
— 486 —

— 486 —

A Hardware-Software Operating System:
Using Heterogeneous Resources through Common

Abstractions
José M. Moya∗, Francisco Moya†, Fernando Rincón†, Juan Carlos López†

∗E.T.S.I. de Telecomunicación
Technical University of Madrid

Email: josem@die.upm.es
†Escuela Superior de Informática
University of Castilla–La Mancha

Email: {Francisco.Moya,Fernando.Rincon,JuanCarlos.Lopez}@uclm.es

Abstract— Current embedded systems are made of multiple het-
erogeneous devices interconnected. These devices present a great
variation of functionality, performance, and interfaces. Therefore, it
is difficult to build applications for these platforms.

In this paper we present the notion of hardware-software operating
systems to increase the abstraction level and to introduce component-
based methodologies into hardware-software codesign. We make
special emphasis on the use of simple, homogeneous interfaces to
hide the inherent complexity of current designs.

We show, with a detailed example, that the use of a hardware-
software operating system does not imply a significant overhead.

I. INTRODUCTION

As complexity increases, designing embedded systems is
becoming too hard. A typical embedded system consist of
an heterogeneous network with many different devices. These
devices usually have very different interfaces (analog subsys-
tems, microprocessors, field programmable devices, ASICs,
etc.). The technology of the links between the devices can also
be quite different, ranging from real-time network interfaces
to dedicated buses.

The difficulties in developing applications for this kind of
environments come from some limitations of current design
methodologies. First, heterogeneity is handled with hetero-
geneity. We need different tool chains and different skills
to design analog subsystems, microprocessor-based systems,
digital signal processing units, etc.; also, complex hardware
blocks usually provide equally complex interfaces. Second,
the control of the application and the use of resources tend
to be too centralized. A memory block is only used from
its subsystem; common hardware-software partitioning tech-
niques isolate the different subsystems and do not allow to
share resources.

IP-based design strategies promise a significant reduction of
the design time, but they do not solve the above problems. In
fact, the integration of different IP blocks is becoming the key
problem. This confirms that heterogeneity is bad and should
be eliminated.

We are working on a complete design system to overcome
all these limitations. Our main requirements are:

1) We are looking for a way to design really complex,
distributed, hardware-software embedded systems, fast
enough to satisfy the market demand.
We want to be able to describe the system components
at a very high level of abstraction, but we also want
to be able to access to low-level implementation details
when we need to. Thus, we have to support multiple
abstraction levels at the same time.

2) The design environment should maximize reuse oppor-
tunities. We have to provide means to help the designer
to reuse components from previous designs. We want
to provide a component model with homogeneous inter-
faces so that any component in a design can be replaced
easily.
Also, to simplify the hard work of designing for reuse,
the interfaces should be kept as simple as possible.

3) The overhead introduced by the higher abstraction level
should be minimum.

To the best of our knowledge, no design system meets these
requirements. Therefore, we are working on FLECOS [4] to
build such a system. Its design relies heavily on simplicity and
flexibility, as we show below.

In this paper we concentrate on the “operating system layer”
of our design system, which is probably the part that best
contributes to fulfill the requirements above.

In the next section, we give an overview of the FLECOS
Operating System and how complexity can be reduced offering
simple, uniform interfaces. In section III, we further describe
some details of the implementation, illustrated with a detailed
example, and we show some preliminary results. In section IV,
we review some previous works that have influenced the de-
sign of FLECOS and its operating system. Finally, we briefly
discuss some conclusions and propose future developments in
section V and VI.

II. A UNIFIED APPROACH TO HW-SW CODESIGN

One of the reasons why component-based software is so
popular, is that we do not need to learn a million of interfaces

— 487 —
DCIS 2003



— 487 —
DCIS 2003

to potentially use a million of devices. As long as your
components adhere to a flexible, well-defined interface, they
can be used in your system. Document models, such as OLE,
DOM, or Bonobo, are examples of the power of this approach.

We want to apply a similar approach to the design of
complex heterogeneous systems. Thus, we need to define what
a component will be, how to define new components, and how
to use these components to make a whole embedded system.

