
Heterogeneous Systems Design: aUML — Based Approach�

Santiago Dom´ınguez Barrios, Juan Carlos L´opez López
Departamento de Ingenier´ıa Electrónica

E.T.S.I. Telecomunicaci´on, Universidad Polit´ecnica de Madrid
Ciudad Universitaria s/n. 28040 Madrid, Spain

E-mail:<sdb,lopez>@die.upm.es

Abstract

Inherent complexity of heterogeneous system design has
been traditionally faced by means ofabstractionanddesign
automation. At the highest level of abstraction, theUni-
fied Modeling Language(UML) can be extended to model
the whole system under design in an homogeneous fashion.
In this paper, a design methodology based on the UML is
presented. The benefits of using such a methodology are
highlighted taking the design of an MPEG-4 decoder as ex-
ample.

1 Introduction

Electronic technology has been evolving very quickly
during the last decades. Several million transistors can be
integrated into a single VLSI chip, and today’s computer
systems allow the production of millions of lines of code
sized projects. In this scenario, the development difficulty
has been pushed towardsmanaging the problem complexity.

Monolithic systems running on a single platform can-
not usually solve real problems: software systems do not
usually satisfy very tight non-functional requirements (per-
formance, weight, cost . . . ), whereas hardware systems re-
quire longer development times and are less configurable.
Intermediate solutions (programmable hardware such FP-
GAs, or software running on specific processors like DSPs)
can sometimes fill in the gap. However, in most real sys-
tems mixed solutions must be adopted, leading to what has
been calledheterogeneous systems. In these systems, each
subsystem is implemented in a different way (see figure 1),
imposing most of the times different specification styles and
the use of different design methodologies.

Compiled Codeand Virtual Machine Codeallow a s-
traightforward mapping with theUML.

�This work has been funded by the Spanish Research Foundation (CI-
CYT) through the project HADA TIC97-0928

Java

A
bs

tr
ac

tio
n 

le
ve

lC++

VHDL

VM code FPGA
CPLD
FPLD

C

DSP Assembly
language

µ
language
P Assembly

Heterogeneity
C

om
pl

ex
ity

Netlist

ObjVHDL

< 10 pages

> 100 pag.

>100Klines

>1GByte
>1MTRT

Figure 1. Abstraction vs. Complexity in Het-
erogeneous Systems Development

Digital Signal Processorsoffer good results for some
computation intensive problems.

To implementSpecific Hardwaremultiple solutions can
be found in terms of technology (TTL, CMOS, ECL . . . ),
component implementation (ASIC, FPGA, CPLD, FPLD
. . . ) or subsystem implementation (MCM, PCB, SOC),
with a variety of design methodologies and tools.

A number of heterogeneous methods can be found also
in prototyping. A different model of computation is often
needed [2]. Developers prefer either frameworks or lan-
guages that help the analyst to concentrate on the problem
domain (Matlab, Mathematica . . . ), or user-interface cen-
tered languages (ActiveX, Tcl/Tk, Visual Basic, Business
Objects . . . ).

Complex system designers cannot usually afford the use
of this heterogeneous bunch of methods and tools, and the
use of a common formalism that can manage the design
complexity throughout the whole design process becomes
essential.



This paper proposes the use of the Unified Modeling
Language (UML), a standard in Object Oriented Analysis
and Design, as support of a methodology that can success-
fully manage the inherent complexity of heterogeneous sys-
tem design.

The paper is structured as follows. Section 2 is devot-
ed to briefly review some related previous work on hetero-
geneous systems design methodologies. In section 3, an
overview of the UML is done. Taking the MPEG-4 decoder
as example, the phases of the heterogeneous systems de-
velopment process are depicted in section 4, making spe-
cial emphasis on the main advantages of using the proposed
methodology. Finally, some conclusions are drawn.

2 Related Work

Object Oriented (OO) methodology is being successful-
ly used by software developers and is now trying to be in-
troduced in the hardware arena. Objective VHDL [8] (and
some others [3, 4]) brings hardware design to the OO world
(or vice versa).

C++ [4] or Java [3, 11] can be used in almost all imple-
mentation technologies, if their standard syntax is improved
and refined to accommodate hardware issues such as timing,
communication or parallelism. However, choosing a unique
language is a somewhat artificial solution for heterogeneity.
It is probably arbitrary to state that C++ or Java are more
suitable than VHDL for hardware design.

Frameworks like Ptolemy [2] are more useful since each
subsystem may keep its own implementation language, but
aggregation of heterogeneous blocks does not lead to a con-
sistent, homogeneous design.

Reusable Intelectual Property (IP) Blocks [7] are a good
solution. However, they just (greatly) simplify the imple-
mentation phases; an homogeneous language for the whole
system is still needed.

A sensible solution for a global system design is using
the natural language (English), but this leads to an ambigu-
ous and inconsistent design.

