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Abstract

HW-SW interoperability by means of standard dis-
tributed object middlewares has been proved to be useful
in the design of new and challenging applications for ubiq-
uitous computing and ambient intelligence environments.
Wireless sensor networks are considered to be essential for
the proper deployment of these applications, but they im-
pose new constraints in the design of the corresponding
communication infrastructure: low-cost middleware imple-
mentations that can fit into tiny wireless devices are needed.

In this paper, a novel approach for the development of
pervasive environments based on an ultra low-cost imple-
mentation of standard distributed object middlewares (such
as CORBA or ICE) is presented. A fully functional proto-
type supporting full interoperability with ZeroC ICE is de-
scribed in detail. Available implementations range from the
smallest microcontrollers in the market, to the tiniest em-
bedded Java virtual machines, and even a low-end FPGA.

1. Introduction

The perceived value of an ubiquitous system is mainly
due to its ability to create and to support end-user services.
Firstly we should be able to acquire and distribute as much
information from the environment as possible. Then we
should be able to build robust scalable distributed applica-
tions based on that information. Two major components
should interact seamlessly: networked sensor/actuator de-
vices and distributed services.

Wireless sensor networks (WSN) provide an excellent
platform for the development of useful ubiquitous comput-
ing applications. Our aim is to integrate them in the global
system in such a way that software developers do not need
to make distinction between interacting applications in a

WSN and a typical distributed application in a traditional
network.

In this paper, we are mainly concerned with the imple-
mentation of minimum cost devices able to support the large
variety of device and network technologies currently de-
ployed in the target environments. Besides, we also in-
tend to make them interoperable with traditional distributed
software platforms for easier deployment of next generation
services.

Our goal, then, is to allow wireless sensor devices to ex-
port their capabilities as if they were standard distributed
objects. These objects should be able to hide the hetero-
geneity of underlying technologies such as transport proto-
cols and network architecture and topology.

2. Previous work

There are dozens of distributed object implementations
in the market: DCOM, Java RMI, Jini, EJB, CORBA,
Web Services, .NET Remoting, ZeroC ICE [2], etc. Most
of them rely on a shared networking core, the communi-
cation middleware, which provides location and network
transparency. Unfortunately, the mentioned implementa-
tions of standard object oriented middlewares require too
much computing resources for our target devices. In this
paper we will center on ZeroC ICE, an excellent CORBA-
like middleware, but the same approach is also applicable
to the other middlewares.

Lowering the cost of embedding a distributed object
middleware has been the focus of some miniaturization ef-
forts. There are three common strategies to reduce the foot-
print of an embedded middleware [15]: 1) to remove costly
features keeping a good degree of genericity, 2) to adapt the
middleware to specific devices, or 3) to use proxies.

The first approach is used by the Object Management
Group [14] in MinimumCORBA [7], a lightweight version
of its widespread CORBA [6] architecture. Others efforts



in this way include e*ORB [1] or dynamicTAO [10] and its
descendants: LegORB [16] and UIC-CORBA [18]. Micro-
QoSCORBA [9] and nORB [19] also use this first strategy.

A representative of the second approach to the develop-
ment of small footprint middlewares is PalmORB [17].

The third alternative requires a mediating host to allow
interoperability with objects in a standard middleware. This
approach is used by UORB [15] and one of the integration
alternatives proposed in SENDA [13]. For further details
over these three different strategies please see [20].

All these previous works follow the same basic rules:
they remove dynamic invocation and dynamic instantia-
tion features, they simplify the interface definition language
(OMG IDL in the case of CORBA) removing complex or
variable length data types, they also remove some fields
from the communication protocol, they also remove or sim-
plify the types of messages used in the protocol, they even
drop support for indirect references or common services,
and they modularize the communication engine and instan-
tiate only those components which are actually used.

There are also a number of proposals for WSN middle-
wares such as TinyLime [4], TinyDB [12] or Sensation [8].
Unfortunately they require too much computing resources
to be useful in our target devices. Specifically, TinyLime
and TinyDB requires TinyOS [12]. Additionallly TiniDB
requires a query parser in each node and Sensation provides
of a middleware integration architecture by means of a sen-
sor abstraction layer and a XML based unified sensor lan-
guage.

