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Abstract 
 
For decades, software middlewares have tackled with the 
heterogeneity and interconnectivity roblems in computer 
networks with success. These problems are recurrent in 
the design of complex systems-on chip with a large 
number of components of different nature (including SW 
and HW modules). In this paper we present an object-
oriented communication engine (OOCE) based on the 
architectural concepts used in software middlewares that 
unifies the inter-communication interface for both HW 
and SW elements. The infrastructure provided by the 
OOCE introduces a low-overhead abstraction layer that 
can be easily used to implement several parallel 
programming models. An implementation of this 
approach has been made for the Xilinx-V2Pro platform. 
 
1. Introduction 
 
The constant increase of the complexity in systems on a 
single chip (SoC) makes it mandatory the need of new 
approaches to help the designer to manage such systems. 
Due to the large number and the heterogeneity of the 
building blocks that a SoC contains, the election of the 
appropriate design flow is crucial to achieve a satisfactory 
result. The interest of the research community seems to 
move from interface-centric based solutions to high-level 
programming models proposals applied to system level 
design. The goodness of such high-level SoC platform 
programming models has been widely analyzed in the 
literature. Reutilization of models and components, 
component interchange, rapid prototyping and fast design 
space exploration are some of the multiple contributions 
of these techniques. It is worth to notice that, without the 
support of tools that makes automatic the design process 
from system-level specification to synthesis, the success 
of such solutions would be limited. One of the reasons 
that has driven this change is the appearance of the 
multiprocessor System-on-Chip (MPSoC) as the natural 
evolution in the design style to cope with the so called 
productivity and platform reuse problems. However, the 
software-centric design nature [1] of multiprocessor-
based systems has shifted the research focus in topics 

such as concurrency, synchronization, control and 
effective mapping of applications. The classical hardware 
component integration and hardware/software interfacing 
issues seems to be placed in the background.  
In this paper, we present a Hw/Sw platform called OOCE 
(Object Oriented Communication Engine) that supports 
the implementation of parallel programming models 
based on communicating distributed objects. Parallel 
programming models have demonstrated their suitability 
to be applied in MPSoC design and programming [2,3] 
whereas object-oriented modeling techniques promote 
new reuse opportunities through a clear separation 
between implementation and communication. Our work 
focuses in the definition and implementation of a 
lightweight infrastructure that provides an unified, 
abstract view of the components that conforms modern 
complex system (including Hw and Sw modules). The 
OOCE does not impose the use of a particular  
concurrency or synchronization model, programming 
model or API between the entities in the system. The 
designer is free to choice between a wide range of 
alternatives built on top of the remote method invocation 
semantics. 
Following this introduction, we will discuss related work 
in section 2. In section 3, the principal features of the 
distributed object model and how they can be applied to 
SoC design are presented in depth. Section 4 surveys the 
proposed communication engine putting the focus on the 
different communication scenarios and how changes in 
system configuration are managed by the OOCE. Section 
5 will provide a quick view of how different 
programming models can be easily supported by the 
OOCE as well as the problem of modelling concurrency. 
Finally, we conclude the paper with the implementation 
results and some conclusions. 
 
2. Related work 
 
Lately, there is a significant amount of research work in 
the area of multiprocessor systems development and 
Hw/Sw interface modeling. In [4] a unified Hw/Sw 
component model to describe the different parts of a 
Hw/Sw interface is presented. It covers different 



 