A first, intuitive, idea would be that a component is an
abstraction of the resources it contains. This leads us to
the definition of what we call hardware-software operating
systems.

A. Hardware-Software Operating System

An operating system is, as given by Tanenbaum [10],
“the software that securely abstracts and multiplexes physical
resources”. This abstraction plays a key role because

• it makes it easier and faster to design new applications,
• it keeps the application specification independent of the

available resources,
• and it increases reuse opportunities.

All these characteristics clearly help us to fulfill the require-
ments given in section I.

Thus, we have slightly relaxed the definition so that it can
be useful for hardware-software systems:

A hardware-software operating system is something that
securely abstracts and multiplexes physical resources.

Those abstractions provided by the operating system will
be used from the application through a well-defined interface.
Therefore, we have to define this interface.

As we have seen before, we want to see an embedded
system as a set of components, that can be modified or
replaced freely. Each component is a set of resources (hard-
ware, software, or a mixture) that implements the interface
defined by the operating system. For example, in a Unix
system, devices, sockets, directories, and regular files, are very
different, but they all are files because they implement the file
interface (open, read, write, close). Similarly, we want to use
analog devices, ASICs, and software components through a
common interface.

Usually, an operating system also provides some services,
such as multiprocessing support, interprocess communication,
memory management, etc. However, we do not want to pay
for unused services. Thus, our hardware-software operating
system does not provide any service itself. It only exports the
available resources so that any required service can be imple-
mented on top. This is similar to some modern microkernels,
such as the exokernel [3], or Off++ [1].

B. The Box Interface

Basically, our prototype hardware-software operating sys-
tem follows the model of the Off++ microkernel [1]. It only
provides one abstraction for all the resources: the box. Every-
thing is a box for the operating system: an analog filter, an A/D
converter, a compression algorithm, a hardware multiplier, etc.

The whole system can be seen as a box that contains other
boxes.

A box can be formally defined as a set of resources
(hardware and/or software) implementing the box interface.
A box has one input and one output1, and the interface is
composed of only three simple operations:
copy Copies data from the output of the source box to the

input of the destination box.
selectAllows to access other boxes inside a box. The

system is a hierarchical composition of boxes, rep-
resenting different levels of detail. And the designer
can always access to the system functionality at the
required level, by going deeper into the hierarchy.

bind Inserts a box into another box attaching a new name
to it. This operation allows to dynamically compose
complex boxes based on simpler existent ones.

The box, as defined above, is just a set of requirements
for every component in the system, but it leaves some details
unspecified. Specifically, to be able to instantiate a real box
in the system, the designer has to define the characteristics
of the communication channels: the physical link, the signal
types, and the communication protocols. This is similar to the
C++ template mechanism. The box interface is like a C++
template: it is not a real type and we can not instantiate “pure
boxes”. But we can instantiate concrete boxes, with clearly
defined input and output parameters.

Depending on the specific parameters of each box, we get
different types of boxes. For copy to work properly, we
need similar parameters in both boxes, both types should
be compatible. The result is a strict hardware-software type
system, with static type checking, and no extra overhead for
hardware boxes.

The copy operation: For software boxes, a copy operation

copy (src, dest);

is translated into one or more data transfer instructions. The
only requirement for two software boxes to be compatible for
copy, is that there should be an agreement on the data size
and type to be transferred.

But, what does copy mean for hardware boxes?
First, there is a data transfer from the output of the source

box and the input of the destination box. Thus, there should be
a link between both interconnection points, and there should
be an agreement on the data types and the protocols. It may
be needed to add some interconnection resources, such as
analog and digital multiplexers, or buses, because there may be
other copy operations using the same boxes within the system
specification.

Second, the copy operation occurs at a time; it means “at
this moment the input of the destination box has the same data
as the output of the source box”. Thus, it may be required to

1In Off++ there is a single input/output channel, which is more like a real
box, but we have decided to clearly separate input and output to allow more
flexible and efficient compositions. You can always connect both input and
output to a single bus to resemble the real Off++ behavior.

— 488 —



— 488 —

add some storage resources to the input of the destination box
to satisfy the copy semantics.

