
Evaluation of Design Space Exploration Strategies∗

Francisco Moya†, José M. Moya‡, Juan C. López†

†Universidad de Castilla-La Mancha
Departamento de Informática

ESI. Po Universidad 4, 13071 Ciudad Read, Spain

{fmoya,lopez}@inf-cr.uclm.es

‡Universidad Politécnica de Madrid
Departamento de Ingeniería Electrónica
ETSIT, Ciudad Universitaria, 28040 Madrid, Spain

josem@die.upm.es

Abstract

The design space exploration (DSE) subsystem of a de-
sign automation tool is responsible for early identification
of interesting zones of the design space.

Evaluation of the exploration strategy used in a tool is
extremely difficult because there is not enough information
about either the design space or the actual cost function.
This paper describes a software environment for quantita-
tive evaluation of isolated exploration algorithms based on
a completely simulated framework. A simple model of the
design space allows easy representation of interesting prop-
erties of exploration algorithms.

1. Introduction

Design space exploration (DSE) is a major component of
many design automation tools. Exploration techniques are
aimed at effectively pruning the design space and identify-
ing the most potentially interesting zones to be developed
afterwards.

A number of methodologies [1, 5, 6, 13] have been
proposed for effective design space exploration in system
synthesis at RT and behavioural levels. Tools for these
higher abstraction levels, unlike physical design tools, re-
quire heuristics to guide the exploration towards a specific
direction. Some researchers refer to exact design space ex-
ploration schemes but they rely on simplified formulations
of the problem. For example, Chaudhuri et al. [6] provide
an ILP formulation for simultaneous hardware scheduling
and clock length assignment, but they do not consider loops
or branches in the specification. This is equivalent to heuris-
tically prune the design space in advance.

∗This work was done while the authors were with Universidad Politéc-
nica de Madrid, and supported by the Spanish Research Foundation (CI-
CYT) through the project HADA TIC97-0928.

As a consequence of using heuristics, a certain amount of
uncertainty is introduced in the exploration, which is closely
related to the accuracy of the estimation. Reported results
for behavioural level estimations [5, 14] show errors be-
low 25% for small HLS benchmarks [7]. These errors may
slightly affect the quality of the final solution but final syn-
thesis stages may easily refine the solution identified by the
estimations, therefore, a near-optimal result is very likely.

System level design automation tools add a much higher
degree of uncertainty in predictive heuristics. This is due to
unavailability of enough detailed information on the hard-
ware and software structure during the early phases of the
design process. A major contribution to this uncertainty is
the cost associated to communication among the compo-
nents of the design, which may easily surpass the cost of the
functional components. Besides that, accurate estimation is
even more important when the design process is started at
a higher level of abstraction. Decisions made during initial
phases of system level synthesis determine up to 80% of the
final cost [13].

Some researchers (e.g. [14]) advocate more accurate
models of design components. This is not always possi-
ble at the system level since there is not enough information
available during early design stages. Accurate models re-
quire at the very least enough structural information to be
able to predict communication cost.

TheDesign Space Exploration(DSE) subsystem of a de-
sign automation tool must be designed from the ground up
to cope with uncertainties. Although traditional combinato-
rial optimization algorithms may be used for DSE, they will
not perform as expected due to inaccurate estimations.

This paper describes a framework for quantitative eval-
uation of exploration algorithms. Properties such as design
space coverage or the ability to recover from bad decisions
may easily be analyzed in a problem-independent fashion.
The paper is organized as follows. Section 2 describes the
main components of a DSE module. Section 3 describes
our environment focused on evaluation of one of those com-

ponents: exploration algorithms. We provide examples for
two frequently used algorithms:tabu searchandsimulated
annealing. Finally, section 4 presents a simple exploration
strategy to increase effectiveness of traditional optimization
algorithms when they are used for system-level exploration.

2. DSE subsystem

Identification of interesting areas of the design space re-
lying on inaccurate heuristics is a completely different goal
from that of simple combinatorial optimization. We identify
three major areas of interest in a DSE subsystem:

• Design space representation.

• Metrics and estimations.

• Exploration algorithms.

Most of the research efforts on design space exploration
for system level design automation has been oriented to-
wards formal design space representation [10, 3]. They
use hierarchical decomposition of the design space to al-
low a systematic exploration based on relevant figures of
merit. The structure added to the design space specifies
a partial order for the exploration process that matches
the sequence of levels in the hierarchy. In some way de-
sign space representation constitutes ana-priori heuristic
design-independent exploration that simplifies later deci-
sions.

