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Abstract. In this paper we present a novel approach to the design of
ubiquitous computing environments based on an ultra low-cost imple-
mentation of standard distributed object middlewares suitable for net-
worked hardware and software components of the system.
We prove the feasibility of our approach with a set of prototypes support-
ing basic interoperability with CORBA and ZeroC ICE. In some cases,
the resulting embedded prototypes are two orders of magnitude smaller
than previous implementations of small objects. They are suitable for
embedding into the smallest microcontrollers in the market, or in the
tiniest embedded Java virtual machines, or even in a low-end FPGA.

1 Introduction

A useful ubiquitous computing environment must be able to perceive stimuli
from the physical world and react on them. The perceived value of an ubiq-
uitous system is mainly due to its ability to create and to support end-user
services, based on information from the environment. In this paper we face the
problem of developing effective communication mechanisms among a large set
of heterogeneous devices including, but not limited to, desktop computers, em-
bedded computers, small microcontrollers, customized FPGA devices, etc. We
are mainly concerned with the implementation of minimum cost devices able to
support the large variety of device and network technologies currently deployed
in the target environments.

Our approach departs from many previous heterogenous device network ar-
chitectures by requiring each device to be autonomous, in the sense that our
devices and basic services will work even when all available service gateways
fail. We believe this is the easiest way to achieve better robustness, reliabil-
ity and fault tolerance at a minimum cost. Intermediate elements such as the
gateways advocated by e.g. OMG Smart Transducers [3] or OSGi [6] should be
avoided in most applications. It should be possible to implement autonomous
? This research is supported by FEDER and JCCM, under Grant PBC-05-009-1, and

by Spanish Ministry of Education, under Grant TIN2005-08719



2

services whose correct operation does not depend on the correct operation of
any gateway.

Therefore our main goal is to allow embedded devices to offer their capabil-
ities as standard distributed objects. These objects should be able to hide the
heterogeneity of underlying technologies such as transport protocols and network
architecture.

The seamless communication of heterogeneous distributed components is
usually approached in software environments by using a unifying element, the
communication middleware. Unfortunately, current implementations of standard
object oriented middlewares (DCOM, Java RMI, Jini, EJB, CORBA, Web Ser-
vices, .NET Remoting, ZeroC ICE [26], etc.) require too much computing re-
sources for many of our target devices.

2 Related work

Many previous initiatives have been oriented towards the miniaturization of
existing middlewares. Indeed, the Object Management Group [1] published the
MinimumCORBA specification [8], a lightweight version of its popular CORBA
architecture [2]. MinimumCORBA removes the most expensive features of the
communication engine keeping a good degree of interoperability with standard
CORBA objects.

As stated in [17] there are three main approaches to the minimization of dis-
tributed object implementations: 1) Remove costly features but keep genericity,
2) adapt the middleware to specific devices, 3) use proxies.

The first approach is used in dynamicTAO [10] and its descendants: LegORB [12]
and UIC-CORBA [9]. LegORB is a modularized ORB with the ability to be dy-
namically configured. The monolithic library of TAO [7] is decomposed in a set
of independent functional components that may be omitted from the target ap-
plication. It is reported that a client-only CORBA application under 20 KB may
be built on a HP Jornada 680 running Windows CE, and a 6 KB client-only may
be built on a PalmPilot running PalmOS 3.0 (see [13]).

UIC (Universally Interoperable Core) define a component based middleware
skeleton. Each component encapsulate a small set of features and may be dy-
namically loaded depending on the running platform, device and network used.
UIC, as its name states, may be used to implement communication engines for
different middlewares besides CORBA, such as Java RMI or DCOM. A CORBA
static server is reported to be 35 KB on a SH3 running Windows CE.

A similar commercial product is e*ORB [14], a modular communication en-
gine with real-time features able to run on a HP iPAQ or a Texas Instruments
TMS320C64X DSP.

