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Abstract
In this paper we show an alternative imple-
mentation of object oriented middlewares ori-
ented towards extremely low cost devices. We
prove the validity of our approach with two
prototypes supporting basic interoperability
with CORBA and ICE. The resulting proto-
types are two orders of magnitude smaller than
any other previous implementation of small
objects.

We believe that ultra-low cost interoperabil-
ity with standard middlewares will be a major
enabler of ambient intelligence by allowing af-
fordable pervasive computing environments.

1 Introduction
A useful ubiquitous computing environment

must be able to perceive stimuli from the phys-
ical world and react on them. This reactive be-
haviour includes the ability to alter the phys-
ical environment. The perceived value of an
ubiquitous system is mainly due to its abil-
ity to create and to support end-user services,
based on information from the environment.

In this paper we face the problem of de-
veloping effective communication mechanisms
among a large set of heterogeneous devices.
We are mainly concerned with the implemen-
tation of minimum cost devices able to sup-
port the large variety of device and network
technologies currently deployed in the tar-
get environments. Besides, we also intend to

make them interoperable with traditional dis-
tributed software platforms.

Our approach departs from many previous
heterogenous device network architectures by
requiring every device to be autonomous. We
believe this is the easiest way to achieve better
robustness, reliability and fault tolerance at a
minimum cost. Intermediate elements such as
residential gateways as advocated by OSGi [5]
should be avoided in many applications. It
should be possible to implement autonomous
services whose correct operation does not de-
pend on the correct operation of the residen-
tial gateway. Of course, this has nothing to
do with allowing remote management of net-
worked devices from the residential gateway.

Therefore our main goal is to allow any de-
vice to publish their capabilities as if they were
standard distributed objects. These objects
should be able to hide the heterogeneity of un-
derlying technologies.

The seamless communication of heteroge-
neous distributed components is usually ap-
proached in software environments by using
a unifying element, the communication mid-
dleware. Unfortunately, current implementa-
tions of standard object oriented middlewares
(DCOM, Java RMI, Jini, EJB, CORBA, Web
Services, .NET Remoting, ZeroC ICE, etc.)
require too much computing resources for our
target devices.



2 Related work
Many previous initiatives have been ori-

ented towards the miniaturization of exist-
ing middlewares. Indeed, the Object Man-
agement Group [1] published the Minimum-
CORBA specification [7], a lightweight version
of its popular CORBA architecture [2]. Mini-
mumCORBA removes the most expensive fea-
tures of the communication engine keeping a
good degree of interoperability with standard
CORBA objects.

As stated in [16] there are three main ap-
proaches to the minimization of distributed
object implementations: 1) Remove costly fea-
tures but keep genericity, 2) adapt the middle-
ware to specific devices, 3) use proxies.

The first approach is used in dynamic-
TAO [9] and its descendants: LegORB [11]
and UIC-CORBA [8]. LegORB is a modular-
ized ORB with the ability to be dynamically
configured. The monolithic library of TAO [6]
is decomposed in a set of independent func-
tional components that may be omitted from
the target application. It is reported that a
client-side CORBA application under 20 Kb
may be built on a HP Jornada 680 running
Windows CE, and a 6 Kb client may be built
on a PalmPilot running PalmOS 3.0 (see [12]).

UIC (Universally Interoperable Core) define
a component based middleware skeleton. Each
component encapsulate a small set of features
and may be dynamically loaded depending
on the running platform, device and network
used. UIC, as its name states, may be used
to implement communication engines for dif-
ferent middlewares besides CORBA, such as
Java RMI or DCOM.

A similar commercial product is
e*ORB [13], a modular communication
engine with real-time features able to run
on a HP iPAQ or a Texas Instruments
TMS320C64X DSP.