Another major research topic is the set of metrics and es-
timations used for assessment of candidate solutions. Tradi-
tional estimations for hardware-only systems involve struc-
tural information [1, 14], while estimations of software-
only systems are usually based on statistical data collected
from behavioural specifications ([4], part 4A). System-level
design automation tools may either combine the two ap-
proaches [10] or apply only behavioural metrics [5]. In both
cases the high abstraction of the system-level specifications
introduce a large degree of uncertainty.

The last main component of the DSE subsystem is the
exploration strategy, the algorithm or set of algorithms re-
sponsible for the actual exploration. RT-level and logic-
level tools usually apply conventional combinatorial opti-
mization techniques. For higher level environments previ-
ous research on early exploration considered implicit ex-
ploration strategies induced by the set of estimations and
the hierarchical design space. We will show that algorithms
implementing explicit strategies allow easier evaluation and
comparisons among different exploration techniques, and
they also allow finer control over the global behaviour of
the synthesis tool.

A complete design space exploration methodology is
proposed in [11]. The authors rely on simple linear estima-
tors and traditional multi-objective optimization, with focus

on linear programming and gradient methods. Linear pro-
gramming methods do not scale well for a high number of
decision variables. Besides that, a hierarchical decomposi-
tion of the design space as proposed in [10] (specially ad-
equate for IP-based design) cannot guarantee the required
orthogonality among decision variables. Finally, disconti-
nuities in the cost function may affect the efficacy of gradi-
ent methods.

By contrast with linear programming formulations,
heuristic strategies allow arbitrary non-linear estimations,
arbitrary design space decomposition and better execution
time for huge design spaces. We will focus on this kind of
strategies in this article.

3. DSE analysis environment

Evaluation of a particular exploration strategy imple-
mented in a CAD tool is extremely difficult since the an-
alytical expression of the cost function is unknown. There
is no way to infer whether the explored points of the de-
sign space are representative of the whole design space, or
the exploration was actually reduced to a local search in a
particular sub-optimal zone of the design space. We over-
come those limitations with a simulated environment which
provides both a completely known search space and the an-
alytical expression of the cost function. This environment
tries to model only those characteristics of the design space
affecting the exploration process.

In order to be able to analyze a set of explicit exploration
strategies, these strategies should be implemented using an
abstract interface to interact with the rest of the DSE sub-
system. The evaluation environment supplies a simulated
replacement for those additional DSE components (design
space structure and estimations).

For our tests we used a two-dimensional design space
that simplifies data representation. Each point in the region
[−1, 1]× [−1, 1] of the real plane corresponds to the partic-
ular design being considered. It might be argued that this
is an extremely simplistic model for the design space. We
will show that even such a simple model is useful to ana-
lyze some properties of the exploration algorithms. Ability
to deal with complex design spaces is usually related to the
formal design space representation, not to the exploration
strategy.

3.1. Cost function

The cost function is explicitly specified by the user. For
our examples we chose a derived form of a common test
function for combinatorial optimization algorithms [2]:

f(x, y) = 0.5 +
sin2(100

√
x2 + y2)− 0.5

(1 + 10(x2 + y2))2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

f(0,x)

Figure 1. Cross section of selected cost func-
tion f(x, y) for y = 0.

in the domain[−1, 1] × [−1, 1]. The global minimum is at
the origin but it is surrounded by many local optima located
on concentric circles (see fig. 1).

We introduced huge discontinuities near the local op-
tima to model actual discontinuities in the cost function
of system-level tools. A simple modification tof(x, y) is
enough for our experiments:

g(x, y) =

{
0.5 + sin2(100

√
x2+y2)−0.5

(1+10(x2+y2))2 if |x| ≥ |y|
1 otherwise

Presence of this kind of discontinuities in system-level
tools is easily shown with an example. Consider partition-
ing a design into software for some micro-controller and an
FPGA implementing critical functionality. Design automa-
tion tools should maximize usage of the FPGA to avoid
wasting the resources of the FPGA. On the other side if
the tool allocates too much functionality on the FPGA we’ll
need to use two FPGAs (or a more expensive one) roughly
doubling the cost of the system. A small variation in the
design produces a huge increment in the total cost. Be-
sides that, design automation tools are explicitly looking
for these discontinuity points (maximizing usage of allo-
cated resources). Our experiments show that convergence
of some combinatorial optimization algorithms is heavily
affected by these discontinuities (fig. 2), therefore it should
also be considered in the model for exploration strategies.

