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Reed-Solomon (RS) codes are considered one of

the most powerful algebraic codes and have found
many applications in telecommunications during the
last years. In the present paper, we develop the
hardware implementation of a frequency-domain RS
decoder to work in an ATM network.
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Asynchronous transfer mode (ATM) is a high-

speed communication technology that has reached an
almost universal acceptance in the last years. Since the
involved transmission rates are quite high, the
achievement of a good error control in the
transmission of the information has become one of the
most important problems. Therefore, hardware
implementations appear as the most appropriate
solution for encoding and decoding the information,
moreover as future specifications tend to offer higher
speed services.

In the following sections a circuit for an ATM
embedded RS decoder will be described. The goal will
be the design of a small area circuit compliant with the
ATM speed requirements. The paper is organized as
follows: section 2 presents a brief summary of the
state-of-the-art involving RS decoder implemen-
tations. In section 3 the problem to solve is formulated
and important concepts are described. In section 4
different Galois Field arithmetic operations are
analyzed in order to select the better implementations.
Section 5 presents some general considerations, which
have been followed throughout the design. The
implementation of the different stages are described in
section 6 and section 7. In section 8 the global
pipelining of the circuit is explained and some
synthesis results are presented. Finally, the
conclusions are outlined in section 9.
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There are several decoder implementations in the

bibliography. In [1] and [3] a time-domain decoder is
developed. In spite of its versatility, its high
complexity does not make it suitable for the ATM

requirements. In [2] a systolic array RS decoder is
implemented. Again, the complexity of this
architecture is somewhat high and it involves too
much area. In reference [5] a pipeline RS decoder is
devised. Although this circuit present features which
are suitable for an ATM embedded design, the
decoder which will be implemented in the present
paper has better performance in stages such as the
error correction modules. A new pipeline RS decoder
is presented in [4]. Though this design is thoroughly
scalable and shows a high throughput it also presents a
somewhat complex control due to its recursive cells
that does not make it the better choice for the ATM
specifications.
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•  ���������	�
�����
�. It is a finite set composed of

 elements which will allow an algebraic,
methodical treatment of error correcting codes.
Each �� has a 
�������	�	�	�	��, α , meaning that
any other element in that field can be expressed as
a power of α. Further details can be found in [10].

•  ������� it happens when one symbol of the trans-
mitted word is swapped to another valid symbol
due to the channel noise. The receiver will not
detect anything wrong and the decoder will have to
find out the location of the error and its value.

•  ������	�� it happens when the noise changes one
symbol in such a way that the receiver detects it
ambiguously. The receiver will mark the symbol as
faulty, and the decoder will only have to correct it
(since the location in the word is already known).

•  An error correcting code is determined by two
parameters expressed in the form (���), where � is
the number of information symbols and � is the
total number of symbols in the encoded word. For
RS codes it is verified that ��� −=2 , where � is
the number of errors that can be corrected. The
polynomials involved in the construction of a RS
code over )( ����  where 
 is a prime and � is a
positive integer would be the following:
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where 1,,0)(,,, −=∈ ��������� �
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,  0�
is

any arbitrary integer that we choose and  α is a
primitive element of )( ����

So it is verified that:
)()()()()()( ������������ +=+= ���
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The ATM specifications recommend a FEC
(�������� ������ 	���
��
��) approach implemented
with a )124,128(),( =��  RS code over )2( 8

�� .
Therefore each code word is composed of 128 eight-
bit symbols; 124 will be information symbols and 4
will be redundant symbols. The number of errors and
erasures that can be corrected is given by:

ρ+≥− ��� 2 ���

where � is the number of errors that happened and ρ
is the number of erasures. Consequently, for the case
of a )124,128(  RS code, 2 errors, 4 erasures or a mix

of both, verifying the equation ���, can be corrected:
It is useful to remark that the RS code implem-

ented in ATM networks is a shortened RS. The true
code that is obtained from the algebraic theory would
be a (255,251) code. The communication features of
ATM networks only require 124 information symbols
instead of 251. Thus a shortened code in which 127
symbols out of 251 are padded to zero is employed.

