
A Flexible Specification Framework for Hardware-Software Codesign

Jośe Manuel Moya†, Santiago Doḿınguez‡, Francisco Moya†, Juan Carlos Ĺopez†

†Universidad de Castilla-La Mancha
Departamento de Inforḿatica

ESI. Po Universidad 4, 13071 Ciudad Read, Spain

{jmmoya,fmoya,jclopez}@inf-cr.uclm.es

‡Universidad Polit́ecnica de Madrid
Departamento de Ingenierı́a Electŕonica
ETSIT, Ciudad Universitaria, 28040 Madrid, Spain

sdb@die.upm.es

Abstract
In this poster, we present a new specification technique

for complex hardware-software systems, based onstandard
high-level programming languages, such as C, C++, Java,
Scheme, or Ada, without extensions or semantic changes.
Unlike previous approaches, the designer may choose the
model of computation and the specification language that
best suits her needs, while still being able to formally ver-
ify the correctness of the specification. The details of the
available hardware and software resources, and the imple-
mentation of the different models of computation are en-
capsulated in libraries to maximize reuse in system specifi-
cations.

Figure 1 shows the basic architecture of our specifica-
tion framework. The actual model of the application is built
on top of two libraries:libarch andlibMoC .

The libarch library encapsulates the details of the
specific hardware and software resources, so that the sys-
tem specification remains independent of the target system.
Architectural exploration of different implementation alter-
natives is done by modifying this library.

ThelibMoC library encapsulates the details of the spe-
cific model of computation. To be verifiable, the applica-
tion code should use the interface provided by this library.
Then, we use external tools to verify different properties
of the model of computation. For every pair (specification
language, model of computation) we define a new MoC li-
brary component, with well-defined interfaces, providing
support of the precise semantics of that model of compu-
tation from the specification language.libMoC currently
supports C++, Java, Ada, and Scheme programming lan-

Implementation
independent

Implementation
dependent

Verifiable
part

Application

HW and SW resources

OS Layer

libMoC
Models of Comp

libarch

Figure 1. Basic architecture of the specifica-
tion framework

���
���
���
���

���
���
���
��� �

�
�

�
�
�

�
�
�
�

�
�
�
�

Java

C++

Scheme

Java

C++

Scheme

Java

C++

Scheme

FSM Petri Nets Data Flow

libMoC

Simulation

Replaced by

Application

Code

Formal Verification

Machine
Code HDL: MoC HDL: libMoC

SynthesisSoftware Hardware: ASIC / FPGA

Java

C++

Scheme

Compiler

MoC extraction

Compiler

Figure 2. Simulation, formal verification and
synthesis using libMoC

guages, and FSMs, Petri Nets and Dataflow models of com-
putation, but it can be easily extended to support other lan-
guages and models of computation.

The complete system can be simulated compiling and
executing the application code with software versions of
libarch andlibMoC .

To support verification and synthesis, we link the spec-
ification with special versions of the MoC libraries. The
information required by the verification and synthesis tools
is generated when the resultant binary is executed.

The described process is depicted in figure 2. It is im-
portant to remark that the same application code is used for
simulation, verification and synthesis.

The main benefits obtained from our approach can be
summarized as follows:

• The designer is free to choose the system specification
language and the underlying model of computation,
independently of the final implementation (software
or hardware) of the components. New specification
languages and MoCs can be added easily.

• Simulation of the whole system is straightforward and
available tools for formal verification can be used for
the different models of computation implemented in
libMoC .

• Hardware components can be efficiently synthesized
for the part of the system that useslibMoC .