Besides, all of them introduce specific API’s and archi-
tectures which contribute to increase the learning curve and
make more difficult the interoperability with high level ap-
plications (from application developer point of view). We
need something much smaller, self-contained, and much
cheaper, but with a similar set of features.

3. Minimal footprint

Instead of removing even more features from the mid-
dleware, let’s think the other way. First we will define the
smallest feature set that a distributed object should provide.
Then we will consider the overhead introduced for each ad-
ditional feature and whether they meet the application con-
straints.

Although it is important that each device looks like a dis-
tributed object, it is not essential that they are actual dis-
tributed objects. If devices are able to generate coherent
replies when they receive predefined request messages then
the system will work as expected. For a given communi-
cation middleware these requests and reply messages are
completely specified by the communication protocol (ICEp
in the case of ZeroC ICE or GIOP in the case of CORBA).

If the device is just an application-specific ICEp server
it will be seen as a standard object from the network but
there is a huge potential for resource savings. The object
may get rid of the whole communication engine and its API.
There is no need for object adapters, marshalling routines,
etc. We just need to implement the message handling code
for those messages whose destination is an object placed at
the device. Therefore there would be a generated ad-hoc
implementation for each device.

We used the above implementation strategy to develop
a set of functional prototypes named picoObjects. In sum-
mary picoObjects provide a toolset for the automated gen-
eration of code able to replace a standard communication
engine in WSNs devices.

Code generation must be performed with careful consid-
eration of the constraints imposed by the target platform.
Generated code is obviously different for each platform but
it will also differ for servers with a different set of objects,
even when the platform and the object interfaces are the
same.

It is worth noting that a server implemented using this
technique will only reply to messages directed to its resident
objects. Messages handled by the communication middle-
ware (such as object location in CORBA) will be silently
discarded. It is always possible to include these messages
as the methods of a special object if needed.

A communication middleware will usually expose two
different interfaces to access every service in the system:
1) at the programming level, it provides a standardized ap-
plication programming interface which abstracts commu-
nication details, protocols, etc.; 2) at the network level it
provides a common protocol (ICEp in case of ZeroC ICE)
allowing seamless interconnection among communication
engines running on different machines.

A picoObject lacks in a local communication engine.
The server program must include code to perform com-
munication primitives and manage its registered objects.
Nonetheless, for the rest of the network a picoObject be-
haves as an usual object. It provides a network level inter-
face without significant differences with respect to a stan-
dard object. We may say that a picoObject implements a
virtual communication engine.

PicoObjects may also handle client-side communica-
tions using similar techniques. Client-side messages are
composed as a set of templates with just the bare minimum
configurable fields.

4. General design of picoObjects

The main goal of picoObjects is the implementation of
the essential features needed for a device to expose a stan-
dard object behaviour in the network. From that point we
intend to define and develop mechanisms to scale the func-
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tionality of the device depending on the constraints im-
posed by the target platform. Our initial targets range from
the smallest and cheapest eight-bit microcontroller (even
cheaper and smaller than the common choice for wireless
sensor devices) to a standard PC.

It may be argued that generating the message handling
code for a whole communication middleware does not of-
fer any particular advantage over a standard middleware.
Even in that case there are situations that may favour our
approach over full-blown middlewares (reliability, real-time
constraints, security, etc.).

We define the minimum set of features using the con-
siderations made in section 2, adding a few additional con-
straints for the sake of simplicity:

• We always follow the standard message format for the
communication protocol.

• We will only support the simplest protocol version
whenever interoperability is not compromised.

• We will not support common middleware services (e.g.
Naming and Event services).

• Implementations will be fully static.

• Resident objects are always on. There is no way to
activate or deactivate objects.

This set of features warranties a compliant behaviour
with no need of mediator devices. This fact has been veri-
fied by means of several prototypes (see section 5).

