bit operand/modulo should take no more than
8 µs, as indicated in Req1 and Req5.

5.1.4 Design Issues for the OMM CDO

The only Design Issue defined for the “Operator - Modular -
Multiplier” CDO is “Implementation Style,” with options “Hard-
ware” and “Software.” (see DI1 in Fig. 8). As in the IDCT exam-
ple, “Implementation Style” is defined as a generalized Design
Issue, i.e., it partitions the design space into two sub-spaces
which, from then on, will be explored independently. Observe
that such partitioning is justified by the fact that hardware and
software designs offer radically different ranges of performance
for this application, and thusfine-grained trade-offs cannot be
explored based on this Design Issue. Just to give an idea of such
ranges, Fig. 6 shows the execution time (in µseconds) of a single
modular multiplication with an operand length of 1024 bits for
several hardware and software designs.3 The hardware designs
are labeled according to Table 1 -- for example, the label #2_64
denotes a modular multiplier constructed using a number of 64-
bit slices (see fourth column in Table 1), each of which based on
Design #2 (see second row in Table 1).4 The software alterna-
tives comprise the Assembler (ASM) and C routines reported in
[12].

Given the value in Req5 (stating that a modular multiplication
with a 768-bit operand should take no more than 8µs), the
option “Hardware” is selected, i.e., the design space can be
immediately pruned so as to encompass only hardware designs.

5.1.5 Specialization of the OMM CDO

Fig. 7 shows the next specialization level for the “Operator -
Modular - Multiplier” CDO, created by the generalized “imple-

2. All such requirements aredefined in the layer; during conceptual design, the
designer enters their correspondingvalues, based on the specification of the
system under design.

3. The delays shown in the figure for the Montgomery designs correspond to the
execution delay of the loop (lines 3-4 in Fig. 10). Note that this is the relevant
delay in the context of modular exponentiation.

4. Design #2 denotes a modular multiplier implementing the Montgomery algo-
rithm with radix 2, and using Carry-Save adders.

Operator

Logic/ Logic

Modular
Multiplier

Exponentiator

ALU

Adder

Multiplier

Arithmetic
Arithmetic

Fig. 5 Organization of Classes of Design Objects

Fig. 6 Execution delay (inµs) of a modular multiplication
with 1024 bit operands.

SoftwareHardware
Implementation Style

1.96 4.32 799 1037 5706 7268
CIHS
C code

CIOS
C code

CIHS
ASM

DesignDesign CIHS
ASM#5_16 #8_64

1.96
Design
#2_128

Modular

Hardware

Multiplier
Software

Fig. 7 Generalization Hierarchy for Modular Multiplication

Brickell

Montgomery

Specialization

Specialization

mentation style” Design Issue discussed in the previous section -
- accordingly, two new CDOs, “Hardware” and “Software”,
appear as specializations of that previous (generalized) class.
(Ignore for now the second level of specialization also shown in
the same figure.) Given that the “Hardware” option was previ-
ously selected, we will focus on the characterization of the
design space for the sub-hierarchy defined by the “Operator-
Modular-Multiplier-Hardware” (OMM-H) CDO, shown in
gray in Fig. 7, i.e., we consider in some detail the properties
defined for this (more specialized) class of design objects.

Six Design Issues are defined for the specialized “Operator-
Modular-Multiplier-Hardware” CDO, namely: “Layout Style,”
“Implementation Technology,” “Algorithm,” “Number of
Slices,” “Slice Width,” and “Radix,” some of which are shown in
Fig. 11.

The first two Design Issues, “Layout Style” (DI5 Fig. 11) and
“Fabrication Technology” (DI6 Fig. 11), basically define the
“meaning” of the generalized “Hardware” option, i.e., discrimi-
nate the “real” design options collapsed/lumped into the “hard-
ware” category. The designer can now explore combinations of
these two Design Issues, and consider cost-performance and
other trade-offs during such an exploration, so as to identify the
combination of options that is more convenient for the design at
hand. Note that each combination of options selected by the
designer (for example, “standard cell” for “layout style,” and
“0.35 µm” for “implementation technology”)filters the set of
cores indexed under the “Operator-Modular-Multiplier-Hard-
ware” CDO accordingly, thus allowing the designer to consider
the performance ranges and other figures of merit, for each such
alternatives.1

The selection of the number and the width of the multiplierslices
to be used to build the Modular Multiplier are also important
Design Issues -- note that given the characteristically hugeEffec-
tive Operand Lengths (EOL) in encryption applications (see
Req1 in Fig. 8), the multiplier ought to be decomposed into a
number of slices with widths compatible with the targetclock
rate. The designer can thus filter cores with respect to these two
key parameters, in order to explore the design space with respect
to sustainable clock rates vs. overall execution delay (in number
of clock cycles) for a given EOL.

