

OOCE: Object-Oriented Communication Engine for SoC Design

Jesús Barba, Fernando Rincón, Francisco Moya, Félix J. Villanueva,
David Villa, Julio Dondo, Juan C. López

School of Computer Engineering
University of Castilla-La Mancha, Ciudad Real, Spain

Jesus.Barba@uclm.es

Abstract

For decades, software middlewares have tackled with the
heterogeneity and interconnectivity roblems in computer
networks with success. These problems are recurrent in
the design of complex systems-on chip with a large
number of components of different nature (including SW
and HW modules). In this paper we present an object-
oriented communication engine (OOCE) based on the
architectural concepts used in software middlewares that
unifies the inter-communication interface for both HW
and SW elements. The infrastructure provided by the
OOCE introduces a low-overhead abstraction layer that
can be easily used to implement several parallel
programming models. An implementation of this
approach has been made for the Xilinx-V2Pro platform.

1. Introduction

The constant increase of the complexity in systems on a
single chip (SoC) makes it mandatory the need of new
approaches to help the designer to manage such systems.
Due to the large number and the heterogeneity of the
building blocks that a SoC contains, the election of the
appropriate design flow is crucial to achieve a satisfactory
result. The interest of the research community seems to
move from interface-centric based solutions to high-level
programming models proposals applied to system level
design. The goodness of such high-level SoC platform
programming models has been widely analyzed in the
literature. Reutilization of models and components,
component interchange, rapid prototyping and fast design
space exploration are some of the multiple contributions
of these techniques. It is worth to notice that, without the
support of tools that makes automatic the design process
from system-level specification to synthesis, the success
of such solutions would be limited. One of the reasons
that has driven this change is the appearance of the
multiprocessor System-on-Chip (MPSoC) as the natural
evolution in the design style to cope with the so called
productivity and platform reuse problems. However, the
software-centric design nature [1] of multiprocessor-
based systems has shifted the research focus in topics

such as concurrency, synchronization, control and
effective mapping of applications. The classical hardware
component integration and hardware/software interfacing
issues seems to be placed in the background.
In this paper, we present a Hw/Sw platform called OOCE
(Object Oriented Communication Engine) that supports
the implementation of parallel programming models
based on communicating distributed objects. Parallel
programming models have demonstrated their suitability
to be applied in MPSoC design and programming [2,3]
whereas object-oriented modeling techniques promote
new reuse opportunities through a clear separation
between implementation and communication. Our work
focuses in the definition and implementation of a
lightweight infrastructure that provides an unified,
abstract view of the components that conforms modern
complex system (including Hw and Sw modules). The
OOCE does not impose the use of a particular
concurrency or synchronization model, programming
model or API between the entities in the system. The
designer is free to choice between a wide range of
alternatives built on top of the remote method invocation
semantics.
Following this introduction, we will discuss related work
in section 2. In section 3, the principal features of the
distributed object model and how they can be applied to
SoC design are presented in depth. Section 4 surveys the
proposed communication engine putting the focus on the
different communication scenarios and how changes in
system configuration are managed by the OOCE. Section
5 will provide a quick view of how different
programming models can be easily supported by the
OOCE as well as the problem of modelling concurrency.
Finally, we conclude the paper with the implementation
results and some conclusions.

2. Related work

Lately, there is a significant amount of research work in
the area of multiprocessor systems development and
Hw/Sw interface modeling. In [4] a unified Hw/Sw
component model to describe the different parts of a
Hw/Sw interface is presented. It covers different