PicoObjects can be looked up at the middleware ORB
(Object Request Broker) and used just like any other object,
without any difference for the client.

The simplest way to achieve a coherent behaviour for
each picoObject is by means of message matching au-
tomata. In this context, the allowed message set for a given
object constitute a BNF grammar defined by the following
elements:

• Message format for the middleware communication
protocol.

• Object identity, that is to say, unique object identifiers.
It should be noted that several object identities may be
backed by a single piece of code. This technique is
usually called default servant in CORBA parlance.

• Concrete interfaces provided by the object. It includes
name, arguments and return value for each method
(SLICE declaration in ICE or IDL in CORBA).

• Serialization format (CDR in case of CORBA).

• Standard interfaces inherited from the communication
engine (Ice::Object in case of ICE).

• Constraints for the target platform.

From the careful analysis of these elements we define the
set of lexical elements (tokens): compulsory fields in each
message with a known format and size, object identities and
identifiers for methods and interfaces.

Then we generate the rules describing how these tokens
may be combined together (the BNF grammar). This in-
formation is enough to automatically generate a fully func-
tional parser. The whole development flow is shown in Fig-
ure 1.

Every picoObject must include a set of user procedures
(object method implementations) that must be filled by hand
(as in any traditional middleware). When the grammar
parser of a PicoObject identifies a whole request message,
the corresponding user procedure is automatically invoked
and a reply message is generated. If the parser fails to iden-
tify a valid method request, then the message is discarded
and the picoObject looks for a new synchronization point at
incoming data.

Figure 1. picoObject Development Flow

Input and output messages may be handled on-the-fly us-
ing a generated byte-stream processor. This is a very conve-
nient solution for devices with severe memory constraints
(just a few hundred program memory words and a dozen
general purpose registers). In this scenario there is no room
to even store the incoming message. The request message is
processed as the bytes arrive and the reply message is also
generated partially from replication of the incoming data.
The last part of the reply message is generated by the user
procedure for each method.

Our strategy is quite different with respect to previ-
ous middleware minimization approaches such as Micro-
QoSCORBA. MicroQoSCORBA tries coarse grain code
minimization by building a custom implementation from
predefined libraries. PicoObjects use a finer grain code min-
imization strategy by completely generating the message
parsing code for each application.

5. Sample prototypes

The above approach has been applied to a pair of ex-
isting middlewares: CORBA and ZeroC ICE, leading to
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picoCORBA and picoICE respectively. The constraints im-
posed by each particular middleware lead to slightly differ-
ent design decisions. We will describe in depth the ICE
prototype as “proof of concept” of a PicoObject real imple-
mentation.

Both prototypes were developed in Microchip PIC as-
sembler, Java on a standard embedded PC, Java on an em-
bedded Dallas Semiconductors TINI device, C on a stan-
dard embedded PC, and VHDL on a Xilinx VirtexE FPGA.
We are currently integrating the prototypes in WSNs plat-
forms like Zigbee CC2420 based development kit from
Chipcon [3].

The latency for the responses depends on the trans-
port mechanism. Our prototypes using a Lantronix XPort
for TCP/UDP encapsulation introduce some latency due to
buffering and timeout driven packetization. However, the
transport layer may easily be changed without major mod-
ifications in the picoObject. For example, the SLIP based
prototype begins the transmission of serial response pack-
ets well before the end of the request.

Two simple but fully functional prototypes supporting
complete interoperability with CORBA and ICE, with spe-
cific developing details, are available in our website at [5].

6. PicoICE

ICE is a CORBA-like middlware which implements a
feature set unparalleled in any other distributed object plat-
form (object persistence, object migration, authentication,
security, replication, deployment services, firewall gate-
ways, etc.). A summary of the differences between ICE and
CORBA is available at the ICE home page [2].

ICE already provides a reduced implementation for em-
bedded devices, and offers a few advantages over CORBA
to reduce resource usage even further. ICE protocol is sim-
pler than GIOP for a number of design decisions:

• Messages are always little-endian so we do not need to
care about byte ordering.