Another representative of the first approach
to the development of small communication
engines is MicroQoSCORBA [10]. A cus-
tomized communication engine may be gener-
ated from a set of predefined pieces in order to
implement servers and clients suited to a spe-
cific application and device (it has been tested

on SaJe [23] and TINI [22]).

nORB [14] implements a set of plug-
gable transport protocols, including some
environment-specific protocols (ESIOP in
CORBA terminology). It borrows many ideas
from MicroQoSCORBA, such as the simplified
version of the GIOP standard protocol, called
GIOPLite.

A representative of the second approach to
the development of small footprint middle-
wares is TINIORB [17], a MinimumCORBA
communication engine customized for the
TINI device from Dallas Semiconductor. Pal-
mORB [18] is another example of this ap-
proach.

The third alternative requires a mediating
host to allow interoperability with objects in
a standard middleware. This is the approach
used in UORB [16] and one of the integration
alternatives proposed in SENDA [20].

Another interesting proposal of the same
type is [21]. This work shows how a set of
small 8 bit microcontrollers may be published
as a set of CORBA objects. The host runs
a proxy object for each connected device and
communications between each device and a
the mediating host use a specialized protocol.

All these previous works follow the same ba-
sic rules: Remove dynamic invocation and dy-
namic instantiation features, simplify the in-
terface definition language (OMG IDL in the
case of CORBA) removing complex or variable
length data types, remove some fields from the
communication protocol, remove or simplify
the types of messages used in the protocol, do
not support indirect references, do not support
common services, modularize the communica-
tion engine and instantiate only those compo-
nents that are actually used.

It should be noted that the above men-
tioned communication engines require a lot of
support utilities: data type marshalling, com-
munication primitives, operating system, etc.
Therefore, the actual resource requirements
may be orders of magnitude larger than cited.

Even the smallest of the previous dis-
tributed object implementations is much
larger than feasible on our target environment.
Requiring a TINI (around 30 euro) for each



device in the ubiquitous system would lead to
astronomical prices for useful systems. Just
thinking of a RMI-enabled Java virtual ma-
chine for each bulb or switch in a building is
reserved to millionaires.

We need something much smaller, self-
contained, and specially much cheaper, but
with a similar set of features.

3 The smallest object
Instead of reducing the features provided

by the middleware even more, let’s think the
other way. We will define the smallest imple-
mentation of a distributed object. From that
point we will consider the overhead introduced
for each additional feature when the applica-
tion constraints allow them.

From the perspective of the ubiquitous sys-
tem it is important that each device looks
like a distributed object. But it is not essen-
tial that they are actual distributed objects
(Elephants Don’t Play Chess)1. If devices are
able to generate coherent replies when they
receive predefined request messages then the
system will work as expected. For a given
communication middleware these request an
reply messages are completely specified by the
communication protocol (GIOP in the case of
CORBA).

If the device is just an application-specific
GIOP server it will be seen as a normal ob-
ject from the rest of the network but there is a
huge advantage for resource savings. The ob-
ject may get rid of the whole communication
engine and its API. There is no need for object
adapters, marshalling routines, etc. We just
need to implement the message handling code
for those messages whose destination is an ob-
ject placed at the device. Therefore we pro-
pose a generated ad-hoc implementation for
each device.

In this paper we proposed PicoObjects as
a materialization of the above implementation
strategy. In summary PicoObjects provide a
toolset for the automated generation of code
able to replace a standard communication en-
gine in low-end computing resources.

Code generation must be performed with

1In reference to the Brooks’s famous paper.

careful consideration of the constraints im-
posed by the target platform. Generated code
is obviously different for each platform but it
will also differ for servers with a different set
of objects, even when the platform and the in-
terfaces of the objects are the same.

It is worth to note that a server implemented
using this technique will only reply to mes-
sages directed to its resident objects. Mes-
sages handled by the communication middle-
ware (such as object location in CORBA) will
be silently discarded. It is always possible to
include these messages as the methods of a
special object if needed.

A communication middleware will usually
expose two different interfaces to access every
service in the system: At a programming level
it provides a standardized application pro-
gramming interface. It abstracts communica-
tion details, protocols, etc. At a network level
it provides a common protocol (GIOP in the
case of CORBA) allowing seamless communi-
cation among communication engines running
on different machines.