When the control unit issues a copy operation, the link
should be activated (probably activating some control lines of
a multiplexer), and the destination box should acquire the data.
This justifies the need of a new control signal copy(src,dest).

A copy operation between a hardware box and a software
box is not possible, because the technology of the links is
not the same. However, we can create a new box containing
the software box, and including a hardware interface which is
compatible with the hardware box. This is what we call type
converters and we shall describe them in more detail below.

Copy-compatibility is not reflexive.
The select operation: A select operation

src->select (name);

returns a inner box of the source box, based on the specified
selector. The selector type and size are characteristics of the
source box type. There may be multiple selector types.

But, what does select mean in hardware boxes?
A hardware select is similar to a share operation with

an internal selected box. The selector chooses between the
possible selectable boxes and connects its input and output
ports just like a share operation.

Of course, a box may have boxes of different types, with
communication points of different and incompatible technolo-
gies. Thus, we need an internal selected box for every possible
technology of the selectable boxes (i. e. analog and digital
boxes). Note however that an 8-bit data bus may be connected
to a 16-bit bus.

When the control unit issues a select operation, the links
should be activated (probably activating some control lines of
a multiplexer). This justifies the need of a new control signal
select(src,selector).

It is important to note that no additional hardware is required
if select is not used. And, usually, we only use select for a
few boxes in the system. Thus, the required hardware may be
drastically reduced.

The bind operation: A bind operation

dest->bind (src, name);

makes the source box available from the destination box with
the specified name. A box can be seen as a namespace and
the bind operation creates or modifies the meaning of a
name in that namespace. The new name can be used for other
operations to refer to the original source box.

But, what does bind mean in hardware boxes?
First, there is no need to duplicate resources. A single box

is connected to both inputs and both outputs. Of course, the
technology of both communication points should be compati-
ble.

Second, a bind operation starts at a time and lasts until
another bind operation with a different source is issued by the
control unit. It means “from now on, the input of the new box
is the same point as the input of the source box, and the output
of the new box is the same point as the output of the source

box”. Thus, it may be needed to add some interconnection
resources, because there may be other bind operations with
the same destination name.

When the control unit issues a bind operation, the links
should be activated (probably activating some control lines of
a multiplexer). This justifies the need of a new control signal
dest-¿bind(src,name).

A bind operation between a hardware box and a software
box is not possible because of similar reasons to the copy
operation, but we can use type-converters to achieve an
equivalent behavior, as shown below.

Unlike copy-compatibility, bind-compatibility is reflexive.
There is no relation between copy-compatibility and bind-

compatibility. One does not imply the other in any case.

C. Type Conversion

We have seen that every box in the system has a specific
type, which determines the way it communicates with the
external world. These strict types and the compatibility re-
quirements of copy and bind help to catch errors early in the
design process. However, to increase reuse opportunities, there
should be a way to convert a type to another.

Therefore, we provide type converters that work as interface
adaptors. A type converter is a user-defined box, containing the
original box, but with the external interface of the destination
type.

When used from an object oriented programming language,
such as C++, we can use the implicit type conversion mecha-
nism of the language to hide these details from the designer’s
point of view.

D. Using a HW-SW Operating System

The hardware-software operating system that we have de-
scribed consists basically in three system calls (copy, bind, and
select), that should be implemented for every contrete type of
boxes (hardware or software).

In the system specification there nothing new with respect
to a software-only operating system. Hardware resources are
used through the system calls of the box interface. The low-
level synthesis tools should generate the appropriate signals.

Section III-D gives some ideas on how we integrate the
hardware-software operating system in out FLECOS design
system.

III. AN EXAMPLE

As an example of the use of our hardware-software oper-
ating system, consider the system depicted in figure 1. It is
an audio transmission system which uses MPEG-1 Layer 1 to
encode the audio signal.

The figure shows that a box may be decomposed hierar-
chically into smaller boxes. This divide-and-conquer approach
can be very effective to reduce the complexity of the problem,
while maintaining a high level of abstraction.

— 489 —



— 489 —

A/DC

DAC

MPEG

encoder

MPEG

decoder

comm.

channel

audio in

Fig. 1: MPEG audio encoder/decoder.