3 The Unified Modeling Language

OO methods focus on modeling the vocabulary of the
problem and the solution space in such a way that the re-
al needs of project users can be accurately captured. They
are suitable for unstable requirements since the OO devel-
opment process is mainly iterative.

Widely spread in software development, OO techniques
are now being adopted as good engineering practices in
non-software systems like business modeling and hardware
design.

The Unified Modeling Language [1] (UML) is a non-
proprietary OO language for specifying, visualizing, con-
structing and documenting software systems. It allows the

modeling of concurrent, distributed systems and has well-
defined extension mechanisms.

Although the UML is broadly applicable without exten-
sions, a small refinement is needed in order to model all the
possible implementations in heterogeneous systems. The
UML has three formal extension mechanisms calledStereo-
types, Tagged ValuesandConstraints, that result especially
suitable to our problem and will be introduced conveniently
in following sections.

In [1], an anchitecture-centric, use case-driven developp-
ment process, called “The Rational Unified Process” is de-
fined.

This process is composed of several development cycles.
Each development cycle consists of four phases:Inception,
elaboration, constructionandtransition. Each phase is per-
formed along many iteration steps.

4 A UML -based methodology

In this section, the four phases of the Rational Unified
Process are followed in detail for its use in heterogeneous
system design. The discussions are illustrated with our case
study, the MPEG-4 [6] (ISO/IEC 14496) decoder, the stan-
dard for multimedia communications.

4.1 Inception

In this phase, core requirements are established, so this is
a very creative activity, where rules must not be very rigid.

A use-case diagramshows the relationships betweenac-
tors –things that interact with the system– and otheruse-
cases–patterns of behavior the system exhibits– in the sys-
tem. Relationshipsshow interactions between actors and
use-cases.

Defining the whole system using just one use-case is usu-
ally confusing. Diagrams may be hierarchical using UML
packages, which have relationships between them. In our
example, the MPEG-4 decoder can be decomposed into a
video decoder and an audio decoder; each of one can de-
code natural or synthetic elements.

The package labeled “main ”, depicted in figure 2,
shows the boundaries of the subsystem: the user in one side,
which can interact with it, and the audiovisual stream in the
other side that serves as input. SeveralTagged-Valuesmust
be used in order to specify non-functional requirements that
are known to be critical (see table 1).

4.2 Elaboration

By means of the elaboration phase, we try to provide a
complete, consistent, readable and revisable description of
the system.



{Performance,
Portability}

Media interworking Robustness to information
errors/loss

Stream

Content Management & protection
and identificacion

User interaction

User

Compatibility

{Portability}

Multiplexing AVO Information

{Performance}{Performance}

Downloading

Manipulation and Edition
Object based Bitstream

{Memory}

Composition of AVOs
Flexibility

Figure 2. “ Main ” use-case

Tagged-Values Stereotypes
MM class name Type MM class name
UseCase Area Bool Class ASICEntity
UseCasePerformanceBool Class FPGAEntity
UseCase Size Bool Class CPLDEntity
UseCase Security Bool Class FPLDEntity
UseCaseReliabilityBool Component ASICComp
UseCasePortabilityBool Component DSPComp
UseCase Memory Bool Component FPGAComp

Class TargetImpl Enum Component FPLDComp
Component CPLDComp

Table 1. Added extensions

{P
ai

nt
.e

xe
cu

tio
nT

im
e 

<
 1

5 
m

s}

stop

:Executive :Presenter :AudioRenderer :VisualRenderer :Node

render

draw

getScene

lockScene

paintPaint

Node ref

<<destroy>>

<<destroy>>

Figure 3. Sequence diagram

<<ASICEntity>>
Node

bBox

id

URL

lock()

unlock()

findNode()

MediaObject

<<ASICEntity>>

bindTime

<<ASICEntity>>
Bindable

worldinfo

viewPoint

fog

background

clock

Reference

<<ASICEntity>>

AVScene

Executive

File

isActive

speed

startTime

stopTime

Object

register()

loop()

Application Presenter

capabilities

iteration

interval time

paint()

resize()

stop()

capabilities

paint()

resize()

select()

VisualRenderer

nChannel

<<ASICEntity>>

AudioObject port

bitsPerSample

nChannels

SamplesPerSecond

AudioRenderer

orientation

position

<<ASICEntity>>
ViewPoint

Route
<<ASICEntity>>

Figure 4. Class diagram

A sequence diagramdisplays object interactions ar-
ranged in a time sequence, as shown in figure 3.

In real time applications [10] these diagrams must be
completed with the maximum allowed times between mes-
sages. In the rendering process of the MPEG-4 decoder (see
figure 3), the rendering time is upper-bounded to 15 ms [5].

Note that in heterogeneous systems special care must be
taken with synchronization issues. In figure 3, filled solid
arrowheads are procedure calls, while half stick arrowheads
represent an asynchronous flow of control.

