
RED: A Reconfigurable Datapath

Fernando Rinćon, Jośe M. Moya, Juan Carlos Ĺopez
Universidad de Castilla-La Mancha

Departamento de Inforḿatica
{frincon,fmoya,lopez}@inf-cr.uclm.es

Abstract

The popularity that certain applications such as
mobile telephony or mp3 audio reproduction have
gained lately, has made it possible the increase in the
number and complexity of embedded systems. De-
pending on the tradeoffs performance/flexibility/cost,
several architectures that range from ASIPs to full-
custom computing machines, based on reconfig-
urable logic, are being used. Here, what we propose,
is a new architecture based on a standard micropro-
cessor whose functionally will be enhanced by a re-
configurable datapath, acting as a customized copro-
cessor. This architecture not only offers a reasonable
tradeoff between cost and performance, but also can
be easily exploited through the use of a HW/SW com-
piler.

1. Introduction

The increase in complexity and requierements of cur-
rent embedded systems has led to the appearance of
alternative architectures to standard microprocessors
and DSPs, that were being used until now.
These alternatives differ in their adaptability, their
performance and their cost. Intermediate solutions
are normally based in the use of reconfigurable logic,
however the way reconfigurability is provided can be
rather different.
This paper presents a novel architecture, RED, based
on a standard processor plus some reconfigurable
logic, in the form of a pipelined datapath, that can
execute several complex operations of more than two
operands at a time. RED would then be used for
those operations of an application that are critical in
time, while the rest are being executed by the pro-
cessor. This task can be easily performed by a com-
piler based on FLECOS methodoly (see section 5),
avoiding the classical problem of hardware/software
partitioning.
Section 2 presents an overview of some of the ar-
chitectures that are currently used for embedded sys-
tems, and justifies our proposed alternative. Section
3 describes RED architecture. Section 4 describes its
fuctionality, while section 5 deals with the problem

of designing applications based on RED. Finally, sec-
tion 6 presents some conclusions and current state of
the work.

2. Types of Architectures

We could fix the following three parameters to iden-
tify the characteristics of several of the architectures
currently used for embedded systems: flexibility of
the system, cost and performance. Depending on
them we could make the following 5 groups.

1. ASIPs

2. processor + DSP

3. reconfigurable processors

4. processor + FPGA

5. Full Custom Computing Machines

Flexibility Cost E.O.U1 Perform.
1 none low high med./high
2 low medium low med./high
3 medium med./high med. med./high
4 medium med./low high med.
5 v. high high low high

Table 1: Types of Architectures

With respect to the relationship between flexibility
and cost, as it can be seen on table 1, the first and the
last are the two opposite solutions. The use of pro-
cessors specifically designed for certain kind of ap-
plications, such as DSPs for example, is the cheapest
alternative, although, at the same time, the least flexi-
ble, where flexibility would be the adaptability of the
architecture to the applications it should support. On
the other side, custom computing machines are based
normally on some kind of reconfigurable logic, thus
allowing to tune their architecture to each application
executed over them. However their cost is enormous

1Ease of Use

1



compared to the previous case, in part for their gener-
ality, in part for the inclusion of reconfigurable logic.
These solutions also differ in the performance they
can achieve at the execution of certain applications.
Since FCCMs can adapt their architecture they can
be even one order of magnitude quicker than ASIPs.
But between these solutions, new architectures have
been proposed that try to reach the performance
needed for most common embedded systems, with-
out paying a high cost for it. We have identified three
of these solutions in table 1. They all have in common
the use of a more less standard microprocessor and
additional hardware, in the form of a DSP or recon-
figurable logic. The standard processor is cheap, and
deals with control tasks of the application, or those
not critical in time. The additional hardware is used
for critical tasks, or those that don’t fit very well in
the microprocessor (because of special data widths
for example).
Successful implementations of applications using a
processor and a DSP have been reported, such as
[dsp98]. Here the DSP provides the processor with
an extended set of instructions for digital signal pro-
cessing, at the extra cost of a DSP, which is not ver
high. The main disadvantage of this approach is the
lack of a good design methodology. It must be de-
cided at the very first stages of the design process
which parts of the application will be performed in
each processor. Then the code must be developed
separately. Synchronization between both processors
must be provided manually. An additional problem
is that depending how autonomous the DSP is from
the microprocessor, the latter is most of the time ded-
icated to supervise the DSP, which prevents it from
performing other tasks.
The rest of architectures are all based on the use of
reconfigurable logic. However, they differ in how this
reconfigurability is used.
Xilinx proposes in its ARC architecture [Dav01] the
use of an FPGA to hold an configurable processor.
The core of the processor is custom-made, including
only the necessary instructions for a certain applica-
tion from a set of possible ones. This doesn’t requires
nothing but a standard FPGA, but that also means that
a high prize is paid for the hardware related to control
sequencing and many other tasks of a microprocessor
that don’t take any benefit from being implemented
over an FPGA.
Altera has recently released the Excalibur series
[exc00]. They consist in a standard core, such an
ARM or a MIPS, integrated with an FPGA in the
same chip. Here the reconfigurable logic is only
used for those parts of the circuit that have to per-
form a critical task, while the rest are executed by
the microprocessor. The main problem of this ap-
proach is again hardware/software partitioning. Even
the knowledge of a hardware designer is needed for