The “Algorithm” Design Issue (DI2 Fig. 11) states that the mod-
ular multiplier can be implemented using two different algo-
rithms: “Montgomery” and “Brickell.”2 Finally, the “Radix”
Design Issue, allows for the selection of a radix other than 2 (the
default value -- see DI3 in Fig. 11), for any of the algorithms.
This last Design Issue thus allows designers to explore the area-

1. Note that, in practice, the designer may be restricted to a sub-set of such
options, but the principle still holds.

2. Since the “Paper and Pencil” algorithm is an inferior solution, it was elimi-
nated.

performance trade-offs that can be implemented via this algorith-
mic parameter.

In what follows, we illustrate again the use of generalization,
using the “Operator-Modular-Multiplier-Hardware” class of
design objects. Consider again the “Algorithm” Design Issue.
Fig. 9 shows the evaluation space for a number of reusable
designs (available in our reuse library) implementing the Mont-
gomery and the Brickell algorithmic alternatives. All such
designs share a common “layout style” (“standard cell”), a com-
mon fabrication technology (“ 0.35µm”), and a common radix
(2), but have different “slice widths” and thus “number of slices.”
Note that, in spite of the different performances exhibited by the
various designs, resulting from the different “slicing” strategies,
the relativesuperiority (in area andperformance) of the Mont-
gomery algorithm with respect to the Brickell algorithm iscon-
sistent, and is significant. This could suggest that solutions based
on the Brickell algorithm are inferior, and thus should not be
considered. This is not the case, since the Montgomery algo-
rithm cannot always be used. (Recall that, if the Modulo is not
guaranteed to be odd in a given application, the designer has no
other choice but use Brickell’s algorithm.) Given the above, it
should be clear that the selection between both algorithms isnot
a “fine-grained,” trade-off oriented decision. This clearly justi-
fies the up-front partitioning of the design space based on these
two alternatives, i.e., the use of ageneralized Design Issue for
the “Algorithm” Design Issue.

Accordingly, Fig. 7 shows theleaf CDOs, defined by the gener-
alized Design Issue “Algorithm.” Since our application can use
the “superior” Montgomery algorithm, we will focus on the
characterization of the design space for the sub-hierarchy defined
by the “Operator - Modular - Multiplier - Hardware-Montgom-
ery” (OMM-HM) CDO, shown in black in Fig. 7.

5.1.6 Behavioral Description and Behavioral
Decomposition for the OMM-HM CDO

A Behavioral Description (at the algorithmic level of design
abstraction) is provided for the “Operator - Modular - Multiplier
- Hardware - Montgomery” CDO (shown in Fig. 10). The behav-
ioral description also characterizes thecoding type assumed for
the operands, modulo and result (not shown in Fig. 10). This last
information is important, since it establishes the possible need
for conversions, given the application’s requirements (see Req2
and Req3 in Fig. 8).

We now addressdesign object decomposition, a key strategy
used to control design complexity in large designs. Note that the
behavioral description of any complex CDO (at a given level of
abstraction) can always be seen as abehavioral decomposi-
tion.[2] This is so because the behavior of the complex CDO is
expressed (in itsbehavioral description) in terms of the behavior
of other, less complex CDOs. For example, the behavioral
description of the modular multiplier shown in Fig. 10 utilizes a

O
pe

ra
to

r
M

od
ul

ar
 M

ul
tip

lie
r R

eq
1 Effective Operand Length (EOL) = 768

SetOfValues= Unit: bits

R
eq

2 Operand Coding =2’s Complement
SetOfValues={2’s compl., Signed ...}

R
eq

3 Result Coding =Redundant
SetOfValues={2’s compl., Signed ...}

R
eq

4 Modulo is Odd=Guaranteed
SetOfValues={Guaranteed, notGuaranteed}

R
eq

5 LatencySingleOperation
SetOfValues= Unit: µsec

D
I1 Implementation Style Type: Generalized

SetOfValues={Hardware,Software}

2
i

i Z
+∈{ }

8≤
R

+

Fig. 8 Requirements and Design Issues for OOM CDO

Fig. 9 Evaluation space for Brickell and Montgomery
modular multipliers, assuming 768 bit operands.