abstraction levels at different steps of the design flow and 
it uses a service-based model to automatize the interface 
implementation. As in [4], we advocate for a unified 
model to achieve a true system level design methodology 
where hardware and software do not have different design 
flows. In our OOCE, the software version of the interface 
components also follows a two-layer approach. However, 
unlike [4], the presence of an operating system low-level 
service layer is optional which may lead to more efficient 
Sw to Hw communication. 
The interface synthesis process proposed in our OOCE is 
based on the specialization of several interface templates 
as in [5]. The advantage of such approach in comparison 
with others is the absence of an interface definition phase 
and a refinement process avoiding the designer to perform 
a non negligible amount of work. 
TTL [6] is a task level interface that can be used 
indistinctly for developing parallel application models and 
as a platform interface for integrating hardware and 
software tasks. In TTL the system is modelled as a set of 
communicating task (hardware or software) exchanging 
vector of tokens of some fixed type. On the contrary, 
OOCE uses an object-oriented model to specify the 
solution. Objects exposes a higher abstraction level in the 
communication since ports are replaced with method calls 
which may have arbitrary type signatures. These are some 
of the features that OOCE shared with the Multiflex [3] 
approach. Another common point between OOCE and 
Multiflex is the existence of an interface definition 
language and communication synthesis tools to guarantee 
a homogeneous representation of the data to be 
sent/received by the ends of the communication. This 
assures in-chip inter-component communication 
semantics. But we go one step forward. The OOCE data 
type system is 100% compatible with the ICE (Internet 
Communication Engine) data encoding rules. This feature 
enables OOCE to provide transparent off-chip 
communication with external components implementing 
the ICE protocol. To our knowledge, OOCE is the only 
platform that does not force to rewrite either applications 
or hardware components in order to make use of this 
advanced characteristic. 
Blocking and non blocking communication is offered like 
in TTL and Multiflex. In Multiflex, one or more ORBs 
(Object Request Brokers) are responsible for the 
synchronization and load balancing of the multiple 
request between objects connected to them. In our view, 
the ORB concept implemented in Multiflex may turn into 
a bottleneck in the communication process and can 
expose scalability and fault tolerance problems due to its 
centric nature. By contrast, the OOCE ORB equivalent 
functionality is distributed among the architectural 
components of the Hw/Sw communication engine. 
As in previous works by Paulin et al. [7] we also apply 
concepts from distributed object middlewares to SoC. We 

strongly believe that the application of the multiple forms 
of transparency, that a distributed object model (such as 
the proposed in Multiflex and OOCE) provides, will help 
the designers to manage the complexity and heterogeneity 
problems in complex SoCs. However, there are no clear 
references in [3,7] regarding this matter. The ORB, as the 
central functional component, may be considered the 
responsible for providing some kind of location 
transparency (matching services with requests), 
replication transparency (load balancing of the requests 
among objects) and concurrency transparency 
(scheduling the requests). But, besides the previously 
mentioned problems, no considerations are made about 
the “dynamic view of system”. Questions as how the 
migration of functionality is treated in a transparent way 
or even how the location transparency is assured if a 
service provider change its location (and therefore the 
ORB which is connected to) does not have a straight 
response. Our OOCE overcomes these limitations by a set 
of simple architectural elements. 
The distributed heterogeneous programming model that 
the OOCE supports covers the System, Virtual 
Architecture and Transaction Accurate levels of 
abstraction as proposed in [2] to efficiently abstract 
Hw/Sw interfaces. 
A MPSoC is a special case of System-on-Chip with 
multiple processors. Most of the research work in this 
area 
concentrates on software-related problems such as 
synchronization between Sw entities running in different 
processors. The OOCE concepts also apply to this 
communication scenario and extends the interest to Hw to 
Hw and and Hw to Sw communication. 
The application of object-oriented techniques to the 
design of hardware systems has mainly found three 
working lines: (a) the adoption of concepts from high 
level object-oriented programming languages by 
hardware description languages and vice versa, (b) 
system-level design and high level synthesis and (c) the 
development of hardware architectures that implements 
software objects. 
The improvement of the productivity is achieved by the 
reuse of previous code making it use of concepts such as 
class, inheritance, encapsulation and polymorphism. 
However, there is not a clear correlation between the 
concept of object and its hardware implementation. This 
conceptual gap is one of the reasons that it has motivated 
a slow, though progressive, acceptance of these 
techniques in hardware design. 
Regarding system-level design, SystemC provides 
hardware-oriented constructs packed into a class library, 
implemented in standard C++, to develop hardware 
systems. The use of UML for system level design has 
been proposed in [8,9] while [10] deals with the synthesis 
process from an object-oriented specification. 