A picoObject lacks a local communication
engine. The server program must include
code to perform communication primitives
and manage its registered objects. Nonethe-
less for the rest of the network a picoObject
behaves as an usual object. It provides a net-
work level interface without significative differ-
ences with respect to a standard object. We
may say that a picoObject implements a vir-
tual communication engine.

Although it is already implicit in the con-
text, it is worthy to note that a picoObject im-
plement only the server-side of the communi-
cation middleware. This is consistent with the
idea of developing remote interfaces for each
device. The devices behave as small servers.

4 Functionality scaling
The main goal of picoObjects is the imple-

mentation of the essential features needed for a
device to expose a standard object behaviour
in the network. From this point we intend
to define and develop mechanisms to scale the
functionality of the device depending on the
constraints imposed by the target platform.



Our initial targets range from an eight bit mi-
crocontroller to a standard PC.

Although the proposed model allows an im-
plementation at almost any conceivable scale,
our main targets were the smallest available
computing devices. It may be argued that gen-
erating the message handling code for a whole
communication middleware do not offer any
particular advantage over a stantard middle-
ware. Even in this case there may be con-
straints in the target system that make our
approach more advisable (reliability, real-time
constraints, security, etc.).

We define the minimum set of features using
the considerations of section 2, adding a few
additional constraints:

• We always follow the standard message for-
mat for the communication protocol. Using
modified protocols (such as GIOPLite in the
case of MicroQoSCORBA) implies the need
for a mediating element (bridge) responsi-
ble for the transformation of messages to
allow seamless interoperability. This would
contradict our intention to make devices in-
mediately available on the network.

• We will only support the simplest proto-
col version whenever interoperability is not
compromised.

• We will not support common middleware
services.

• Implementations will be fully static.

• Resident objects are always on. There is no
way to activate or deactivate objects.

5 A strategy for small objects
The simplest way to achieve a coherent be-

haviour for each picoObject is by means of
message matching automata. In this context,
the allowed message set for a given object con-
stitute a BNF grammar defined by the follow-
ing elements:

• Message format for the middleware commu-
nication protocol.

• Object identity, that is to say, object identi-
fiers. It should be noted that several object
identities may be backed by a single piece

of code. This technique is usually called de-
fault servant in CORBA parlance.

• Concrete interfaces or set of interfaces pro-
vided by the object. It includes name, ar-
guments and return value for each method.

• The marshalling procedure (CDR in case of
CORBA).

• Standard interfaces inherited from the com-
munication engine (CORBA::Object in case
of CORBA).

• Constraints of the target platform.

All these elements must be considered and
then we may define the set of lexical elements
(tokens): compulsory fields in each message
with a known format and size, object names,
method names, interface names.

Then we generate the rules describing how
these tokens may be combined together (the
BNF grammar). This information is enough to
automatically generate a complete functional
parser. The whole development flow is shown
in figure 1

Figure 1: Development flow of a picoObject

Every picoObject must include a set of user
procedures (object method implementations)
that must be filled by hand (as in any tra-
ditional middleware). When the grammar
parser of a PicoObject identifies a whole re-
quest message the corresponding user proce-
dure is automatically invoked and a reply mes-
sage is generated. If the parser fails to iden-
tify a valid method request then the message is
discarded and the picoObject looks for a new
syncronization point.



Input and output messages may be handled
on-the-fly using a custom byte-stream proces-
sor. This is a very convenient solution for de-
vices with severe memory constraints (just a
few hundreds of program memory words and
a dozen of general purpose registers). In this
scenario there is no room to even store the in-
coming message. The request message is pro-
cessed as the bytes arrive and the reply mes-
sage is also generated partially from replica-
tion of the incoming data. The last part of the
reply message is generated by the user proce-
dure for each method.