Several considerations lead to the conclusion that a
frequency-domain Reed-Solomon decoder which
implements Berlekamp-Massey plus Forney algorithm
is the most appropriate option to reach the

requirements of the ATM specifications [11]. The
main stages that will compose this decoder are shown
in Figure 1. Deeper details about the involved
algorithms can be found in [10]. Briefly, the  steps to
be performed are the following:
1. To compute the syndromes, which is equivalent to

a Galois Field Fourier Transform that converts the
time-domain data into the frequency domain.

2. To find out the erasure and error locations.
a) To construct the erasure-location polynomial ,

)(Γ ,whose roots will indicate the location of

the erasures in the received word.
b) To compute the error-location polynomial

)(�Λ , whose roots will indicate the location of

the errors and erasures in the received frame. It
is achieved by the Berlekamp-Massey
algorithm. The initial value of )(�Λ  will be the

erasure location polynomial.
3. To find the value of each error.

a) To construct the error evaluator polynomial,
)(�Ω , where )(mod)()()( 2�

����� Λ=Ω  and

the Galois field derivative of )(�Λ , )(’ �Λ .

b) To perform a Chien search in which every
element of the field (

�,,,,1,0 32 ααα ) is tested

to see if it is a root of )(�Λ . The exponent of
the roots will indicate the error locations.

c) To apply the Forney algorithm, as is shown in
the following the equation:
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where 
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�
�  is the error symbol in the location 
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and ��−α  is a root of  )(�Λ .
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The computations  which appear in the decoding

algorithms are basically the addition, the multipli-
cation, the inversion and the exponentiation of finite
field elements. There are two main ways to implement
these operations depending on the selected
representation  for the elements of  the Galois field.
a)  If they are represented as powers of the primitive

element     of     the     field,   α ,    in    the     form
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)()( ������� = },,,,,1,0{ 232 −= �αααα �
 then

it  is   really   easy   to    perform    multiplication,
inversion and exponentiation since they are
obtained adding or subtracting the exponents
modulo 1−�

� . However the addition will be
difficult to achieve and either complicated
algorithms or a look-up table will be needed.

b) If they are represented as polynomials in the form
�� � �� � �� � � � ��( ) ( ) ( )[ ] / ( )= = ,          where

� � �� � �( ) ( )[ ]∈   is a primitive polynomial of
degree �, then the addition will be easy since it is
obtained adding the polynomial coefficients
modulo �. In the case of 2=�  this is achieved

with XOR gates. But now the other operations will
be complicated and will require elaborated
algorithms or look-up tables.
As it will be shown, the number of multiplications

and additions in the algorithms is quite high being the
amount of multiplications slightly superior to the
number of additions. Besides there are two inversions
and one exponentiation in the global decoding
process. Nevertheless, the polynomial representation
seems to be more appropriate for our system. It is so
because it does not need conversions from the raw
input data. Moreover, there has been extensive work
on Galois field multiplication algorithms and feasible
VLSI multipliers are attainable [7],[8].

Therefore the polynomial representation will be
adopted. Look-up tables will be used to implement
inversion and exponentiation. Hence there will be 3
look-up tables of 256 bytes each one in the circuit.
Concerning the multiplication various alternatives can
be implemented:
a) Polynomial base[7], dual base [6] or normal base

[8] multipliers. In order to avoid the conversion
between the multiplication basis and the
representation basis, a polynomial basis will be
chosen for the multiplier.

b) Classic or systolic multiplication. In spite of the
speed advantages of systolic circuits a non-
systolic multiplier will be implemented. It is due
to a speed-area  trade-off since multipliers must
be massively used in the circuit and the increase
in area would be too high.