abstraction levels at different steps of the design flow and
it uses a service-based model to automatize the interface
implementation. As in [4], we advocate for a unified
model to achieve a true system level design methodology
where hardware and software do not have different design
flows. In our OOCE, the software version of the interface
components also follows a two-layer approach. However,
unlike [4], the presence of an operating system low-level
service layer is optional which may lead to more efficient
Sw to Hw communication.
The interface synthesis process proposed in our OOCE is
based on the specialization of several interface templates
as in [5]. The advantage of such approach in comparison
with others is the absence of an interface definition phase
and a refinement process avoiding the designer to perform
a non negligible amount of work.
TTL [6] is a task level interface that can be used
indistinctly for developing parallel application models and
as a platform interface for integrating hardware and
software tasks. In TTL the system is modelled as a set of
communicating task (hardware or software) exchanging
vector of tokens of some fixed type. On the contrary,
OOCE uses an object-oriented model to specify the
solution. Objects exposes a higher abstraction level in the
communication since ports are replaced with method calls
which may have arbitrary type signatures. These are some
of the features that OOCE shared with the Multiflex [3]
approach. Another common point between OOCE and
Multiflex is the existence of an interface definition
language and communication synthesis tools to guarantee
a homogeneous representation of the data to be
sent/received by the ends of the communication. This
assures in-chip inter-component communication
semantics. But we go one step forward. The OOCE data
type system is 100% compatible with the ICE (Internet
Communication Engine) data encoding rules. This feature
enables OOCE to provide transparent off-chip
communication with external components implementing
the ICE protocol. To our knowledge, OOCE is the only
platform that does not force to rewrite either applications
or hardware components in order to make use of this
advanced characteristic.
Blocking and non blocking communication is offered like
in TTL and Multiflex. In Multiflex, one or more ORBs
(Object Request Brokers) are responsible for the
synchronization and load balancing of the multiple
request between objects connected to them. In our view,
the ORB concept implemented in Multiflex may turn into
a bottleneck in the communication process and can
expose scalability and fault tolerance problems due to its
centric nature. By contrast, the OOCE ORB equivalent
functionality is distributed among the architectural
components of the Hw/Sw communication engine.
As in previous works by Paulin et al. [7] we also apply
concepts from distributed object middlewares to SoC. We

strongly believe that the application of the multiple forms
of transparency, that a distributed object model (such as
the proposed in Multiflex and OOCE) provides, will help
the designers to manage the complexity and heterogeneity
problems in complex SoCs. However, there are no clear
references in [3,7] regarding this matter. The ORB, as the
central functional component, may be considered the
responsible for providing some kind of location
transparency (matching services with requests),
replication transparency (load balancing of the requests
among objects) and concurrency transparency
(scheduling the requests). But, besides the previously
mentioned problems, no considerations are made about
the “dynamic view of system”. Questions as how the
migration of functionality is treated in a transparent way
or even how the location transparency is assured if a
service provider change its location (and therefore the
ORB which is connected to) does not have a straight
response. Our OOCE overcomes these limitations by a set
of simple architectural elements.
The distributed heterogeneous programming model that
the OOCE supports covers the System, Virtual
Architecture and Transaction Accurate levels of
abstraction as proposed in [2] to efficiently abstract
Hw/Sw interfaces.
A MPSoC is a special case of System-on-Chip with
multiple processors. Most of the research work in this
area
concentrates on software-related problems such as
synchronization between Sw entities running in different
processors. The OOCE concepts also apply to this
communication scenario and extends the interest to Hw to
Hw and and Hw to Sw communication.
The application of object-oriented techniques to the
design of hardware systems has mainly found three
working lines: (a) the adoption of concepts from high
level object-oriented programming languages by
hardware description languages and vice versa, (b)
system-level design and high level synthesis and (c) the
development of hardware architectures that implements
software objects.
The improvement of the productivity is achieved by the
reuse of previous code making it use of concepts such as
class, inheritance, encapsulation and polymorphism.
However, there is not a clear correlation between the
concept of object and its hardware implementation. This
conceptual gap is one of the reasons that it has motivated
a slow, though progressive, acceptance of these
techniques in hardware design.
Regarding system-level design, SystemC provides
hardware-oriented constructs packed into a class library,
implemented in standard C++, to develop hardware
systems. The use of UML for system level design has
been proposed in [8,9] while [10] deals with the synthesis
process from an object-oriented specification.