400000

500000

600000

700000

800000

900000

1e+06

1.1e+06

1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600

A
re

a

Delay

#2_128
#2_64

#2_8
#2_16

#2_32
#8_64

#8_16

#8_8

#8_32
Montgomery designs

Brickell designs

Carry-save

Fig. 10 Supporting Behavioral Decomposition of Complex Design Objects

Operator

Logic/ Logic

Modular Exponentiator

Adder

Multiplier

Arithmetic
Arithmetic

Hardware
Multiplier

Montgomery

Hardware
Carry-look-ahead

1: R := 0; Q 0 := 0; B := r 2*B
2: FOR i=1 TO n+1
3: R := (A i *B + R + Q i *M) div r;
4: Q i := (R 0*(r-M 0) -1) mod r;
5: IF (R > M) THEN
6: R := R - M;

Behavioral
Description

Operator CDO’s
(restricted to be of
the above class)

number ofarithmetic operators, such as adders and multipliers.
Some of these operators are critical to the performance of the
modular multiplier, in particular the additions and multiplica-
tions shown in lines 3 and 4 of Fig. 10.[14]

The conceptual design of suchcritical operators is realized by
addressing Design Issue DI7 shown in Fig. 11, which requires
the selection of the “Behavioral Description” (BD) for each of
the operators. (The character “*” represents a “wild card.” Note
that the expression forces the consideration of “Hardware” real-
izations for those operators.) This design space exploration step
is thus performed usingother CDOs in the hierarchy (i.e., the
“Arithmetic” “Adders” and “Multipliers”), as symbolically
shown in Fig. 10.

The “Operator - Modular - Multiplier - Hardware - Montgom-
ery” CDO is a leaf node in the specialization hierarchy, i.e., is the
last level of specialization defined in the design space layer.
While exploring trade-offs on this leaf CDO, the designer is
allowed to revisit thenon-generalized Design Issues defined for
all of its ancestor CDOs, including “Implementation Technol-
ogy,” “Radix,” “Number of Slices,” etc. Fig. 12, for example,
illustrates some of the trade-offs implemented by the Hardware
Montgomery Multiplier cores available in our reuse library, with
respect to “Radix,” “Number of Sections,” and also with respect
to Adder and Multiplier Implementations. Specifically, “Carry-
Look-Ahead” and “Carry-Save” adders are alternatively consid-
ered, as well as “Multiplexer-Based” multipliers (implementing
multiplications by constants), as alternatives to regular multipli-
ers -- see the corresponding description of each labeled design in
Table 1.

5.2 Consistency Constraints
In this section we illustrate the different roles played by consis-
tency constraints in the design space layer. CC1 in Fig. 13
express a consistency relationship between properties, i.e., it
indicates that the modulo must be odd for the Montgomery
Algorithm. Trade-offs and general heuristics may also be repre-
sented. CC2, for example, states that the greater the radix, the
smaller the latency (in number of cycles).As indicated in Fig. 13,
the relation in CC2 is defined for Montgomery multipliers
implemented using “Carry-Save” adders. A similar consistency
constraint is defined for Montgomery multipliers using “Carry-
Look-Ahead” adders, expressing the impact of the unbounded
propagation of carries in the multiplier’s latency.

CC3 defines the context of utilization of an early estimation tool,
denotedBehaviorDelayEstimator,used to assign arank to alter-
native algorithmic-level behavioral descriptions with respect to
“MaxCombinationalDelay.” Estimation tools are useful when no
suitable hard cores are found in the reuse library. For example,
the values generated for the (algorithm level) estimation tool in
CC3 should be used to compare alternative solutions with
respect to combinational delay when no additional design infor-
mation (at physical, logic and RT levels) is available. Hence, the
proposed design space representation defines also the context for
which specificmetrics andearly estimation tools are to be used.
Observe that CC3 is applicable to any “Hardware” CDO.