Another representative of the first approach to the development of small
communication engines is MicroQoSCORBA [11]. A customized communication
engine may be generated from a set of predefined pieces in order to implement
servers and clients suited to a specific application and device (it has been tested
on SaJe [24] and TINI [23]).
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nORB [15] implements a set of pluggable transport protocols, including
some environment-specific protocols (ESIOP in CORBA terminology). It bor-
rows many ideas from MicroQoSCORBA, such as the simplified version of the
GIOP standard protocol, called GIOPLite.

A representative of the second approach to the development of small foot-
print middlewares is TINIORB [18], a MinimumCORBA communication engine
customized for the TINI device from Dallas Semiconductor. PalmORB [19] is
another example of this approach.

The third alternative requires a mediating host to allow interoperability with
objects in a standard middleware. This is the approach used in UORB [17] and
one of the integration alternatives proposed in SENDA [21].

Another interesting proposal of the same type is [22]. This work shows how a
set of small 8 bit microcontrollers may be published as a set of CORBA objects.
The host runs a proxy object for each connected device and communications
between each device and a the mediating host use a specialized protocol.

All these previous works follow the same basic rules: Remove dynamic invo-
cation and dynamic instantiation features, simplify the interface definition lan-
guage (OMG IDL in the case of CORBA) removing complex or variable length
data types, remove some fields from the communication protocol, remove or
simplify the types of messages used in the protocol, do not support indirect ref-
erences, do not support common services, modularize the communication engine
and instantiate only those components that are actually used.

It should be noted that the above mentioned communication engines require
a lot of support utilities: data type marshalling, communication primitives, op-
erating system, etc. Therefore, the actual resource requirements may be orders
of magnitude larger than cited.

Even the smallest of the previous distributed object implementations is much
larger than feasible on our target environment. Requiring a TINI (around 30
euro) for each device in the ubiquitous system would lead to astronomical prices
for useful systems. Just thinking of a RMI-enabled Java virtual machine for each
bulb or switch in a building is reserved to millionaires.

We need something much smaller, self-contained, and specially much cheaper,
but with a similar set of features.

3 The smallest object

Instead of reducing the features provided by the middleware even more, let’s
think the other way. We will define the smallest implementation of a distributed
object. From that point we will consider the overhead introduced for each addi-
tional feature when the application constraints allow them.

From the perspective of the ubiquitous system it is important that each
device looks like a distributed object. But it is not essential that they are actual
distributed objects. If devices are able to generate coherent replies when they
receive predefined request messages then the system will work as expected. For a
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given communication middleware these request an reply messages are completely
specified by the communication protocol (GIOP in the case of CORBA).

If the device is just an application-specific GIOP server it will be seen as a
normal object from the rest of the network but there is a huge advantage for
resource savings. The object may get rid of the whole communication engine
and its API. There is no need for object adapters, marshalling routines, etc.
We just need to implement the message handling code for those messages whose
destination is an object placed at the device. Therefore we propose a generated
ad-hoc implementation for each device.

In this paper we proposed PicoObjects as a materialization of the above
implementation strategy. In summary PicoObjects provide a toolset for the au-
tomated generation of code able to replace a standard communication engine in
low-end computing resources.

Code generation must be performed with careful consideration of the con-
straints imposed by the target platform. Generated code is obviously different
for each platform but it will also differ for servers with a different set of objects,
even when the platform and the interfaces of the objects are the same.

It is worth to note that a server implemented using this technique will only
reply to messages directed to its resident objects. Messages handled by the com-
munication middleware (such as object location in CORBA) will be silently
discarded. It is always possible to include these messages as the methods of a
special object if needed.

A communication middleware will usually expose two different interfaces to
access every service in the system: At a programming level it provides a stan-
dardized application programming interface. It abstracts communication details,
protocols, etc. At a network level it provides a common protocol (GIOP in the
case of CORBA) allowing seamless communication among communication en-
gines running on different machines.