Several implementations of software objects as hardware
modules have been proposed in the literature. Eventually,
a high level specification may be easier to be synthesized
into RTL. Radetzki [11] establishes a hardware object
architecture based on a memory plus some control logic
for state transition. Goudarzi and Hessabi [12] propose a
hardware platform for dynamic objects with support for
inheritance and polymorphism. Cheng and Wu [13]
analyzes four implementation strategies for software
objects in hardware based on a data-memory mapping
analysis. Our work does not propose any hardware object
implementation but a general hardware object model
following a structural approach to easily embrace current
and future object hardware implementation strategies.

3. The SoC as a distributed object system

During the nineties, the traditional remote procedure call
concept evolved into sophisticated software architectures
for distributed heterogeneous programming. Many of the
goals achieved by these architectures are also main
concerns for hardware designers when they face the
growing complexity of coming systems. Moreover, an
analogy between SoCs and distributed systems can be
established: Hw components and software processors as
network nodes, buses and NoCs as interconnection media,
communication message translated into bus transactions
and so on.
Considering a SoC as a set of objects that interact through
message passing has a twofold benefit since (a) it keeps
the system model invariable and (b) it establishes clear
semantics for communication, enabling module
interchange and reuse. Ideally, the designer will
experience an important increase in his productivity and
silicon companies could offer more flexible and cheaper
platforms meeting the well-known cost and time-to-

market constraints.
Our work is partially inspired in commercial middlewares
such as ICE and CORBA. We adapt the solutions
presented in them to the special requirements of hardware
design: efficiency and low overhead. The OOCE
implements hardware accelerators to boost the message
passing process.

3.1. Middleware concepts for SoC design

A middleware is an abstraction layer containing a set of
architectural elements that provide basic communication
services. A middleware makes homogeneous the
communication between the components hiding the
implementation details of the network nodes to the
application developer. Generally, a middleware bases its
functionality on: (a) a client-server model of
communication, (b) a common data type system and a set
of data coding/encoding rules and (c) a simple protocol
which defines the set of messages that the client and the
server exchanges.
The communication channel transparency is one of the
basis to increase the reuse opportunities in SoC design.
Both hardware and software modules can work properly
in other environments with minimal changes. A
middleware provides another form of transparency:
access transparency.The interface to a component
remains invariable regardless of changes in its internal
implementation. SoC design could take advantage of
access transparency in many ways:

• IP integration and interchange. Classes of
hardware components will expose the same module
interface (i.e. write and read operations). The
implementation decisions (such as the use a FIFO or a
RAM to provide some kind of storage capability) can be
postponed to the very end of the design process [14].

• Co-design. The access transparency principle
implies a real homogeneous view of both software and
hardware components.

• Model reuse. Since all the implementation details
are hidden at system level, the model of the system keeps
invariant from a design to another.
Location transparency relates to the ability of two
components to communicate independently of their real
location. The middleware provides to the actors in the
communication process the illusion that they interact
locally even if they reside in distant network places. This
opens a wide range of possibilities in SoC design:

•Transparent Sw to Hw and Hw to Sw
communication. The communication mechanism is
exactly the same for all the communication scenarios
since the system components (Hw or Sw) are not able to
distinguish how the source/target of a message is
implemented (again Hw or Sw).

•Transparent management of component migration.
Functionality may cross software and hardware

Figure 1. Proposed middleware-based object-
oriented communication engine.

boundaries on demand, depending on quality of service
and performance criteria.

•Transparent management of component
replacement. On module failure or bug detection a
component could be substituted. It is not needed to halt
the whole system. Reconfigurable logic support is then
necessary.

4. The object-oriented communication engine

Figure 1 shows a high-level vision of the most important
elements present in our OOCE. Table 1 summarizes the
role of each component. As stated previously, our
communication engine is object-oriented which implies
that any component in the system is seen as an object. An
object provides just some per-instance private state data
(attributes) and an encapsulation mechanism for some
functionality (methods). Objects communicate with other
objects in the system invoking the corresponding method.
Therefore, the concept of object is the basis to offer (a)
access transparency (through the set of methods that
compose the object interface) and (b) semantics in the
communication (through the method invocation
mechanism).