The plots of figure 2 were generated from data produced
by a single run of two frequently used combinatorial op-
timization algorithms: simulated annealing[12] and tabu
search[8]. We use the same procedure for design space
quantization and encoding described in [2] for both algo-
rithms. Our implementation of simulated annealing follows
the cooling scheme proposed in [9]. The implemented tabu

Figure 2. Explored design space for two opti-
mization algorithms with cost function g(x, y).
The left side of the figure corresponds to simu-
lated annealing, and the right side to tabu search.
The upper plots represent the exploration for
a continuous cost function f(x, y), while the
lower plots show the impact of discontinuities
in the cost function. Tabu search is almost
unaffected.

search strategy limits the size of the tabu list to a fixed quan-
tity (as proposed in [8]) but we also introduce a small quan-
tity of random noise (0.1% of the full scale) to avoid falling
into loops of already visited local minima. We will discuss
this in the following subsection.

It is also possible to generate a more meaningful color
plot. The color scale is used to encode the normalized fre-
quency of visited regions (each point and its neighborhood)
across multiple runs of the exploration algorithms. For our
examples the results are very similar to what is already rep-
resented in figure 2. Color images for the examples in this
paper may be found along the source code (see section 6).

The cooling scheme we used for simulated annealing is
considered to be very robust. This claim is supported by
the fact that the algorithm was almost always able to find
the global minimum at the origin. On the other side, for a
DSE subsystem, it is more important the identification of
interesting zones than actually finding the global optimum
(uncertainty makes impossible to ensure a global optimum).
Figure 2 shows that simulated annealing performs almost a
random search across the entire design space in presence of
huge discontinuities.

3.2. Uncertainties

A fundamental difference between traditional combina-
torial optimization algorithms and system-level synthesis is
that the cost function is unknown during the early phases

Figure 3. Explored design space for two opti-
mization algorithms with cost function f(x, y)
(no discontinuities). The left side of the fig-
ure corresponds to simulated annealing, and the
right side to tabu search. The upper plots repre-
sent the exploration for 5% error in cost func-
tion evaluation, while the lower plots show
the impact of 10% error in the cost function.

of the exploration. The design space exploration subsystem
must provide two kinds of heuristics: predictive heuristics
for cost function approximation, and exploration heuristics
to guide the exploration. Our simulated environment is only
focused on evaluation of exploration heuristics, but uncer-
tainties in the cost function must be introduced in the model
in order to realistically predict exploration efficacy.

We consider two causes of uncertainty during cost func-
tion evaluation: design indetermination and cost indetermi-
nation. The lack of precise knowledge of the location of the
design being evaluated in the whole design space is due to
incompleteness of the design. An early design may actu-
ally be refined by later stages into hundreds of alternatives.
For our examples we modeled the design uncertainty as a
random noise added to the coordinates of the point being
considered.

As shown in figure 3 introduction of noise in cost func-
tion evaluation (to both the coordinate and the cost function
value) also have a major impact in the efficacy of the ex-
ploration. Adding random noise for at most 10% of the full
scale our implementation of simulated annealing degener-
ates into almost a random search (even without discontinu-
ities in the cost function). The percentage of tolerable noise
for each algorithm is not meaningful by itself because it de-
pends on the cost function considered. Anyway it is still
useful in order to compare the robustness of a set of algo-
rithms.

Stage1 Stage2 Stage3

Candidate solutions

Figure 4. We model a CAD tool as a cascade
of combinatorial optimization algorithms fo-
cused around the interesting points identified
by previous stages.

3.3. Model for the tool

We modeled the complete design automation tool-set
by means of a cascade of combinatorial optimization algo-
rithms as shown in fig. 4. Each stage introduce much less
uncertainty during the cost function evaluation than the pre-
vious stage. Also, each stage explores only a limited zone
of the design space around the interesting points provided
by the previous stage.

The way in which those stages are connected to each
other depends entirely on the DSE strategy. In the follow-
ing section we will describe a simple strategy that requires
only small modifications of traditional combinatorial opti-
mization algorithms.

4. A simple DSE strategy

Combinatorial optimization algorithms may easily iden-
tify interesting zones of the design space in each stage of
the tool model. The best solution may be representative of
an interesting zone but other good solutions should also be
considered for further exploration. Instead of keeping only
the best solution the algorithms must be modified to keep
the bestn solutions. This turned out to be a trivial change
of less than ten lines of code. The number of solutions kept
for further exploration (n) is related to the uncertainty in the
current stage. For the examples shown in figure 5 we used
three stages of simulated annealing with a list of 25, 5 and
1 best solutions respectively.

Another global exploration algorithm is responsible for
guidance through the set of available solutions towards the
global optimum. We used a simple backtracking algorithm.