A picoObject lacks a local communication engine. The server program must
include code to perform communication primitives and manage its registered
objects. Nonetheless for the rest of the network a picoObject behaves as an usual
object. It provides a network level interface without significative differences with
respect to a standard object. We may say that a picoObject implements a virtual
communication engine.

Although it is already implicit in the context, it is worthy to note that a
picoObject implement only the server-side of the communication middleware.
This is consistent with the idea of developing remote interfaces for each device.
The devices behave as small servers.

4 Functionality scaling

The main goal of picoObjects is the implementation of the essential features
needed for a device to expose a standard object behaviour in the network. From
this point we intend to define and develop mechanisms to scale the functionality
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of the device depending on the constraints imposed by the target platform. Our
initial targets range from an eight bit microcontroller to a standard PC.

Although the proposed model allows an implementation at almost any con-
ceivable scale, our main targets were the smallest available computing devices.
It may be argued that generating the message handling code for a whole com-
munication middleware do not offer any particular advantage over a stantard
middleware. Even in this case there may be constraints in the target system
that make our approach more advisable (reliability, real-time constraints, secu-
rity, etc.).

We define the minimum set of features using the considerations of section 2,
adding a few additional constraints: a) On one hand we always follow the stan-
dard message format for the communication protocol. Using modified protocols
(such as GIOPLite in the case of MicroQoSCORBA) implies the need for a me-
diating element (bridge) responsible for the transformation of messages to allow
seamless interoperability. This would contradict our intention to make devices
immediately available on the network. b) We will only support the simplest pro-
tocol version whenever interoperability is not compromised. c) Resident objects
are always on. There is no way to activate or deactivate objects.

5 A strategy for small objects

The simplest way to achieve a coherent behaviour for each picoObject is by
means of message matching automata. In this context, the allowed message set
for a given object constitute a BNF grammar defined by: a) The message format
for the middleware communication protocol. b) The object identity, that is to
say, object identifiers. It should be noted that several object identities may be
backed by a single piece of code. This technique is usually called default servant
in CORBA parlance. c) Concrete interfaces or set of interfaces provided by the
object. It includes name, arguments and return value for each method. d) The
marshalling procedure (CDR in case of CORBA). e) Standard interfaces inher-
ited from the communication engine (CORBA::Object in case of CORBA). And
f) Constraints of the target platform.

We first define the set of lexical elements (tokens): compulsory fields in each
message with a known format and size, object names, method names, interface
names. Then we generate the rules describing how these tokens may be combined
together (the BNF grammar). This information is enough to automatically gen-
erate a complete functional parser. The whole development flow is shown in
figure 1.

Every picoObject must include a set of user procedures (object method im-
plementations) that must be filled by hand (as in any traditional middleware).
When the grammar parser of a PicoObject identifies a whole request message the
corresponding user procedure is automatically invoked and a reply message is
generated. If the parser fails to identify a valid method request then the message
is discarded and the picoObject looks for a new syncronization point.
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Fig. 1. Development flow of a picoObject

Input and output messages may be handled on-the-fly using a custom byte-
stream processor. This is a very convenient solution for devices with severe mem-
ory constraints (just a few hundreds of program memory words and a dozen of
general purpose registers). In this scenario there is no room to even store the
incoming message. The request message is processed as the bytes arrive and the
reply message is also generated partially from replication of the incoming data.
The last part of the reply message is generated by the user procedure for each
method.

In order to lower the memory requirements for token parsing we reduce them
using a digital signature, a CRC code or just a checksum. Therefore, even when
tokens may be arbitrarily long, the picoObject compiler substitutes it by a length
and a single byte checksum. When the picoObject is parsing a request it may just
incrementally calculate the input message checksum and check it when the length
matches. Actually we do not need to check at every token boundary whether
calculated and stored checksums match. If we arrange the set of implemented
messages for a given object as a lexical tree then we just need to check at every
forking point in order to decide the branch to follow.