• There is support for unreliable transports such as UDP
(much easier to implement in a low cost embedded de-
vice).

• There are less types of messages and some of them
may not be implemented without compromising inter-
operability.

• Unprocessed message fields may be easily skipped be-
cause they are usually preceded by the field length.

• There are no data alignment requirements for messages
on-the-wire.

Embedded middleware Minimal server code size
TAO 1738 KB + OS
nORB 567 KB + OS
MicroQoSCORBA (TINI) 21 KB + OS
UIC/CORBA 35 KB + OS
ZEN (Java) 53 KB + OS
picoCORBA (Java) 5 KB + OS
picoCORBA (TINI) 4 KB
picoCORBA (C) 5.2 KB + OS
picoICE (C) 5.4 KB + OS
picoCORBA (PIC12C509) 415 words
picoICE (PIC12C509) 503 words

Table 1. Small server sizes on embedded mid-
dlewares

The picoICE prototype fully conforms to the ICE pro-
tocol specification for connection-oriented transports and
connection-less transports. Any reliable or unreliable trans-
port protocol may be used in combination with picoICE ob-
jects.

An implementation of a fully operative servant, able
to handle method invocations for a set of 64 X10 (well
known control protocol used for in-home networking) ob-
jects fits on less than 1KB of program memory in a Mi-
crochip PIC12f675 microcontroller (see table 1) and needs
less than 16 eight bit registers. That is three orders of mag-
nitude smaller than the ZeroC ICE implementation and two
orders of magnitude smaller than the ZeroC Embedded ICE
implementation.

Currently we support TCP and UDP transports over Eth-
ernet or WiFi through a Lantronix XPort device. A picoOb-
ject may also be connected to a SLIP (serial line IP) serial
port.

In [11] a survey of most used WSN HW platforms and
their resource requirements is presented. The required
code/data memory for these platforms ranges from 60 KB /
1 KB (MOS) to 128 KB / 64 KB (Btnodes). In Table 1 we
can see how our implementation fits in all these platforms.

Although, for the same type of implementation (i.e.
C language), picoICE objects are a bit larger than pico-
CORBA objects this is only due to the extra introspection
features supported by ICE, that may be removed if they are
not needed.

Any ICE object implements an standard interface called
Ice::Object defining a set of common methods. Fortunately
some of these methods are already handled by the client
stubs provided by the standard middleware interface com-
piler or by the communication engine at the client side.
Therefore there is no need to implement all of them as po-
tential ICEp messages.

The picoICE prototype supports ice ping, ice id, ice ids
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and ice isA. These methods add minimal introspection ca-
pabilities and the ability to remotely test the existence of
an object. This and other interoperability implementation
details are explained with detail in [20].

6.1. Asynchronous Advertisements

When a picoICE either needs to communicate a state
change or wants to advertise itself to the network it can gen-
erate an event using the ICEStorm service (an efficient pub-
lish/subscribe standard service for ICE applications). Gen-
erating an event in picoICE implementation requires a sin-
gle ICEp message to a previously known ICE channel.

For example, a minimal advertisement service requires
that any picoObject sends an event (adv operation) contain-
ing its own reference (its ICE proxy in ICE parlance) to an
administrative channel in order to be known by the rest of
the network and applications. In order to save memory re-
sources, this first message shares most of the information
with the events generated to notify a change in the state of
the sensor or actuator.

An ICE packet generated by a picoObject event looks
like this:

Magic Number: ’I’,’c’,’e’,’P’
Protocol: 1,0 Encoding: 1,0
Message Type: Request (0)
Compression Status: Uncompressed (0)
Message Size: 53
Request Message Body

Request Identifier: 0
Object Identity Name: publish
Object Identity Content: asdf
Facet Name: (empty)
Operation Name: adv
Ice::OperationMode: normal (0)
Invocation Context: (empty)
Input Parameters Size: 16
Input Parameters Encoding: 1,0
Encapsulated parameters (10 bytes)

Most of the fields are kept constant for all messages, and
only Object Identity name, Object identity content, Opera-
tion name and, obviously, the parameters differ.