Finally, constraints may also eliminate inferior solutions. A con-
sistency constraint could, for example, indicate that the guaran-
tee that the modulo is odd is inconsistent with the selection of
the (inferior) “Brickell” algorithm. CC4, shown in Fig. 13, elim-
inates inferior solutions, by stating that when the selected algo-
rithm is the “Montgomery” for EOL³ 128, only
“CarrySaveAdders” should be used for implementing the addi-
tions in the loop.The solutions eliminated by CC4 are clearly
inferior, due to unbounded propagation of carries (i.e., low per-
formance) and large areas. A similar constraint is also defined to
enforce the use of multiplexer-based multipliers for the same
loop (in this case for any EOL). This concludes our illustrative
example of a design space layer.

As alluded to above, due to space limitations the design space

O
M

M
-H

M

D
I7

Behavioral Decomposition
FOR ALL
Oper:=OPERATORS(BD@*.Hardware)
SetOfValues={SELECT(BD@Oper),USE(Default)};

O
M

M
-H

D
I2

Algorithm Type: Generalized
SetOfValues={Montgomery,Brickell}
Default: Montgomery

D
I3

Radix

SetOfValues=

Default: 2

D
I4

Number of Slices

SetOfValues=

Default: 1

D
I5 Layout Style

SetOfValues={Standard-cell, Gate Array, ...}

D
I6 Fabrication Technology

SetOfValues={0.7µ, 0.35µ, ...}

2
i

i Z
+

2
i

val EOL()≤,∈{ }

i Z
+

EOL i⁄∈ 0={ }

Fig. 11 Design Issues for OMM-H and OMM-HMCDOs Fig. 12 Evaluation Space for 64-bit Montgomery multiplications
using 64-bit slices

30000

35000

40000

45000

50000

55000

60000

65000

70000

100 150 200 250 300 350 400

A
re

a

Delay (ns)

#1_64

#3_64

#4_64

#2_64 #6_64

#5_64

a. M=Montgomery, B=Brickell
b. Latency and Clk in ns. Latency computed for EOL=Slice width.

Table 1: Operator - Modular - Multiplier - Hardware: Alternative Designs

D
es

ig
n

#
R

ad
ix

A
lg

or
it

hm
a

A
dd

er

M
ul

ti
pl

ie
r Slice Width

8 16 32 64 128

Area Latencyb Clkb Area Latencyb Clkb Area Latencyb Clkb Area Latencyb Clkb Area Latencyb Clkb

1 2 M CLA N/A 5436 25 2.73 8872 62 3.64 17420 138 4.17 34491 351 5.40 63897 844 6.54

2 2 M CSA N/A 6307 27 2.37 12477 45 2.33 21554 92 2.55 37299 175 2.60 77905 388 2.96

3 4 M CLA MUL 7433 38 4.21 12265 45 4.93 23987 106 6.18 47533 262 7.91 96106 661 10.16

4 4 M CSAMUL 9912 37 3.33 16969 41 3.72 34142 78 4.10 67106 166 4.60 122439 372 5.63

5 4 M CSA MUX 9075 38 3.39 14359 38 3.39 24398 67 3.52 46604 138 3.81 85735 295 4.53

6 4 M CLA MUX 8013 35 3.84 11939 40 4.43 18983 86 5.07 37829 201 6.08 69751 499 7.67

7 2 B CLA N/A 7326 71 3.93 12300 113 4.33 23370 217 5.16 34391 472 6.37 73268 1031 7.47

8 2 B CSA N/A 10433 72 3.78 16927 120 4.30 26303 195 4.42 49296 313 4.17

0.35µ standard cell library

exploration discussed in this section only addressed modular
multiplication, one of the critical components of themodular
exponentiation coprocessor of interest [10]. Note, however, that
this exploration could have been part of the design space explo-
ration performed for the main architectural component, i.e., the
modular exponentiation coprocessor. The exact same behav-
ioral/structural decomposition mechanisms discussed in Section
5.1.6 would have supported the transition between the concep-
tual design of the main architectural component (i.e., the copro-
cessor) and the conceptual design of its critical blocks (including
the modular multiplier).

Note finally that BUS interface requirements must be speci-
fied for eachmain architectural component of a system-on-a-
chip. Such requirements were not part of our discussion since
theywould have tobe specified for themodularexponentiation
architectural component (not for its modular multiplication
block).