 

Several implementations of software objects as hardware 
modules have been proposed in the literature. Eventually, 
a high level specification may be easier to be synthesized 
into RTL. Radetzki [11] establishes a hardware object 
architecture based on a memory plus some control logic 
for state transition. Goudarzi and Hessabi [12] propose a 
hardware platform for dynamic objects with support for 
inheritance and polymorphism. Cheng and Wu [13] 
analyzes four implementation strategies for software 
objects in hardware based on a data-memory mapping 
analysis. Our work does not propose any hardware object 
implementation but a general hardware object model 
following a structural approach to easily embrace current 
and future object hardware implementation strategies. 
 
3. The SoC as a distributed object system 
 
During the nineties, the traditional remote procedure call 
concept evolved into sophisticated software architectures 
for distributed heterogeneous programming. Many of the 
goals achieved by these architectures are also main 
concerns for hardware designers when they face the 
growing complexity of coming systems. Moreover, an 
analogy between SoCs and distributed systems can be 
established: Hw components and software processors as 
network nodes, buses and NoCs as interconnection media, 
communication message translated into bus transactions 
and so on.  
Considering a SoC as a set of objects that interact through 
message passing has a twofold benefit since (a) it keeps 
the system model invariable and (b) it establishes clear 
semantics for communication, enabling module 
interchange and reuse. Ideally, the designer will 
experience an important increase in his productivity and 
silicon companies could offer more flexible and cheaper 
platforms meeting the well-known cost and time-to-

market constraints. 
Our work is partially inspired in commercial middlewares 
such as ICE and CORBA. We adapt the solutions 
presented in them to the special requirements of hardware 
design: efficiency and low overhead. The OOCE 
implements hardware accelerators to boost the message 
passing process. 
 
3.1. Middleware concepts for SoC design 
 
A middleware is an abstraction layer containing a set of 
architectural elements that provide basic communication 
services. A middleware makes homogeneous the 
communication between the components hiding the 
implementation details of the network nodes to the 
application developer. Generally, a middleware bases its 
functionality on: (a) a client-server model of 
communication, (b) a common data type system and a set 
of data coding/encoding rules and (c) a simple protocol 
which defines the set of messages that the client and the 
server exchanges. 
The communication channel transparency is one of the 
basis to increase the reuse opportunities in SoC design. 
Both hardware and software modules can work properly 
in other environments with minimal changes. A 
middleware provides another form of transparency: 
access transparency.The interface to a component 
remains invariable regardless of changes in its internal 
implementation. SoC design could take advantage of 
access transparency in many ways: 

•  IP integration and interchange. Classes of 
hardware components will expose the same module 
interface (i.e. write and read operations). The 
implementation decisions (such as the use a FIFO or a 
RAM to provide some kind of storage capability) can be 
postponed to the very end of the design process [14]. 

•  Co-design. The access transparency principle 
implies a real homogeneous view of both software and 
hardware components. 

•  Model reuse. Since all the implementation details 
are hidden at system level, the model of the system keeps 
invariant from a design to another. 
Location transparency relates to the ability of two 
components to communicate independently of their real 
location. The middleware provides to the actors in the 
communication process the illusion that they interact 
locally even if they reside in distant network places. This 
opens a wide range of possibilities in SoC design: 

•Transparent Sw to Hw and Hw to Sw 
communication. The communication mechanism is 
exactly the same for all the communication scenarios 
since the system components (Hw or Sw) are not able to 
distinguish how the source/target of a message is 
implemented (again Hw or Sw). 

•Transparent management of component migration. 
Functionality may cross software and hardware 

Figure 1. Proposed middleware-based object-
oriented communication engine. 



 

boundaries on demand, depending on quality of service 
and performance criteria. 

•Transparent management of component 
replacement. On module failure or bug detection a 
component could be substituted. It is not needed to halt 
the whole system. Reconfigurable logic support is then 
necessary. 
 
4. The object-oriented communication engine 
 
Figure 1 shows a high-level vision of the most important 
elements present in our OOCE. Table 1 summarizes the 
role of each component. As stated previously, our 
communication engine is object-oriented which implies 
that any component in the system is seen as an object. An 
object provides just some per-instance private state data 
(attributes) and an encapsulation mechanism for some 
functionality (methods). Objects communicate with other 
objects in the system invoking the corresponding method. 
Therefore, the concept of object is the basis to offer (a) 
access transparency (through the set of methods that 
compose the object interface) and (b) semantics in the 
communication (through the method invocation 
mechanism). 
 