4.1. In-chip (SoC) communication

In our OOCE, each method invocation must take place
between a proxy and a skeleton. Actually, proxies and
skeletons are not merely bus/network wrappers that
isolate clients and servers from the bus/network. From the
client point of view a proxy is seen as a private object
implementation. It provides exactly the same interface.

Consequently, the client (the object that initiates the
communication) starts the invocation of a method as if it
was physically connected to the real server. The proxy
deals with the particularities of the underlying
communication channel and forwards the request
following a particular protocol and message format. In the
other side, the skeleton acts as the server (the object that
implements the required service). It receives the request
and interprets it. Finally, the actual method invocation is
performed to the actual server.
A method call is decomposed into write and read
primitives. Read and write operations are basic services
offered by any of the buses and on-chip networks, so that
the complete process can be easily targeted to a particular
bus/network technology (OCP, OPB, AMBA, etc.). Also,
some data encoding/decoding rules have to be defined in
order to homogenize how data types are sent “on the
wire”. Our OOCE provides support for synchronous
invocations (blocking) and asynchronous invocations
(non-blocking) for high latency operations.

4.1.1. Hw to Hw communication. To implement logical
objects as physical hardware components, we define: (1) a
standardized interface in order to make automatic the
generation of wrappers and (2) a “local” method
invocation protocol. By “local” we mean two components
connected directly. A hardware object exhibits a
characteristic physical interface. One of the main features
of our hardware object model is the flexibility to define
how values are passed/retrieved to/from the IP. This
makes it easier to fit the final implementation to the
particular design constraints or to adapt existing IPs.
However, “local” invocations are not the main scenario in
current SoC: hardware components communicate through
a system bus or network. Proxies and skeletons are in
charge of implementing the “remote” invocation of
methods as described in section 4.1. By “remote”, we
mean an invocation that takes place between two
hardware objects connected to a system bus or network.
We propose an interface synthesis process based on
object-oriented models to generate proxies and skeletons
in an automatic way [15].
We use UML (Unified Modelling Language) to model the
static and dynamic view of the system. For each object, a
language-neutral interface definition using SLICE (The
interface definition language used in ICE) is derived.
Before the generation of RTL code, the designer must
select a particular scheme of communication (bus,
network, etc.) from a set of predefined mechanisms.
Finally, a wrapper generation process specializes and
optimizes a wrapper template that depends on the
communication method previously selected, the number
and type of operations that it must support, etc. The last
step in our interface synthesis process is the generation of
the hardware version for proxies and skeletons. We have
defined two interface templates which will be specialized

Table 1. Principal OOCE features applied to SoC
design.

OOCE Middleware Concept SoC application

Proxies/
Skeletons

- Channel access
transparency
- Component access
transparency

- Component reuse
- Bus/network
independence
- IP interchange

Local Object
Adapter

- Location transparency - Transparent Sw
and Hw integration
- Migration

Local Network
Interface

- Channel access
transparency

- Bus/network
independence
- Migration

Remote Object
Adapter

- Location transparency - Off-chip
communication

according to the bus/network selected by the designer and
the number and kind of methods to be interpreted.
Based on the relationship information provided by the
UML model, a skeleton is produced for each hardware
object exporting at least one method. Only for each
method that has to be remotely invoked by the client, a
proxy to the target is generated. This reduces the logic
used in the proxy since there is no implementation for
unused methods. Another optimization introduced in this
process is the reutilization of logic when two method
definitions and their corresponding physical hardware
object interfaces are identical.