Our strategy is quite different with respect to previous middleware mini-
mization approaches such as MicroQoSCORBA. MicroQoSCORBA tries coarse
grain code minimization by building a custom implementation from predefined
libraries. PicoObjects use a finer grain code minimization strategy by completely
generating the message parsing code for each application.

The above approach has been applied to a pair of existing middlewares:
CORBA and ZeroC ICE, leading to picoCORBA and picoICE respectively. The
constraints imposed by each particular middleware lead to slightly different de-
sign decisions. As illustration of the applicability of this work we will summarize
in the following sections the features and design decisions of each prototype.

Both prototypes were developed in Microchip PIC assembler, Java on a stan-
dard embedded PC, Java on an embedded Dallas Semiconductors TINI device,
C on a standard embedded PC, and VHDL on a Xilinx Virtex E FPGA.
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6 PicoCORBA

CORBA is now a mature distributed object architecture and a lot of effort
has been devoted to embedded CORBA implementations. Most of this previous
work is influenced by MinimumCORBA, a reduced footprint specification which
removes complex CORBA features keeping a good degree of interoperability with
standard CORBA. MinimumCORBA objects are completely standard compliant
and they may also be built on full CORBA engines. PicoCORBA goes much
further with respect to removing features. PicoCORBA objects are not portable
at all since they are usually implemented using a specific assembler language.
Even if we use C or any other low level programming language there is no
enforcement of any standard mapping since there is no need to link against
a common library. The picoCORBA prototype is able to parse a byte stream
coming from the network and generate a response. The transport protocol may
range from TCP over Ethernet, through SLIP, SNAP, LonTalk, or any other
reliable transport protocol.

As described above, there are two key points in which we should check the
calculated checksum against the expected checksum: when we receive the ob-
ject identity and when we must choose among the implemented methods. In
order to simplify this procedure even further, we assume that the length of the
identity string (object key field) of every picoObject is exactly the same. This
assumption do not introduce interoperability problems at all. Object identities
will appear in the generated object references and clients are required to use it
without modifications when sending requests.

CORBA standard mandates the implementation of GIOP communication
protocol to ensure interoperability across the network. PicoCORBA is currenly
GIOP 1.0 conformant. This does not introduce interoperability problems since
the CORBA standard dictates that any updated GIOP protocol must be back-
wards compatible.

GIOP dictates that peers which initiate a connection determine the byte or-
der used. With GIOP 1.0 the client is always the initiator and therefore the server
is required to adapt to the requested byte order. PicoObjects are supposed to
stay in a controlled environment and therefore implementing a single byte order
may be acceptable. If this simplification cannot be afforded then picoCORBA
objects must implement little endian and big endian versions of all the messages,
virtually doubling the resources needed.

Any CORBA object implements a standard interface called CORBA::Object
defining a set of common methods. Fortunately some of these methods are al-
ready handled by the remote proxy or by the communication engine at the client
side. Therefore there is no need to implement all of them as possible GIOP mes-
sages. We identified the bare minimum set of common methods to non existent
and is a. The former allows the client to know whether the object is willing to
answer requests. The latter offers minimal introspection capabilities. Both of
them are implicitly implemented in every generated picoObject even when no
explicitly stated.
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Embedded middleware Minimal server

TAO 1738 KB
nORB 567 KB
UIC/CORBA 35 KB
JacORB (Java) 243 KB
ZEN (Java) 53 KB
MicroQoSCORBA (TINI) 21 KB

picoCORBA (C) 7 KB
picoCORBA (Java) 5 KB
picoCORBA (TINI) 4 KB
picoCORBA (PIC12C509) 415 words