Having a completely simulated environment allows us to
know the actual value of the cost function at any moment.
This is useful to represent the evolution of the exploration
strategy as shown in figure 5.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

Figure 5. Evolution of the actual value of the
best-so-farsolution for several runs of the ex-
ploration strategy described in section 4. The
global optimum value is 1.0.

Although the DSE strategy proposed in this section is
highly effective there are a lot of possible enhancements:

• The number of best solutions kept for each stage may
be controlled dynamically with criteria other than the
cost function value. For example, we may want to pre-
serve the variety in a set of candidate solutions by col-
lapsing similar solutions into just one solution.

• Instead of simple backtracking abranch-and-bound
approach may be used in order to backtrack as soon
as a very bad solution is detected.

5. Conclusions and future work

The quality of the final design is closely related to the ef-
fectiveness of the design space exploration subsystem. Be-
sides that,time-to-marketis becoming an increasingly im-
portant factor in complex system design. Both efficacy and
efficiency of an exploration strategy must be analyzed to
evaluate the quality of a design. To our knowledge there is
no previous work addressing the needs of exploration strat-
egy analysis as another factor affecting the quality of the de-
sign process. We described a framework that complements
the methodology described in [11] for easy evaluation of
exploration strategies by providing a simulated model of
the design automation tool and associated environment. We
do not intend to offer a realistic model. Our simple mod-
els allow for tradeoff evaluation among several exploration
strategies and will be extended when the need arises.

Although we have focused on problem-independent ex-
ploration algorithms problem-specific exploration strategies

may also be mapped into a simplified models. We are devel-
oping visual representation techniques for these situations
where a simple 2D design space may not be suitable.

Evaluation of DSE subsystems should also consider
evaluation of structural decompositions of the design space.
This could be achieved by means of specialized metrics.

6. Source code

The source code and data files mentioned in this ar-
ticle may be found in the URLhttp://www.inf-
cr.uclm.es/www/fmoya/DSE/

References

[1] S. Bakshi and D. D. Gajski. Design Exploration for
High-Performance Pipelines. InProc. IEEE/ACM Conf. on
Computer-Aided Design, 1994.

[2] R. Battiti and G. Tecchiolli. The Reactive Tabu Search.
ORSA Journal on Computing, 6(2), 1994.

[3] O. Bentz, J. M. Rabaey, and D. Lidsky. A Dynamic De-
sign Estimation and Exploration Environment. InProc.
ACM/IEEE Design Automation Conf., 1997.

[4] B. W. Boehm. Software Engineering Economics. Prentice-
Hall, 1981.

[5] A. Bogliolo, L. Benini, and G. D. Micheli. Adaptive Least
Mean Square Behavioral Power Modeling. InProc. Euro-
pean Design and Test Conference, 1997.

[6] S. Chaudhuri, S. A. Blythe, and R. A. Walker. A Solu-
tion Methodology for Exact Design Space Exploration in
a Three-Dimensional Design Space.IEEE Trans. on Very
Large Scale Integration (VLSI) Systems, 5(1), 1997.

[7] N. Dutt and C. Ramachandran. Benchmarks for the 1992
High Level Synthesis Workshop. Technical Report 92-107,
Information and Computer Science Department, U.C. Irvine,
1992.

[8] F. Glover. Tabu search - part I.ORSA Journal of Computing,
1(3), 1989.

[9] M. D. Huang and A. Sangiovanni-Vincentelli. An Efficient
General Cooling Schedule for Simulated Annealing. InProc.
of ICCAD, 1986.

[10] M. F. Jacome and J. C. López. Supporting Early System-
Level Design Space Exploration in the Deep Submicron Era.
In J. C. López, R. Hermida, and W. Geisselhardt, editors,Ad-
vanced Techniques for Embedded Systems Design and Test.
Kluwer Academic Publishing, 1998.

[11] L. Jóźwiack and S. A. Ong. Quality-Driven Decision Making
Methodology for System-Level Design. InProceedings of
the 22nd EUROMICRO Conference, 1996.

[12] S. Kirkpatrick, C. D. Gelatt, and M. Vecchi. Optimization by
Simulated Annealing.Science, 220, 1983.

[13] R. H. Klenke, M. Meyassed, J. H. Aylor, B. W. Johnson,
R. Rao, and A. Ghosh. An Integrated Design Environ-
ment for Performance and Dependability Analysis. InProc.
ACM/IEEE Design Automation Conf., 1997.

[14] S. Y. Ohm, F. J. Kurdahi, N. Dutt, and M. Xu. A Compre-
hensive Estimation Technique for High-Level Synthesis. In
Proc. IEEE International Symposium on System Synthesis,
1995.