4.1.2 Hw to Sw and Sw to Hw Communication. In
order to perform Hw/Sw communication transparently,
neither software objects nor hardware objects must
change the way they interface depending on which is the
target/source of a method invocation. Proxies and
skeletons, in the hardware side, do not need to distinguish
if the callee/calling object is running in software or not.
For this reason, invocations involving hardware and
software objects result in exactly the same messages than
the ones generated in a hardware to hardware method call.
The Local Network Interface (LNI) and the Local Object
Adapter (LOA) are the OOCE components that are in
charge of the management of Hw/Sw communication.
The LNI is completely implemented in hardware as a co-
processor which is also a peripheral connected to the local
bus/network. Usually, the processor has a limited control
over advanced bus features such as burst transactions,
error control, etc. To implement an efficient Sw to Hw

communication all the communication capabilities must
be exposed and accessible.
Also, the system processor usually has only a master
interface to the system bus. This restricts the way other
peripherals can communicate with it, for example through
an interruption mechanism. The LNI simulates the
processor slave interface we need to remain invariable the
behaviour of the hardware proxies if the destination of the
communication is a object running in the processor.
Figure 2 shows the automatically generated software
proxies code for two versions of a simple filtering
algorithm implemented in a Xilinx-V2 Pro Platform . In
(a) the iterator is implemented in hardware [14] whereas
in (b) the filter and the iterator are both implemented in
hardware. The reader should notice that although the non-
negligible changes in the underlying platform, the
implementation of the main program does not change.
The LNI holds a table containing only the identifiers of
he objects and theirs corresponding system base address.
The LNI is continuously monitoring the bus/network
traffic. Once the LNI detects a transaction addresses to a
software object, it issues an interruption. The LOA
(implemented as the interruption service routine)
communicates with the coprocessor to get the data
associated with the invocation. Finally, the LOA acts as
the skeleton of the server object and invokes the software
method.
The migration of functionality from Hw to Sw only
requires the addition of a new entry in the LNI object's
table. In addition, the Hw object module has to be notified
so that any bus/network transaction is now unattended.
The reverse path (migration from Sw to Hw) comprises
the opposites steps.

4.2. Off-chip (SoC) communication

Transparent off-chip communication is one of the main
contributions of this work. In other approaches, since a
common communication infrastructure is missing, on-
chip functionality may only be accessed from off-chip
components using an ad-hoc interface that exists only if it
has been foreseen by the designer.
The Remote Object Adapter (ROA) receives the
invocation from a external client object as a TCP
encapsulated ICE (the commercial middleware used in
our prototype) message, and translates it into a message
for the skeleton as if it was a local proxy. The ROA
internally caches some parts of the ICE message (client
external network address, client OID, request identifier)
in order to build a valid response message. Invocations
from inside the chip to an outer server object are also
possible. The ROA maintains a table with the OIDs of the
external accessible objects and remote network addressing
information.
The number and type of applications that can make use of
this feature ranges from debugging, simulation and

Figure 2. Mixed mode filtering implementation.

verification to collaborative development tools, remote
control and ubiquitous computing.

4.3. Dynamic Reconfiguration Support in OOCE

The OOCE implements a reconfiguration service to
manage the use of dynamic reconfiguration logic from an
object-oriented point of view [16]. The presence of the
reconfiguration logic will be unavoidable if we want to
provide our system with migration and component
replacement transparency. The use of the concept of
object, easies the utilization of the partial reconfiguration
technology by the applications. The reconfiguration
service is logically structured in a four layer stack:

• Layer 1. Dynamically reconfigurable objects. At
the lower level we find the dynamically reconfigurable
objects. These objects, in addition to their normal
functionality, include a very simple extra interface for
controlling the stop, activation, the reconfiguration or the
storage or loading of their state.

• Layer 2: Hardware and Software Activators. The
activation layer manages the whole process of
reconfiguration for an object, which may include making
the object persistent.

• Layer 3: Dynamic Objects Management. The third
layer provides high-level reconfiguration services, such as
the scheduling, the location or the migration of the
dynamically reconfigurable objects. The last layer
corresponds to the application or operating system, that
can make use of the reconfiguration services implicitly or
explicitly.