6 Concluding Remarks and Work in Progress
A novel library layer, called the “design space layer,” is pro-
posed, aimed at effectively supporting both,IP-based design

methodologies and traditional “in-house” design methodologies,
during early design space exploration. The systematic explora-
tion of large design spaces is supported by defining a hierarchy
of generalized classes of design objects -- such a hierarchy
defines increasingly specific families of alternative designs (i.e.,
design space regions) with respect to the figures of merit of inter-
est. When traversed during conceptual design, this generalization
hierarchy supports an effective design space pruning and trade-
off exploration. The design space representation implemented in
the layer is self-documented and highly compartmentalized (into
hierarchies of CDOs), and is thus easily scalable. Moreover, it
can be tailored to the needs and resources of each design envi-
ronment.

So far we have mostly concentrated on performance vs. area
trade-offs. We are currently incorporating power consumption in
our case studies, and investigating the need for supporting the
co-existence of different specialization hierarchies, so as to
effectively guide designers based on the specific trade-offs they
may be interested in locally or globally exploring.

7 References
[1] http://www.design-reuse.com
[2] M.Jacome and S.Director, “A Formal Basis for Design Process

Planning and Management,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, Vol. 15, No.
10, Oct1996.

[3] K.Rao and P.Yip, Discrete Cosine Transform, Academic Press,
1990.

[4] D.Gall, “MPEG: A Video Compression Standard for Multime-
dia Applications,”Comm. ACM34, 1994.

[5] http://www.vsi.org
[6] V.Preiset all, “Reuse scenario for the VHDL-based hardware

design flow,” in Proceedings of theEuropean Design Automa-
tion Conferencewith EURO-VHDL, Sep 1995.

[7] J.Altmeyer, S.Ohnsorge and B.Schuermann, “Reuse of design
objects in CAD frameworks,”IEEE/ACM International Confer-
ence on Computer-Aided Design, Nov 1994.

[8] O.Bentz, J.Rabaey, and D.Lidsky “A dynamic design estimation
and exploration environment,” In proceedings of34th Design
Automation Conference, ACM Press, June 1997.

[9] R.Rivest, A.Shamir, and L.Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,”Comm. ACM,
21, 1978

[10] A.Royo, J.Moron and J.Lopez “Design and Implementation of a
Coprocessor for Cryptography Applications,” In proceedings of
European Design & Tst Conference, 1997.

[11] C.Koc, T.Acar, and B.Kaliski, “Analyzing and Comparing
Montgomery Multiplication Algorithms,” IEEE Micro,
16(3):26-33, June 1996.

[12] E.Brickell, “A fast modular multiplication algorithm with

C
C

1

//Montgomery Algorithm requires odd modulo
Indep_Set={O=ModuloIsOdd@OMM}
Dep_Set={A=Algorithm@OMM}
Relation: InconsistentOptions

(O=NotGuaranteed & A=Montgomery)

C
C

2

//The the Radix, the the latency in #cycles
Indep_Set={R=Radix@*.Hardware.Montgomery,
EOL@Operator,
CSA==oper(+,line:2)@BD@*.Hardware.Montgomery}
Dep_Set={L=LatencySingleOpe@OMM}

Relation:

C
C

3

//Behavioral Decomposition impacts delay
Indep_Set={B=BehavioralDecomposition@*.Hardware}
Dep_Set={MaxCombDelay_R@Operator}
Relation: MaxComDelay_R=BehaviorDelayEstimator(B)

C
C

4

//Inferior solutions eliminated
Indep_Set={EOL@Operator,

A=Algorithm@*.Modular.Multiplier.Hardware}
Dep_Set={BD=BehavioralDescription@OMM-HM}
Shorts={Adders=oper(+,line:2)@BD}
Relation: InconsistentOptions (A=Montgomery &

 &)

> <

L
2 EOL@Operator×

R
-- 1+=

EOL 32≥ Algorithm@Adders CSA≠

Fig. 13 Consistency Constraints

application to two key cryptography,” inAdvances in Cryptol-
ogy - CRYPTO’82, Chaumet al., Eds. New York: Plenum,
1983.

[13] C.Walter and S.Eldridge, “Hardware Implementation of Mont-
gomery’s modular multiplication algorithm,”IEEE Transaction
on Computers, 42(2), 1993.