A. Architecture Overview

The system contains five high-level boxes:
audio inputGets audio data from a microphone, and converts it

into the required format for the next boxes.
mpeg encoderEncodes the audio stream into MPEG layer 1, for

transmission.
communication channelA communication channel can be also modeled as a

box, in a similar spirit to SystemC or SpecC.
Note however that it can also be considered as a
type converter, because it may be seen as an interface
adaptor.

mpeg decoderDecodes the MPEG stream into raw audio data.
audio outputReconstructs the audio signal from the digital data.
Every box is copy-compatible with the next one.
Note that there is no sharing of resources. In real systems,

it is also very common that copy operations are much more
frequent than bind or select. This is good, because copy is the
operation with less overhead.

B. Detailed Description

To show how complex boxes can be divided into simpler
boxes, we are going to describe the audio input box in
detail. We expand this box because it contains analog and
mixed-signal devices, and it is simple enough to be described
as an example. For example, the MPEG encoder has eight
internal boxes, and one of them is also divided into six more
boxes.

The audio input box, as any other box, has an input and
an output. The input is not used, so it can be the destination
of any copy operation (every box is copy-compatible with this
one, because the input is discarded).

This box is divided into three smaller boxes: microphone,
low-pass filter, and analog-to-digital converter.

The microphone is also modeled as a box that discards the
input. The type of the microphone box output is a continuous
analog signal. Therefore, it can only be copied to boxes with
an analog input with similar physical attributes (two wire
interface , matched input impedance) and compatible signal

attributes (dynamic range, bandwidth). The only supported
protocol for this box is a simple continuous data transfer.

The analog input filter is also a box whose input and output
share similar attributes. The type of the input and output data
is an analog signal with a physical interface consisting of two
wires, and the only supported protocol is a continuous data
transfer. Those properties make this box a suitable destination
for copy operations from the microphone box. Therefore, data
can be directly fed from the microphone output to the filter
input.

The conditioned audio signal at the output of the analog
filter must be converted into a digital bitstream using an A/D
converter, which is another box. The input is again an analog
signal, but in this case we are not interested in the variation of
the signal, but in the value of the signal at the moment of the
copy operation. Thus, we need a sample-and-hold to remember
the value during the conversion process. The output is a 16-bit
digital bus, with a control line to indicate when the output is
valid.

We should also implement the copy operation for every link
(micro-filter, filter-ADC, ADC-encoder).

C. Putting It All Together

When we have implemented all the boxes and the opera-
tions, we need to describe the behavior of the whole system.
In our case, it would be basically a program like this one:

while (1) {
copy (in, audio_input); // discarded
copy (audio_input, mpeg_encoder);
copy (mpeg_encoder,

communication_channel);
copy (communication_channel,

mpeg_decoder);
copy (mpeg_decoder, audio_output);

}

Of course, all those copy operations are implemented using
the copy operations of the inner boxes. For example, copying
from the audio input box would be implemented with a
program like this:

copy (audio_input, dest)
{
while (1) {
copy (in, micro); // discarded
copy (micro, filter);
copy (filter, adc);
copy (adc, dest);

}
}

D. HW-SW Cosynthesis

This paper concentrates on the hardware-software operating
system and how it helps to reduce the overall complexity. To
better understand how this fits into a complete cosynthesis
system, see [8] and the FLECOS web page [4].

— 490 —



— 490 —

Behavior

machine
description

optimization
script & modulesHW−SW compiler

gcc−based

asm
demultiplexer

Subsystem assemblers

Fig. 2: Overview of the FLECOS design system

Basically, the FLECOS system uses a GCC-based hardware-
software compiler to map the behavior specification into the
available resources, taking into account the constrains and
design criteria. Figure 2 depicts this process. The compiler
generates assembler instructions and system calls for each
of the subsystems. The low-level synthesis tools for each
subsystem are responsible of mapping the system calls into
hardware and/or software resources.

There are multiple implementation schemes to introduce a
hardware-software operating system in a design flow, this is
just one of them. Another possibility would be a library-based
preprocessor phase as presented in [7].