4.1. In-chip (SoC) communication 
 
In our OOCE, each method invocation must take place 
between a proxy and a skeleton. Actually, proxies and 
skeletons are not merely bus/network wrappers that 
isolate clients and servers from the bus/network. From the 
client point of view a proxy is seen as a private object 
implementation. It provides exactly the same interface. 

Consequently, the client (the object that initiates the 
communication) starts the invocation of a method as if it 
was physically connected to the real server. The proxy 
deals with the particularities of the underlying 
communication channel and forwards the request 
following a particular protocol and message format. In the 
other side, the skeleton acts as the server (the object that 
implements the required service). It receives the request 
and interprets it. Finally, the actual method invocation is 
performed to the actual server. 
A method call is decomposed into write and read 
primitives. Read and write operations are basic services 
offered by any of the buses and on-chip networks, so that 
the complete process can be easily targeted to a particular 
bus/network technology (OCP, OPB, AMBA, etc.). Also, 
some data encoding/decoding rules have to be defined in 
order to homogenize how data types are sent “on the 
wire”. Our OOCE provides support for synchronous 
invocations (blocking) and asynchronous invocations 
(non-blocking) for high latency operations. 
 
4.1.1. Hw to Hw communication. To implement logical 
objects as physical hardware components, we define: (1) a 
standardized interface in order to make automatic the 
generation of wrappers and (2) a “local” method 
invocation protocol. By “local” we mean two components 
connected directly. A hardware object exhibits a 
characteristic physical interface. One of the main features 
of our hardware object model is the flexibility to define 
how values are passed/retrieved to/from the IP. This 
makes it easier to fit the final implementation to the 
particular design constraints or to adapt existing IPs. 
However, “local” invocations are not the main scenario in 
current SoC: hardware components communicate through 
a system bus or network. Proxies and skeletons are in 
charge of implementing the “remote” invocation of 
methods as described in section 4.1. By “remote”, we 
mean an invocation that takes place between two 
hardware objects connected to a system bus or network. 
We propose an interface synthesis process based on 
object-oriented models to generate proxies and skeletons 
in an automatic way [15]. 
We use UML (Unified Modelling Language) to model the 
static and dynamic view of the system. For each object, a 
language-neutral interface definition using SLICE (The 
interface definition language used in ICE) is derived. 
Before the generation of RTL code, the designer must 
select a particular scheme of communication (bus, 
network, etc.) from a set of predefined mechanisms. 
Finally, a wrapper generation process specializes and 
optimizes a wrapper template that depends on the 
communication method previously selected, the number 
and type of operations that it must support, etc. The last 
step in our interface synthesis process is the generation of 
the hardware version for proxies and skeletons. We have 
defined two interface templates which will be specialized 

Table 1. Principal OOCE features applied to SoC 
design. 

OOCE  Middleware Concept SoC application 

Proxies/ 
Skeletons 

- Channel access 
transparency 
- Component access 
transparency 

- Component reuse 
- Bus/network 
independence 
- IP interchange 

Local Object 
Adapter 

- Location transparency - Transparent Sw 
and Hw integration 
- Migration 

Local Network 
Interface 

- Channel access 
transparency 

- Bus/network 
independence 
- Migration 

Remote Object 
Adapter 

- Location transparency - Off-chip 
communication 

 



 

according to the bus/network selected by the designer and 
the number and kind of methods to be interpreted. 
Based on the relationship information provided by the 
UML model, a skeleton is produced for each hardware 
object exporting at least one method. Only for each 
method that has to be remotely invoked by the client, a 
proxy to the target is generated. This reduces the logic 
used in the proxy since there is no implementation for 
unused methods. Another optimization introduced in this 
process is the reutilization of logic when two method 
definitions and their corresponding physical hardware 
object interfaces are identical. 
 