5. OOCE programming models and
concurrency support

As discussed in section 2, the OOCE is mainly based on a
message-passing model typical of heterogeneous
distributed computing environments. However the OOCE
does not limit the choice to a single programming model.
Due to the low-overhead introduced by the OOCE
platform and the high degree of efficiency achieved by
the hardware accelerators, more alternatives can be built
on top of the communication engine.
For example, let us consider a shared memory
communication framework. The TTL interface [6] can be
considered a good example of this kind of inter operation.
Tasks correspond with objects in the OOCE (to be more
precise control or active objects). Channels can be also
modelled as objects in our object-based platform. Each
object will be responsible for the channel administration
and will implement the necessary methods to support TTL
basic primitives interface. Different interface types (CB,
RB, RN, DBI and DNI in TTL terminology) will be
available through specialization of the channel base class.

The management of the resources and the concurrent
aspects of the system must be taken into account in
parallel execution environments such as MPSoC, with
several tasks or objects running simultaneously on
different software processors. Once again, the use of the
OOCE does not impose a fixed interface to get all the
system components synchronized. What the OOCE
provides is just a set of basic communication services that
can be used at higher abstraction levels. Within the OOCE
framework, the synchronization and concurrency
problems are considered design problems. This contrasts
with other interface-centric approaches where these
matters have an important impact on the final API
limiting the alternatives presented to the designers.
We have developed a library of hardware, software and
mixed (Hw/Sw) components to incorporate concurrency
administration to the OOCE. The OOCE concurrency and
synchronization support relies on the use of these library
components (mutexes, locks, semaphores etc.) that enable
the implementation of concurrency and resource design
patterns.

6. Experimental results

All the OOCE concepts presented in this work have been
implemented on the Xilinx XUP-V2Pro platform. The
XUP-V2Pro platform uses a OPB system bus to connect
all the processing elements in the SoC working at
100Mhz. Software objects will run on a Microblaze
software processor just as the local object adapter. The
LNI has been implemented as a coprocessor attached to
the system processor using two FSL (Fast Serial Link)
interfaces. The slave link is used to invoke methods from
SW to HW and the master link can be used by: (a) a
calling SW object to retrieve the result from a previous
synchronous invocation or (b) the LOA component to
manage HW to SW invocations or to retrieve the result
from a previous asynchronous invocation.
The presence of the LNI component reduces considerably
the overhead for a Sw/Hw, Hw/Sw and Sw/Sw
(invocations between objects running on different
processors) communication. Both client-side and server-
side code (software version of the proxy and skeleton)
generated by our tools take less than 20 instructions each.
The delay introduced by the LNI component is of 6 cycles
for a incoming invocation and 3 cycles for a outgoing
invocation (the former needs to translate the target bus
address).
The ROA is also completely implemented in hardware
which provides faster processing times of ICEP messages.
Less than 90 microseconds are necessary to parse an
external invocation including: Ethernet, TCP and ICE
header checking to validate the request, translation of the
object and method identification strings to internal bus
addresses. This represents a reduction of two orders of
magnitude if we compare with its counterpart in software.

Table 2 shows the synthesis results for the OOCE
components implemented in hardware. Both ROA and
LNI figures do not included the resources regarding the
implementation of the translation tables.

7. Conclusions and future work

We have described an implementation strategy of a
lightweight communication infrastructure for systems that
are modelled as communicating objects. This
infrastructure is independent of the underlying
bus/network that relates all the components in the system.
We have implemented all the presented concepts in a
FPGA-based system. The principal features of our OOCE
are: (a) most of its components are generated in an
automatic way, with a minimum participation of the
designer, (b) it is flexible since it is extremely easy to
adapt it to new target technologies and (c) it enables the
use of parallel programming models that help to abstract
both hardware and software interfaces.Future work is
being focused on developing a real co-design object-
oriented design methodology thanks to the introduction of
concepts such as locations transparency and access
transparency.

8. Acknowledgement

This work has been funded by the Spanish Ministry of
Education and Science (TIN2005-08719) and the
Regional Government of Castilla-La Mancha (PBI-05-
0049).