In order to lower the memory requirements
for token parsing we reduce them using a dig-
ital signature, a CRC code or just a check-
sum. Therefore, even when tokens may be ar-
bitrarily long, the picoObject compiler substi-
tutes it by a length and a single byte check-
sum. When the picoObject is parsing a re-
quest it may just incrementally calculate the
input message checksum and check it when the
length matches.

Actually the points in which we must check
if calculated and stored checksums match are
not the token boundaries. If we dispose all of
the implemented messages for a given object
as a tree then we must check at every bifur-
cation point in order to decide which branch
should it follow.

6 Sample prototypes
The above approach has been applied to a

pair of existing middlewares: CORBA and Ze-
roC ICE, leading to picoCORBA and picoICE
respectively. The constraints imposed by each
particular middleware lead to slightly different
design decisions. As illustration of the appli-
cability of this work we will summarize in the
following sections the features and design de-
cisions of each prototype.

7 PicoCORBA
CORBA is now a mature distributed object

architecture and a lot of effort has been de-
voted to embedded CORBA implementations.
Most of this previous work is influenced by
MinimumCORBA, a reduced footprint speci-
fication which removes complex CORBA fea-

tures keeping a good degree of interoperabil-
ity with standard CORBA. MinimumCORBA
objects are completely standard compliant and
they may also be built on full CORBA engines.

PicoCORBA goes much further with respect
to removing features. PicoCORBA objects are
not portable at all since they are usually im-
plemented using a specific assembler language.
Even if we use C or any other low level pro-
gramming language there is no enforcement of
any standard mapping since there is no need
to link against a common library.

The picoCORBA prototype is able to parse
a byte stream coming from the network and
generate a response. The transport protocol
may range from TCP over Ethernet, through
SLIP, SNAP, LonTalk, or any other reliable
transport protocol.

As described above, there are two key points
in which we should check the calculated check-
sum against the expected checksum: when
we receive the object identity and when we
must choose among the implemented meth-
ods. In order to simplify this procedure even
further, we assume that the length of the iden-
tity string (object key field) of every picoOb-
ject is exactly the same. This assumption do
not introduce interoperability problems at all.
Object identities will appear in the generated
object references and clients are required to
use it without modifications when sending re-
quests.

CORBA standard mandates the implemen-
tation of GIOP communication protocol to en-
sure interoperability across the network. Pic-
oCORBA is currenly GIOP 1.0 conformant.
This does not introduce interoperability prob-
lems with 1.1 and 1.2 middlewares, since the
CORBA standard dictates that any updated
GIOP protocol must be backwards compati-
ble. When we generate picoCORBA object
references we clearly state that picoCORBA
objects must be contacted using GIOP 1.0.

GIOP dictates that peers which initiate a
connection determine the byte order used.
With GIOP 1.0 the client is always the ini-
tiator and therefore the server is required to
adapt to the requested byte order.

PicoObjects are supposed to stay in a con-



trolled environment and therefore implement-
ing a single byte order may be acceptable. If
this simplification cannot be afforded then pic-
oCORBA objects must implement little en-
dian and big endian versions of all the mes-
sages, virtually doubling the resources needed.

CORBA::Object interface

Any CORBA object implements a standard
interface called CORBA::Object defining a set
of common methods. Fortunately some of
these methods are already handled by the re-
mote proxy or by the communication engine at
the client side. Therefore there is no need to
implement all of them as possible GIOP mes-
sages.

We identified the bare minimum set of com-
mon methods to non existent and is a. The
former allows the client to know whether the
object is willing to answer requests. The latter
offers minimal introspection capabilities. Both
of them are implicitly implemented in every
generated picoObject even when no explicitly
stated.

GIOP messages

A few limitations apply to the set of im-
plemented messages. These are summarized
below.

Request. We ignore the contents of the
fields service context which encapsulates en-
gine specific data and requesting principal

which is already deprecated. Experimental re-
sults show that interoperability is not com-
promised against all tested implementations of
CORBA (TAO, OmniORB, MICO, JacORB,
JDK1.4, ORBit2).