4.1.2 Hw to Sw and Sw to Hw Communication. In 
order to perform Hw/Sw communication transparently, 
neither software objects nor hardware objects must 
change the way they interface depending on which is the 
target/source of a method invocation. Proxies and 
skeletons, in the hardware side, do not need to distinguish 
if the callee/calling object is running in software or not. 
For this reason, invocations involving hardware and 
software objects result in exactly the same messages than 
the ones generated in a hardware to hardware method call. 
The Local Network Interface (LNI) and the Local Object 
Adapter (LOA) are the OOCE components that are in 
charge of the management of Hw/Sw communication. 
The LNI is completely implemented in hardware as a co-
processor which is also a peripheral connected to the local 
bus/network. Usually, the processor has a limited control 
over advanced bus features such as burst transactions, 
error control, etc. To implement an efficient Sw to Hw 

communication all the communication capabilities must 
be exposed and accessible. 
Also, the system processor usually has only a master 
interface to the system bus. This restricts the way other 
peripherals can communicate with it, for example through 
an interruption mechanism. The LNI simulates the 
processor slave interface we need to remain invariable the 
behaviour of the hardware proxies if the destination of the 
communication is a object running in the processor. 
Figure 2 shows the automatically generated software 
proxies code for two versions of a simple filtering 
algorithm implemented in a Xilinx-V2 Pro Platform . In 
(a) the iterator is implemented in hardware [14] whereas 
in (b) the filter and the iterator are both implemented in 
hardware. The reader should notice that although the non-
negligible changes in the underlying platform, the 
implementation of the main program does not change. 
The LNI holds a table containing only the identifiers of  
he objects and theirs corresponding system base address. 
The LNI is continuously monitoring the bus/network 
traffic. Once the LNI detects a transaction addresses to a 
software object, it issues an interruption. The LOA 
(implemented as the interruption service routine) 
communicates with the coprocessor to get the data 
associated with the invocation. Finally, the LOA acts as 
the skeleton of the server object and invokes the software 
method. 
The migration of functionality from Hw to Sw only 
requires the addition of a new entry in the LNI object's 
table. In addition, the Hw object module has to be notified 
so that any bus/network transaction is now unattended. 
The reverse path (migration from Sw to Hw) comprises 
the opposites steps. 
 
4.2.  Off-chip (SoC) communication 
 
Transparent off-chip communication is one of the main 
contributions of this work. In other approaches, since a 
common communication infrastructure is missing, on-
chip functionality may only be accessed from off-chip 
components using an ad-hoc interface that exists only if it 
has been foreseen by the designer. 
The Remote Object Adapter (ROA) receives the 
invocation from a external client object as a TCP 
encapsulated ICE (the commercial middleware used in 
our prototype) message, and translates it into a message 
for the skeleton as if it was a local proxy. The ROA 
internally caches some parts of the ICE message (client 
external network address, client OID, request identifier) 
in order to build a valid response message. Invocations 
from inside the chip to an outer server object are also 
possible. The ROA maintains a table with the OIDs of the 
external accessible objects and remote network addressing 
information. 
The number and type of applications that can make use of 
this feature ranges from debugging, simulation and 

 
Figure 2. Mixed mode filtering implementation. 



 

verification to collaborative development tools, remote 
control and ubiquitous computing. 
 
4.3. Dynamic Reconfiguration Support in OOCE 
 
The OOCE implements a reconfiguration service to 
manage the use of dynamic reconfiguration logic from an 
object-oriented point of view [16]. The presence of the 
reconfiguration logic will be unavoidable if we want to 
provide our system with migration and component 
replacement transparency. The use of the concept of 
object, easies the utilization of the partial reconfiguration 
technology by the applications. The reconfiguration 
service is logically structured in a four layer stack: 

•  Layer 1. Dynamically reconfigurable objects. At 
the lower level we find the dynamically reconfigurable 
objects. These objects, in addition to their normal 
functionality, include a very simple extra interface for 
controlling the stop, activation, the reconfiguration or the 
storage or loading of their state. 

•  Layer 2: Hardware and Software Activators. The 
activation layer manages the whole process of 
reconfiguration for an object, which may include making 
the object persistent. 