Details  about  the  implemented  multiplier can  be

�������� ����������
�
�
������
�������
��

found in [7].
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In the following sections the design architecture of

the decoder will be described. The first thing to
explain is the pipeline that has been implemented in
the circuit, since it will determine the minimum clock
period that can be employed.

Two factors will limit the clock frequency: the
longest combinational path between two registers and
the memory access time. The data-path has been
pipelined into different stages which, in the worst
case, will include a multiplication and two additions of
elements of the field �� ( )28 . This means that a
multiplication and two additions must be performed in
one clock cycle. Anyhow, the clock cycle has been
limited by the memory access (40ns). Thus a working
frequency of 20Mhz (50 ns) has been finally chosen.

Since the field is �� ( )28  each register and bus
that appears in the following pictures will be 8 bits
wide. It is important to remember that the ( , )128 124
Reed-Solomon code will have the following parameter
values 2=� , 4=ρ . Next the different stages of the

decoding process will be described.
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6.1 Syndrome generation.
The first stage of the decoder computes the

syndromes of the received word. The following
equations show the operations to perform.
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They can be implemented with the pipeline circuit
of Figure 2. Initially the registers must be set to zero.
This stage spends 128 cycles, since to generate a
syndrome the 128 symbols of the code-word must be
loaded.
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6.2 Erasure polynomial computation
If there have been erasures in the transmission it is

necessary to obtain the erasure polynomial. The
equation is:

)1()1)(1()( 21
����

��� ρααα −−−=Γ �

���

which can be recursively expressed as:
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To implement those equations the pipeline of
Figure 3 has been constructed. This stage will add a
delay of 4 clock cycles.

6.3 Berlekamp-Massey algorithm.
Once the erasure polynomial and all the syndromes

have been computed, the location of the errors can be
found by means of the Berlekamp-Massey algorithm,
which can be stated as follows:
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Figure 4 shows the circuit employed, based in the
architecture presented in [9]. The pipeline has been
implemented with the criterion explained in section 5.
Thus in each clock cycle there will be a maximum of a
multiplication and two additions.

The algorithm latency is 2�  cycles. Since � = 2 , it
will last 4 cycles. However, each one of these cycles
has been partitioned into four clock cycles. Hence the
final number is 16 clock cycles. The circuit operates in
the following way. In the active clock edge a new
syndrome symbol is introduced into the shift register
�, beginning by �1

. Then the discrepancy, 
�

∆ , is

computed by means of the multipliers
1�  to 

�
� 2

 (eq.

�����). The result is stored in the ∆  register during the
next cycle (cycle 2).

In the third cycle the value ∆ ∆× −
0
1  is loaded and

the tests of equation ����� are executed to decide the
next path of the algorithm. The variables δ  and �  are
updated (eq. ����� and �����).

In the fourth cycle the registers�  and Λ  are
updated as equation �����	indicates. Besides, if 1 =δ
the register ∆ 0

1−  will load the inverse of ∆ .
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7.1 Error  value polynomial computation,  Ω(x).

Once the error location polynomial Λ( )�  has been

obtained, the next step is to compute the error value
polynomial. It is a  polynomial   multiplication  as  the
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Since the multiplication is performed modulo 4 it
is only necessary to compute up to the Ω3

  compo-

nent. Figure 5 shows the implemented circuit.
In each cycle the syndromes are introduced in

register �  and the corresponding value of component
Ω

�
 is loaded in the Ω  register during the next cycle.

To save area the same registers and multipliers that
were employed in the previous stage (Berlekamp-
Massey circuit) are used again.

7.2 Derivative of the error location polynomial.
The next step is the computation of Λ’( )� , the

derivative of )(�Λ , which is easily implemented with
a wired circuit. The equations are:
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and since 2mod02 ≡  ,  2mod13 ≡ and 04 ≡ mod2  it
results:

Λ Λ Λ Λ Λ’( )� � �= + × = +1 3
2

1 3
23 ����

Thus the hardware implementation would be that of
Figure 6.