IV. RELATED WORK

Traditionally, the notion of operating systems have been
associated to the management of dynamic resources. Some
researchers coined the term hardware operating system [2],
[6] to refer to partitioning methodologies focused on the
exploitation of dynamic reconfiguration capabilities of some
field-programmable devices.

However, the most important aspect of an operating system,
as given by any definition, is that it abstracts and multiplexes
the resources, and this abstraction simplifies the development
of new applications. This is true even for hardware systems
with only static and very restricted resources. To the best of
our knowledge, these properties of the operating systems have
never been used before to offer a unified and homogeneous
view of a complete heterogenous system.

Our hardware-software operating system has some simi-
larities with the SpecC methodology [5], and the multiple
abstraction levels of SystemC [9]. However, our approach is
not language-dependent, we make special emphasis in the
definition of common interfaces for heterogeneous devices,
and we use the same abstractions as a software operating
system.

The idea of a very simple operating system to abstract the
available resources comes from modern, lightweight microker-
nels, such as the exokernel [3], from MIT, and Off++ [1].

V. CONCLUSIONS

We have proposed a powerful yet simple interface, borrowed
from the Off++ distributed microkernel, as the foundation of a
flexible way to introduce component-based methodologies into
hardware-software codesign. We make special emphasis on the
use of simple, homogeneous interfaces (the box interface) to
hide the inherent complexity of current designs.

The main benefits of this approach are:
1) Faster and easier design of complex, distributed,

hardware-software embedded systems, with simple and
homogeneous interfaces.

2) More reuse opportunities and easier reuse, thanks to a
common interface and the type conversion mechanism.

3) The overhead introduced by the higher abstraction level
can be really low.

Thus, the design of complex embedded systems can be
greatly improved with the use of hardware-software operating
systems.

VI. FUTURE WORK

Off++ is also a distributed adaptable microkernel. It does not
consider only the resources in a single node, it exports all the
resources in the network. This gives multiple opportunities for
resource sharing, fault tolerance, etc. We want to apply these
ideas also for hardware-software systems.

We also want to implement common abstractions, such
as multiple execution contexts, shared memory, and message
passing, on top of the hardware-software box interface.

REFERENCES

[1] Francisco J. Ballesteros, Fabio Kon, and Roy H. Campbell. A Detailed
Description of Off++, a Distributed Adaptable Microkernel. Tech-
nical Report UIUCDCS-R-97-2035, University of Illinois at Urbana-
Champaign, August 1997.

[2] G. Brebner. A virtual hardware operating system for the xilinx
xc6200. In R. W. Hartenstein and M. Glesner, editors, 6th International
Workshop on Field-Programmable Logic and Applications (FPL), Field-
Programmable Logic: Smart Applications, New Paradigms and Compil-
ers, pages 156–165, Berlin, September 1996. Springer-Verlag.

[3] Dawson R. Engler, M. Frans Kaashoek, and James W. O’Toole. Ex-
okernel: An operating system architecture for application-level resource
management. In Proc. of the 15th Symposium on Operating System
Principles (SOSP), 1995.

[4] FLECOS web site. [on-line]. Available from WWW: http://arco.-
inf-cr.uclm.es/flecos.html.

[5] Daniel D. Gajski, Rainer Dömer, and Jianwen Zhu. IP-centric method-
ology and design with the SpecC language. Technical report, University
of California, Irvine, 1999.

[6] P. Merino, J.C. López, and M. Jacome. A Hardware Operating System
for Dynamic Reconfiguration of FPGAs. In Proc. 8th International
Workshop on Field Programmable Logic and Applications (FPL’98),
August 1998.

[7] José M. Moya, Santiago Domı́nguez, Francisco Moya, and Juan Carlos
López. A Flexible Specification Framework for Hardware-Software
Codesign. In Design Automation and Test in Europe, 2000.

[8] José M. Moya, Francisco Moya, Santiago Domı́nguez, and Juan Carlos
López. Multi-Language Specification of Heterogeneous Systems. In
Forum on Design Languages, 2000.

[9] Open SystemC Initiative. [on-line]. Available from WWW:
http://www.systemc.org/.

[10] Andrew S. Tanenbaum. Operating Systems: Design and Implementation.
Prentice-Hall, 1987.

— 491 —