Table 1. Size of a small server on embedded middlewares

A few limitations apply to the set of implemented messages. Experimental re-
sults show that interoperability is not compromised against all tested implemen-
tations of CORBA (TAO, OmniORB, MICO, JacORB, JDK1.4, ORBit2). We
ignore the contents of the field requesting principal for every incoming mes-
sage which is already deprecated. Reply messages reproduce two fields from their
matching request messages: service context which encapsulates engine specific
data and request id which matches requests and replies. Field reply status
always contains NO EXCEPTION since picoCORBA does not currently support
exceptions or indirect proxies (location forward). We ignore cancel request mes-
sages. This is explicitly allowed by the CORBA specification. PicoCORBA does
not implement Locate request or Close connection messages. Locate requests
may be used by the client to optimize bandwidth when using indirect proxies.
PicoCORBA objects are “always on”. Therefore there is no need to ever gen-
erate Close connection messages. Finally PicoCORBA ignores any unhandled
message. In particular it ignores any malformed messages and error reporting
messages.

An implementation of a fully operative servant, able to handle method in-
vocations for a set of 64 X10 objects fits on 415 program memory words of a
Microchip PIC12f675 and requires less than 16 eight-bit registers. That is two
orders of magnitude smaller than any other previous implementation of small
embedded middlewares (see table 1).

7 PicoICE

ZeroC, Inc. developed a high quality distributed object framework called ICE
(Internet Communication Engine) built upon the experience of CORBA but free
of legacy or bureaucracy constraints. It implements a feature set unparalleled in
any other distributed object platform (object persistence, object migration, au-
thentication, security, replication, deployment services, firewall gateways, etc.).
A summary of the differences between ICE and CORBA is available at the ICE
home page [26].
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Despite the current lack of support for embedded platforms, ICE offers a
few advantages over CORBA to reduce resource comsumption even further. ICE
protocol is simpler than GIOP for a number of design decisions: 1) messages are
always little endian so we do not need to care about byte ordering, 2) there is
support for unreliable transports such as UDP (much easier to implement in a
low cost embedded device), 3) there are less types of messages and some of them
may not be implemented without compromising interoperability, 4) unprocessed
message fields may easily be skipped because they are usually preceded by the
field total length, 5) there are no data alignment requirements for messages
on-the-wire.

The picoICE prototype is fully conformant with the ICE protocol specifi-
cation for connection-oriented transports and connection-less transports. Any
reliable or unreliable transport protocol may be used in combination of picoICE
objects. An implementation of a fully operative servant, able to handle method
invocations for a set of 64 objects fits on 478 words of program memory in a
Microchip PIC12f675 microcontroller and needs less than 16 eight bit registers.
That is three orders of magnitude smaller than the ZeroC ICE implementation,
and two orders of magnitude smaller than the ZeroC Embedded ICE implemen-
tation. Currently we support TCP and UDP transports over Ethernet or WiFi
through a Lantronix XPort device. A picoObject may also be connected to SLIP
(serial line IP) serial port.

As in the case of CORBA, ICE requires that every object implement a set of
common methods. The picoICE prototype supports ice ping, ice id, ice ids
and ice isA. These methods add minimal introspection capabilities and the
ability to remotely test the existence of an object. These features may be removed
if not needed.

8 Conclusions and future research

In this paper we propose an alternative implementation of distributed objects for
low cost embedded devices such as eight bit microcontrollers or FPGAs. Results
show that resource consumption is two orders of magnitude than previously
published data on small middlewares implementation.

As they are currently implemented, picoObjects exhibit ultra-low latency,
since the reply messages are composed on the fly while the object is still receiving
the request. This makes them specially suitable for real-time operation even on
low bit-rate networks. Exact figures of latency depend on the transport protocol
used, which is currently independent of the picoObjects.

As the basic prototypes still evolve, we are now developing high level tools
to deploy a picoObject network. We are also extending the concept to support
other middlewares.

PicoObjects are being used as major components of SENDA, a middleware-
based infrastructure for modeling, development, and deploying of next generation
home services [21].
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