Reply. Fields service context which encap-
sulates engine specific data and request id

which matches requests and replies are di-
rectly copied from the request message. Field
reply status always contains NO EXCEPTION

since picoCORBA does not currently support
exceptions or indirect proxies (location for-
ward).

Cancel request. We ignore this cancel re-
quest messages. This is explicitly allowed by
the CORBA specification.

Locate request. PicoCORBA do not imple-
ment this type of message. This kind of mes-

sage may be used by the client to optimize
bandwidth when using indirect proxies.

Close connection. PicoCORBA objects are
“always on”. Threfore there is no need to ever
generate these messages.

Error reporting. PicoCORBA ignores any
unhandled message. In particular it ignores
any malformed messages and error reporting
messages.

An implementation of a fully operative ser-
vant, able to handle method invocations for a
set of 64 X10 objects fits on 415 words of pro-
gram memory words of a Microchip PIC12f675
and requires less than 16 eight-bit registers.
That is two orders of magnitude smaller than
any other previous implementation of small
embedded middlewares.

8 PicoICE
ZeroC, Inc. developed a high quality dis-

tributed object framework called ICE (Inter-
net Communication Engine) built upon the
experience of CORBA but free of legacy or
bureaucracy constraints. It implements a fea-
ture set unparalleled in any other distributed
object platform (object persistence, object mi-
gration, authentication, security, replication,
deployment services, firewall gateways, etc.).
A summary of the differences between ICE
and CORBA is available at the ICE home
page [25].

Despite the current lack of support for em-
bedded platforms, ICE offers a few advantages
over CORBA to reduce resource comsumption
even further. ICE protocol is simpler than
GIOP for a number of design decisions: 1)
messages are always little endian so we do not
need to care about byte ordering, 2) there is
support for unreliable transports such as UDP
(much easier to implement in a low cost em-
bedded device), 3) there are less types of mes-
sages and some of them may not be imple-
mented without compromising interoperabil-
ity, 4) unprocessed message fields may easily
be skipped because they are usually preceded
by the field total length, 5) there are no data
alignment requirements for messages on-the-
wire.

The picoICE prototype is fully con-



formant with the ICE protocol specifica-
tion for connection-oriented transports and
connection-less transports. Any reliable or
unreliable transport protocol may be used in
combination of picoICE objects.

An implementation of a fully operative ser-
vant, able to handle method invocations for a
set of 64 X10 objects fits on 478 words of pro-
gram memory in a Microchip PIC12f675 mi-
crocontroller and needs less than 16 eight bit
registers. That is three orders of magnitude
smaller than the ZeroC ICE implementation.

Currently we support TCP and UDP trans-
ports over Ethernet or WiFi through a
Lantronix XPort device. A picoObject may
also be connected to SLIP (serial line IP) se-
rial port.

Although picoICE objects are a bit larger
than picoCORBA objects this is only due to
the extra introspection features, that may be
removed if not needed.

Ice::Object interface

As in the case of CORBA, ICE requires
that every object implement a set of common
methods. Most of them are completely equiv-
alent to the CORBA::Object interface. The
picoICE prototype supports ice ping, ice id,
ice ids and ice isA. These methods add min-
imal introspection capabilities and the ability
to remotely test the existence of an object.

9 Conclusions and future research
In this paper we propose an alternative im-

plementation of distributed objects for low
cost computing devices such as eight bit micro-
controllers. Results show that resource con-
sumption is two orders of magnitude than any
other previously published data on small mid-
dlewares implementation.

As they are currently implemented, picoOb-
jects exhibit ultra-low latency, since the reply
messages are composed on the fly while the ob-
ject is still receiving the request. This makes
them specially suitable for real-time operation
even on low bit-rate networks.

As the basic prototypes still evolve, we are
now developing high level tools to deploy a
picoObject network. We are also extending
the concept to support other middlewares.

PicoObjects are being used as major compo-
nents of SENDA, a middleware-based infras-
tructure for modeling, development, and de-
ploying of next generation home services [20].
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