9. References

[1] Grant Martin, ‘‘Overview of the MPSoC Design
Challenge’’, In Proc. of the 43th Design Automation
Conference, San Francisco, California, 2006.
[2] A.A. Jerraya, A. Bouchhima, F. Pétrot, ‘‘Programming
models and Hw-Sw interfaces abstraction for Multi-Processor

SoC’’, In Proc. of the 43th Design Automation Conference, San
Francisco, California, 2006.
[3] P.G. Paulin et al. Parallel Programming Models for a
Multiprocessor SoC Platform Applied to Networking and
Multimedia, IEEE Transactions on VLSI systems, vol. 14, 17,
July 2006.
[4] A. Bouchhima et al., A unified Hw/Sw interface model to
remove discontinuities between Hw and Sw design, In Proc. of
EMSOFT 2005, Jersey City NJ USA, September 2005.
[5] Yin-Tsung Hwang and Sung-Chung Lin. Automatic
protocol translation and template based interface synthesis for IP
reuse in SoC. In Proc. Of the 2004 IEEE Asia-Pacific
Conference on Circuits and Systems, 2004.
[6] P. Van de Wolf, E. De Kock, T. Hendrikson, W. Kruijtzer,
and G. Essink, ‘‘Design and Programming of Emebedded
Multiprocessors: An Interface-centric approach’’. In Proc. of
the CODES+ISS'04, September 2004.
[7] P.G. Paulin et al. Distributed Object Models for Multi-
Processor SoC's, with Application to Low-Power Multimedia
Wireless Systems. In Proc. of Design Automation Conference,
Mar 2006.
[8] R. Chen, M. Sgroi, L. Lavagno, G. Martin, A. Sangiovanni-
Vicentelli, and J. Rabaey. Embedded system design using UML
and platforms. In Forum on Specification and Design Languages
(FDL), Marseille, France, September 2002.
[9] Q. Zhu, A. Matsuda, S. Kuwamura, T. Nakata, and M.
Shoji. An object-oriented design process for system-on-chip
using UML. In International Symposium on System Synthesis
(ISSS), pages 249-254, Kyoto, Japan, September 2002.
[10] C. Schulz-Key, M. Winterholer, T. Schweizer, T. Kuhn,
and W. Rossenstiel. Object-oriented modeling and synthesis of
system specifications. In Asia South Pacific Design Automation
Conference (ASPDAC), pages 238-243, Yokohama, Japan,
2004.
[11] M. Radetzki. Synthesis of digital circuits from object-
oriented specifications, Ph.D. Thesis, Univerisität Oldenburg,
Germany, 2000.
[12] M. Goudarzi, and S. Hessabi, Synthesis of Object-Oriented
Descriptions Modeled at Functional-Level. World Scientific and
Engineering Academy and Societ Transactions on Computers,
Athens, 2003.
[13] Fu-Chiung Cheng, Hung-Chi Wu. Design and
Implementation of Software Objects in Hardware. In
International Conference on Computer Design (ICCD), Oct
2006.
[14] F. Rincón, J. Barba and J.C. López, ‘‘Generic
Programming with Abstract Parametrized Components’’, In
Proc. Of the DCIS Conference, Bourdeaux, France, 2004.
[15] J. Barba, F. Rincón, F. Moya, F.J. Villanueva, D. Villa, and
J.C. López, ‘‘Lightweight Communication Infrastructure for IP
integration’’, In Proc. Of the IPSOC Conference, Grenoble,
France, December 2006.
[16] J. Dondo, F. Rincón, J. Barba, F.Moya, F.J. Villanueva, D.
Villa, and J.C. López, ‘‘Dynamic reconfiguration management
based on a distributed object model’’, In Proc. Of the 17th FPL
International Conference, Amsterdam, Netherlands, August
2007.

Table 2. OOCE components synthesis results.

 ROA LNI Proxy Skeleton

Slices 912 30 25 24

FF 825 113 6 0

LUTs 2161 167 27 43

Critical
path (ns)

6.615 7.140 1.07 2.65