7.3 Polynomial evaluation of Ω(�), Λ(�) y Λ’(�).

This   stage   consists   in   evaluating   all  the
obtained polynomials for the finite field elements
α α α− − −127 126 1 1, , ,�

. If one of these elements is a root
of the error location polynomial it will mean that an
error exists in the position which  corresponds  to  that

�������� �������
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exponent (with the opposite sign).
The operations used for evaluating the polynomials

are stated in the following equations:
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 As can be seen, the root search is exhaustive.
However, since words only have 128 symbols there is
no need to test the elements α α α− − −254 253 128, , ,�  of

�� ( )28 (since there can be neither errors nor erasures
in those positions).

The circuit has been implemented in Figure 7. The
elements symbolized as 42 ,,, ααα �

 in the picture
represent multipliers that multiply its content by

42 ,,, ααα �
respectively. They must be initialized to

1 at the beginning of the process. These multipliers
can be easily implemented with an eight bit register
and wired logic [10]. The full process spends 128
clock cycles.

7.4 Forney algorithm.
This is the last decoding phase. It consist in

applying the Forney algorithm in those symbols which
present an error or erasure. This happens when the
Λ( )�  polynomial has a root in position)error (−α .

The Forney algorithm is :
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The circuit employed appears in Figure 8.
The value of the root ��−α  is exponentiated to the

power of  �0 1−  in the ������������	 (which is

implemented by means of a look-up table) and it is
introduced in  the exp ��  register. Besides,the inverse
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of )(’ ��−Λ α  is computed and introduced first in
register ������� and afterwards in register ��� �_ .

Finally, it is decided if the symbol must be corrected
depending on the value of the Λ_ � 0

 register. This

register will content the results of evaluating Λ( )�  in

the element ��−α .
This stage adds three more cycles of delay.

�� ��������	�	
�����
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The decoding stages could be grouped in three

phases:
•  Phase 1 : syndrome computation. This operation

lasts 128 clock cycles.
•  Phase 2 : which would be composed of:

1. Erasure polynomial computation: 4 cycles.
2. Berlekamp-Massey algorithm: 16 cycles.
3. Ω(x) and Λ’(x) computation : 4 cycles.

Since the erasure computation is a part of the
Berlekamp-Massey (initialization) its duration
must not be taken into account. Thus this phase
will spend 20 cycles.

•  Phase 3: is composed of the polynomial evaluation
and the frame correction by means of the Forney
algorithm. They require 128+3=131 cycles.
Phase 1 and Phase 3 are the most expensive phases

and have a similar duration. If they are implemented
with different resources they will be allowed to
overlap. If there were no overlapping the decoding
process would require 128+20+131=279 cycles.

On the other hand when the pipeline is
implemented, after a latency period of a decoding
word (279 cycles), the decoding process would only
take the length of Phase 3, which is 131 clock cycles.
With this implementation a 128-symbol word can be
decoded in 131 clock cycles. This implies that if we
use a frequency of 20 MHz the throughput would be:

Mbps 156
1050131

8128
9

=
⋅×

×
−

Thus the decoder can be used in hard-constrained
applications such as video processing.

The proposed circuit has been modeled in Verilog
HDL and has been synthesized with Synopsys tools
into a 0,7 µm technology. The results are the
following:

����
�����

�	
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��������
�
����

��������� 0,678414 1785
����
��� 1,030693 2712
���
������� 1,897561 4993
��
�� ���

�����
��������

2,817947 7415

������
 0,067955 179
����������� 6,492570 17084

�
� !����	
�� �           20 Mhz
"#��
�#$
�         156Mbps

�� ������������
In this paper a RS decoder has been implemented.

It presents an adequate performance for application in
ATM networks. Future work should focus on the use
of other decoder algorithms to improve the slowest
decoding phases. Research on architectures suitable
for parameter configuration would be also of great
interest.
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