Heterogeneous systems exhibit some particularities that
make it necessary to extend the UML model. First of all,
a tagged-value (see table 1) has to be added to every class,
so as to be able to indicate its target implementation (Java,
C++, Objective VHDL . . . ).

On the other hand, stereotypes (see table 1) have been
added for hardware entities:ASICEntity , FPGAEnti-
ty , CPLDEntity , FPLDEntity .

For our example, the MPEG-4 decoder, the audiovisual
objects (AVO) hierarchy is partially depicted on the left of
figure 4. Each AVO knows how to render itself, but two
objects must control the rendering process: theVisual-
Renderer and theAudioRenderer . TheExecutive
is a design object that creates thePresenter and the au-
diovisual scene (AVScene).

To specify the life history of a given class, astate transi-
tion diagramis used. It shows the events that cause a tran-
sition from one state to another, and the actions that result
from a state change.

This diagram is derived from Harel’s statecharts and is
very closed to synchronous languages like Argos.State-



Chart diagramsare especially useful to describe the behav-
ior of ASICEntitiessince the control flow graph and the data
path can be easily generated using automated tools.

4.3 Construction

This phase is mainly iterative. Code is usually added and
seldom removed. Unless important efforts are done to avoid
it (using iterative design), system complexity will be always
increasing.

Component diagramsprovide the modeling constructs
needed to visualize the physical nature of your system.

Source code componentsshow compilation dependencies
between language specific files (.java , .C , .H ,
.ovhd . . . ).

Run time components show the mapping of classes to
run-time libraries such as Java applets, dynamic li-
braries, VHDL libraries . . .

Executable componentsshow the interfaces and calling
dependencies among executables.

4.3.1 Software construction

Software components can be easily generated using UML
CASE tools like Rational Rose [9]. With Rational Rose 98,
developers can represent the architecture and automatically
generate the application code and the documentation. Class
libraries can be reverse-engineered into a Rose model file,
leading to up-to-date models.

4.3.2 Hardware construction

For hardware components, VHDL has been chosen as target
code. However, VHDL is still far away from the UML. The
encapsulation mechanisms of VHDL (entities) support just
structural information reuse.

An OO VHDL extension, Objective VHDL [8], has been
used in order to allow a smooth transition from design to
hardware implementation. It has been really helpful since it
integrates class concept, (single) inheritance and polymor-
phism into VHDL.

Objective VHDL has been easily embedded into the
UML methodology. Rose98 has been extended for this pur-
pose. Reverse engineering is also possible.

5 Conclusions

In complex heterogeneous systems, the use of a common
formalism that can manage the design complexity through-
out the whole design process becomes essential. In this
paper a design methodology based on the UML, a design

language supported by OMG (Object Management Group),
has been proposed. Its suitability has been demonstrated by
following all the design phases for a case study, an MPEG-4
decoder.

The whole methodology has proven to be easily ex-
tendible and adequate for any implementation technolo-
gy. At construction-time, the use of the UML assures
elaboration-construction coherence in an iterative design.

With this methodology (and its support tools) the first
release of a design implementation can be automatically
generated, and after further code modifications, the design
model can be updated by reverse engineering.

References

[1] G. Booch, J. Rumbaugh, and I. Jacobson.The Unified Mod-
eling Language User Guide. Addison Wesley, 1998.

[2] B. L. Evans, A. Kamas, and E. A. Lee. Design and simula-
tion of heterogeneous systems using Ptolemy. InRapid Pro-
totyping of Application Specific Signal Processors (RASSP)
Program, 1998.

[3] R. Helaihel and K. Olukotun. Java as a specificaton language
for hardware-software systems. InProceedings of the Inter-
national Conference on Computer-Aided Design, Nov 1997.

[4] IMEC, IMEC vzw, Kapeldreef 75, B-3001 Leuven.The O-
CAPI Design System.

[5] MPEG-4 Requirements, version 7 (Tokyo revision), March
1998.

[6] Overview of the MPEG-4 Version 1 Standard. Toky-
o, March 1998. Available on the WWW from URL
http://www.mpeg.org .

[7] G. Martin. Design methodologies for system level IP. In
Proceedings of the Design Automation and Test in Europe,
Paris, February 1998.

[8] W. Putzke-Röming, M. Radetzki, and W. Nebel.
Final Objective VHDL Language Defini-
tion. Available on the WWW from URL
http://eis.informatik.unioldenburg.de/re-
search/research.html , 1997.

[9] Rational Software Corporation. Inside the UM-
L. CD-ROM available on the WWW from URL
http://www.rational.com/uml .

[10] Rational Software Corporation.Unified Modeling Language
for Real-Time Systems Design, 1997. Available on the
WWW from URL http://www.rational.com/uml .

[11] J. S. Young, J. MacDonald, M. Shilman, A. Tabbara, P. Hil-
finger, and A. R. Newton. Design and specification of em-
bedded systems in Java using successive, formal refinement.
In Proceedings of the Design Automation Conference, 1998.