the design of hardware parts that will be held by the
FPGA, while in ARC a custom compiler is derived
automatically once the set of instructions has been
decided.
Other alternatives, that make a more sophisticated use
of reconfigurable logic exist, although all of them are
still under research. One is GARP, from Berkeley
university [HW97], and is based on a MIPS core plus
a reconfigurable array organized in a set of contexts,
one holding a different circuit, but only one active at
a certain time.
Another one is Chimaera [HFHK97], from North-
western University. Chimaera is a reconfigurable
functional unit that is able to provide a set of simul-
taneous hardware operators, that can be replaced di-
namically, during the execution of the application. In
both architectures the reconfigurable part is tightly
coupled to the microprocessor, sharing, for example,
the same data cache to reduce memory bottlenecks.
Both are also based on the use of a compiler for de-
veloping applications, although they work at a differ-
ent level of granularity. In GARP the compiler uses
VLIW techniques for finding the inner loops that will
be fully synthesized in hardware, and stored in one of
the contexts. Chimaera compiler works at the level
of operations, trying to identify those that don’t fit in
standard processors, or that can be packed and exe-
cuted in parallel.
The third one is Piperench [GSM+99], from
Carnegie Mellon University. PipeRench is a dynam-
ically reconfigurable datapath that allow the imple-
mentation of pipelined operations that are not con-
strained by the physical number of stages in the data-
path.
RED, that shares some features of the last three alter-
natives, is not an FPGA, but a reconfigurable copro-
cessor. Since it will work at the level of operation it
isn’t necessary such a general architecture. It is a dat-
apath much like PipeRench, although the granularity
of the stages, the use of local memory and the recon-
figuration schema is rather different. Reconfiguration
is based, as in Garp, on the use of several switchable
With respect to Chimaera, RED also provides simul-
taneous execution of instructions, but it is achieved
through the use of a pipeline whose stages can re-
place their functionality at each clock cycle.

3. RED Architecture

RED has been conceived with the following ideas in
mind:

• Provide HW acceleration to critical operations
but avoiding the problem of HW/SW partition-
ing, as it will be explained in section 4. This im-
plies working at the level of operations or sys-
tem calls, which is a lower degree of granular-
ity compared to classical HW/SW codesign ap-
proaches.



• Provide a flexible architecture that allows the
implementation of operations at a variable level
of complexity.

• Achieve a high percentage of utilization of re-
configurable hardware.

• Include a data cache to reduce the overhead pro-
duced when accessing to data memory.

• Reduce the overhead caused by communication
between the main processor and the coproces-
sor, reducing the number of orders, but without
increasing instruction width.

Let’s see what the implications of each of the above
points are. Since we are interested in working at
the level of operations, the reconfigurable architec-
ture can be organized like a datapath, where informa-
tion has a directional flow, from registers that con-
tain operators to other intermediates, and finally to
the ones that will hold the result, being processed as
it travels from one register to another. This schema
doesn’t need the amount of generality that normal
FPGAs provide, and that have a great impact in the
density, speed and cost of such devices. For example,
as a result of this directional approach a much simpler
interconnection architecture is needed.
Flexibility can be easily provided by splitting opera-
tions into stages, so each operation can use as many
as are necessary. Even at each stage new operands
could be incorporated to the partial result sent by the
previous one.
Pipelining comes as a natural extension to the above
point. Since operations are splitted into stages, the
termination of each one can consist in a set of reg-
isters, so every stage is independent from previous
one. Pipelining is the normal solution to increase the
throughput of the system with a low additional cost,
so instead of letting the user design in a pipelined
fashion, RED is itself a pipeline.
Another extension provided by RED is dynamic re-
configuration. It’s achieved through the use of sev-
eral contexts, that hold the configuration bits for ev-
ery stage in the datapath. Context-switching mecha-
nism was first introduced by [DeH96] in its DPGA
(Dynamically Programmable Gate Array). DPGA
had several memory layers, each containing the pro-
gramming bits for a different configuration (one ac-
tive at a time), that made possible to change function-
ality of the circuit in a single cycle, by just choos-
ing a different context. Applied to RED, every stage
of the pipeline has its own set of contexts, so each
one holds a certain part of one operator, thus having
as many complete operators as the number of con-
texts in the pipeline. This makes possible not only
initiating a new operation every cycle clock (since it
is a pipeline), but also switching to another context

to change the operator, thus providing some kind of
pipelined paralelism.