7. Implications in WSN design flow

Let’s see how the design flow for an application over
WSN using our approach looks like. At the beginning, it
is necessary, like in the design of any distributed applica-
tion, to specify the object interfaces. The simplest interface
that we use for a WSN would be:

module iFloat {
interface R {

float get();
};

};

In our case, we specify that interface using SLICE, the
definition language defined by the ICE platform (CORBA
uses IDL and JINI uses JAVA). With this interface we can
get, for example, the temperature of a sensor node.

At this point it is necessary to generate an object identity
in order to identify the object inside the network: this is
called in ICE the universally unique identifier (UUID). The
simplest UUID is a string, for example WSN-O1, WSN-O2,
etc.

This UUID identifies the object in the network. If a
WSN node implements two objects, each object needs its
own UUID.

After that, we specify the standard methods of the inher-
ited ICE::Object interface which have to be implemented by
the picoObject (ice ping, ice isA, ...).

All this information, specified as follows, is gathered in
a file that feeds the automatic generator:

uses WSN.ice
interface Ice.Object{

ice_ping,
ice_isA,
ice_id,
ice_ids}

WSN-01: WSN.iFloat.R, Ice.Object

Now we need to generate the stubs for the client and the
skeleton for the server (the WSN node in our target environ-
ment). The client stubs can be generated with the off-the-
self SLICE compiler from the interface definition (like in
any traditional distributed application). The skeleton for the
server is generated with our compiler from the file shown
above. The compiler generates a platform independent fi-
nite state machine that recognizes the incoming messages
and produces the appropriate responses. This finite state
machine is then compiled (next step) to several specific lan-
guages such as standard C, Microchip PIC assembler, Java
or VHDL (for a specific hardware implementation).

In the last step of the design flow, the wireless sensor
developer has to write the particular implementation of the
get() method for this application, that is, he/she decides the
specific actions to be performed when the method is invoked
(i.e., to “read” the temperature value from the hardware sen-
sor and then to return the value).

The implementation of the complete client application
does not differ from any other traditional distributed appli-
cation.

As a conclusion the advantages of using our approach to
the design of WSN applications include:

• We provide to the WSN application developer
with generic and high-level programming inter-
face that allows to completely abstract the design
from technology-specific WSN issues. The soft-
ware/hardware objects that resides in the sensor nodes
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can be looked up at the communication engine (ORB)
and used just like any other object.

• We provide to the embedded code developer with a set
of tools that automatize the creation of the communi-
cation infrastructure that allows a wireless sensor node
to interact with the rest of the WSN and even with any
other system out of the WSN. The programming and
configuration of a sensor network are very difficult and
error prone tasks [4]. With our approach, the com-
piler generates all of the communication related code
(obviously, if the platform is conveniently supported).
Currently we support the PIC microprocessor family
and we are working in the Atmel family (both of them
broadly used in the design of WSNs).

• We provide to the designer of sensor nodes with a mid-
dleware which can be implemented in hardware just
specifying a set of basic parameters (the supported in-
terface and the object identifiers). In fact, we have al-
ready extended our set of tools to automatize the gen-
eration of the VHDL code that corresponds to the hard-
ware version of the communication engine.

8. Conclusions and future research

In this paper we propose a set of techniques for the im-
plementation of distributed objects on low cost WSN de-
vices such as eight-bit microcontrollers. Results show that
resource consumption is two orders of magnitude than pre-
viously published data on small middlewares implementa-
tion.

As they are currently implemented, picoObjects exhibit
ultra-low latency, since the reply messages are composed
on the fly while the object is still receiving the request.
This makes them specially suitable for low-latency opera-
tion even on low bit-rate networks.

As the basic prototypes still evolve, we are now devel-
oping high level tools to deploy a complete picoObject net-
work. We are also extending the concept to support other
middlewares.

PicoObjects are being used as major components of
SENDA, a middleware-based infrastructure for modelling,
development, and deploying of next generation ubiquitous
computing services [13].
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