Top-level architecture

Figure 1 shows one possible implementation of a co-
processor with a datapath with all the above charac-
teristics. The stages, each containing a configurable
combinational part plus a set of registers to hold the
result, can be easily identified. Not all of them must
be equal. For example, the first one receives three in-
puts, while the second only the output from the first.
The third again receives two more inputs comming
from a external register file. This organization al-
lows the implementation of complex operators that
can deal with many operands in the same instruction.

PIR

PIR

PIR

config. memory

main memory

register
file

input
buffer

output
bufferpipeline

stage

configuration controller

Figure 1: RED Architecture

Pipeline Stages

Figure 2 shows the insides of one of the stages.
The combinational part is an array of programmable
purely combinational cells. The configuration bits
of these cells are stored in local memory planes
(contexts), each providing a different functionality.
The contexts are connected to combinational logic
through some kind of multiplexor, so it is possible
to switch between them just modifying the value of
a control signal. As everything is combinational in-
side the programmable array, the switching can take
place from one cycle to another. This gives the stage
the possibility of performing a different computation
at each cycle clock. Of course, only between those
stored in the contexts.



LUT

data

carry

carry

data

LUT

data

carry

carry

data

LUT

data

carry

carry

data

switching contexts

register
bank

output
buffer

previous stage

pipeline registers

Figure 2: Pipeline Stage

The combinational array receives several inputs that
come from previous stages and from the local data
cache. The inputs are then processed depending on
the active context, and delivered to the output, which
is the sequential part of the stage. This mechanism
allows the implementation of operations with more
than one operand, taking more than one clock cycle
(one per stage), but in just one instruction.
The secuential block is composed by a battery of reg-
isters. They hold the output generated by the com-
binational plane, and isolate the stage from the next
one. The secuential block it’s not reconfigurable.

Local Storage

To reduce memory overhead, RED has been provided
with a register file and a input buffer. The input buffer
will hold data temporally until the target register from
the register file is empty. If the register file is large
enough it will store data that is accessed more than
once, saving some CPU cycles and avoiding unnec-
essary memory accesses, that are normally the bot-
tleneck of the system. In the same way, there’s an
output buffer that stores the data that is not going to
be reused, while the bus or the CPU is busy to send it
back to memory.

Configuration Controller

The configuration controller is the responsible for se-
quencing the instructions into the pipeline. Instruc-
tions are extracted from a configuration memory (lo-
cal to RED) and stored into PIRs (pipeline instruction
registers). Every instruction holds the context num-
ber of the operator to execute and the registers that
will be used as operators. The contents of the PIRs
are shifted down to the pipeline as the execution goes
own so each stage has access to the whole instruction.

4. RED execution

Now that the architecture of the datapath has been
described, let’s see how it works. RED can hold as

many operations as the number of different contexts.
These operations must be designed in a pipelined
fashion, and can have a variable number of stages.
The combinational part of the stage will be trans-
lated into a configuration context, that will program
the combinational array to perform the corresponding
part of the operation and will route the result to the
sequential block of the stage. For every stage, then,
each context will hold one part of an operation an the
routing to store the result.
Let’s suppose that just before the application starts
we will have preloaded all the contexts for all the
stages. Stage 1 could then start executing the first part
of operationA. At the next clock cycle, operationA
will continue its execution, this time, at stage number
2, taking the result from stage 1 and having the pos-
sibility to add new operands. Meanwhile, at stage 1
we have 2 possibilities. We could start another copy
of operationA again, this time with new operands,
or we could switch to a different context and perform
the first stage of a different operation,B.
Summarizing, it’s not only possible to start the exe-
cution of a new operation each clock cycle, but even
the operation doesn’t have to be the same. This way
it’s possible to have in the pipe more than one dif-
ferent operation executing simultaneously, although
each one would be in a different stage of execution.
One additional feature of RED is its ability to chain
operations. A group of operations can be combined
into a single RED instruction. However all RED in-
structions are dataflow ones, since its just a datapath.
Everything related to control is done by the main pro-
cessor. What we gain through chained operations is
to reduce the number of interactions between RED
and the main processor for a single (but complex)
task. This has an important consequence, since RED
and the processor must be synchronized to guaran-
tee the validity of the program being executed, it’s
only possible to chain operations that are kept into
the same basic block of the program (see section 4).
It isn’t correct to create instructions with operations
that belong to different control branches of the pro-
gram.

5. Compiling for RED

RED architecture was conceived to be easily inte-
grable into FLECOS methodology [MMDL00]. In
fact, FLECOS isn’t only a design methodology, but
also a set of tools to develop complex heterogeneous
systems. It’s main goal is reduce the productivity
gap that exists nowadays when designing such kind
of systems. To achieve it, specification, architecture
and optimization criteria must be clearly separated 3,
thus maximizing reuse in all these three aspects, and
allowing groups working on each of them to perform
in parallel. These three items converge in a compiler,



that will generate the code corresponding to the spec-
ification, for a certain architecture and with the opti-
mization criteria that has been fixed for the design.

Compile

Behavior
Ar

ch
ite

ct
ur

e

Design Criteria

Refine
Refine

Refine

Figure 3: FLECOS

The integration of RED into FLECOS is almost im-
mediate. Part of the work must be done at the archi-
tecture side, since it’s neccesary to define the machine
description (the description of its architecture) for the
datapath. Also, the set of operators that RED will be
able to provide to a certain kind of application, must
be implemented by a hardware designer.
Next, the compiler must be slightly adapted. Since
not all operators used by an application can be stored
in RED (it will depend on the number of contexts) , it
must be decided a mechanism to select only those that
are really interesting, probably based on a profiling
of the application and an estimation of the data traffic
between RED and the main processor.
The compiler could be also modified to detect auto-
matically from the specification which are the oper-
ations that can be executed by RED. Otherwise they
will have to be indicated explicitly by the specifica-
tion designer in the form of system calls.
In important characteristic of RED is the possibil-
ity of chaining the execution of several operations
in the datapath into just one instruction. Compilers
normally divide the code to compile into what they
are called basic blocks. A basic block is just a set
of instructions that are always executed sequentially,
since they don’t contain jumps. It’s possible, there-
fore, to determine at compile-time which is going to
be the sequence of operations to be executed by RED
in each one of the basic blocks. So this sequence can
be coded into a single instruction for the coprocessor,
which has mainly three advantages:

• The main processor doesn’t have to keep watch-
ing RED constantly, but only send junst one in-

struction per basic block.

• It’s not necessary to provide any synchroniza-
tion mechanism at run-time between the proces-
sor and RED, because although the latter will
execute its own program in parallel, sychroniza-
tion was resolved at compile-time.

• Instructions are custom generated for each ba-
sic block, but always using the same set of op-
erators, previously stores in RED contexts. In
other kind of architectures, accelerating each ba-
sic block would mean designing a custom circuit
for each of them, and therefore having to reload
each one at run-time.

6. Conclusions

A novel reconfigurable architecture for high-
performance embedded systems has been outlined. It
provides a good degree of flexibility, since it’s possi-
ble to design complex specialized operators.
The cost of a system on chip based on this archi-
tecture could be similar to those implementing an
FPGA. RED uses several memory contexts, however
it’s less general and has a much simpler interconnec-
tion architecture than normal FPGAs, which is an im-
portant percentage of the final cost. Finally, although
it must be tested, the degree of utilization of the re-
configurable hardware can be very high, because of
pipelining and the use of several contexts.
RED architecture is currently being prototyped, and
will be soon integrated into FLECOS evironment.

*

References

[Dav01] Henry Davis. Conventional dsp or con-
figurable microcontroller: which way to
go? EDN Europe, pages 26–32, january
2001.

[DeH96] Andre DeHon. Reconfigurable Archi-
tectures for General Purpose Comput-
ing. PhD thesis, MIT, 545 Technology
Sq., Cambridge MA 02139, September
1996.

[dsp98] Dsp directory (16-bit). advanced risc
machines. piccolo. EDN Magazine [on
line], September 1998.

[exc00] Excalibur backgrounder. Altera white
paper, june 2000.

[GSM+99] S. C. Goldstein, H. Schmit, M. Moe,
M. Budiu, S. Cadambi, R. Reed Taylor,
and R. Laufer. Piperench: a coprocessor
for streaming multimedia acceleration.
ISCA, 1999.



[HFHK97] S. Hauck, T. W. Fry, M. M. Hosler,
and J. P. Kao. The chimaera reconfig-
urable functional unit.IEEE Symposium
on FPGAs for Custom Computing Ma-
chines, pages 87–96, 1997.

[HW97] R. Hauser and J. Wawrzynek. Garp: A
mips processor with a reconfigurable
coprocessor.Proceedings of the IEEE
Symposium on Field-Programmable
Custom Computing Machines (FCCM),
April 1997.

[MMDL00] J.M. Moya, F. Moya, S. Domnguez,
and J.C. Lpez. Multi-language speci-
fication of heterogeneous systems.Fo-
rum on Design Languages (FDL’2000),
September 2000.