•  Layer 3: Dynamic Objects Management. The third 
layer provides high-level reconfiguration services, such as 
the scheduling, the location or the migration of the 
dynamically reconfigurable objects. The last layer 
corresponds to the application or operating system, that 
can make use of the reconfiguration services implicitly or 
explicitly. 
 
5. OOCE programming models and 
concurrency support 
 
As discussed in section 2, the OOCE is mainly based on a 
message-passing model typical of heterogeneous 
distributed computing environments. However the OOCE 
does not limit the choice to a single programming model. 
Due to the low-overhead introduced by the OOCE 
platform and the high degree of efficiency achieved by 
the hardware accelerators, more alternatives can be built 
on top of the communication engine. 
For example, let us consider a shared memory 
communication framework. The TTL interface [6] can be 
considered a good example of this kind of inter operation. 
Tasks correspond with objects in the OOCE (to be more 
precise control or active objects). Channels can be also 
modelled as objects in our object-based platform. Each 
object will be responsible for the channel administration 
and will implement the necessary methods to support TTL 
basic primitives interface. Different interface types (CB, 
RB, RN, DBI and DNI in TTL terminology) will be 
available through specialization of the channel base class. 

The management of the resources and the concurrent 
aspects of the system must be taken into account in 
parallel execution environments such as MPSoC, with 
several tasks or objects running simultaneously on 
different software processors. Once again, the use of the 
OOCE does not impose a fixed interface to get all the 
system components synchronized. What the OOCE 
provides is just a set of basic communication services that 
can be used at higher abstraction levels. Within the OOCE 
framework, the synchronization and concurrency 
problems are considered design problems. This contrasts 
with other interface-centric approaches where these 
matters have an important impact on the final API 
limiting the alternatives presented to the designers.  
We have developed a library of hardware, software and 
mixed (Hw/Sw) components to incorporate concurrency 
administration to the OOCE. The OOCE concurrency and 
synchronization support relies on the use of these library 
components (mutexes, locks, semaphores etc.) that enable 
the implementation of concurrency and resource design 
patterns. 
 
6. Experimental results 
 
All the OOCE concepts presented in this work have been 
implemented on the Xilinx XUP-V2Pro platform. The 
XUP-V2Pro platform uses a OPB system bus to connect 
all the processing elements in the SoC working at 
100Mhz. Software objects will run on a Microblaze 
software processor just as the local object adapter. The 
LNI has been implemented as a coprocessor attached to 
the system processor using two FSL (Fast Serial Link) 
interfaces. The slave link is used to invoke methods from 
SW to HW and the master link can be used by: (a) a 
calling SW object to retrieve the result from a previous 
synchronous invocation or (b) the LOA component to 
manage HW to SW invocations or to retrieve the result 
from a previous asynchronous invocation. 
The presence of the LNI component reduces considerably 
the overhead for a Sw/Hw, Hw/Sw and Sw/Sw 
(invocations between objects running on different 
processors) communication. Both client-side and server-
side code (software version of the proxy and skeleton) 
generated by our tools take less than 20 instructions each. 
The delay introduced by the LNI component is of 6 cycles 
for a incoming invocation and 3 cycles for a outgoing 
invocation (the former needs to translate the target bus 
address).  
The ROA is also completely implemented in hardware 
which provides faster processing times of ICEP messages. 
Less than 90 microseconds are necessary to parse an 
external invocation including: Ethernet, TCP and ICE 
header checking to validate the request, translation of the 
object and method identification strings to internal bus 
addresses. This represents a reduction of two orders of 
magnitude if we compare with its counterpart in software. 



 

Table 2 shows the synthesis results for the OOCE 
components implemented in hardware. Both ROA and 
LNI figures do not included the resources regarding the 
implementation of the translation tables. 
 
7. Conclusions and future work 
 
We have described an implementation strategy of a 
lightweight communication infrastructure for systems that 
are modelled as communicating objects. This 
infrastructure is independent of the underlying 
bus/network that relates all the components in the system. 
We have implemented all the presented concepts in a 
FPGA-based system. The principal features of our OOCE 
are: (a) most of its components are generated in an 
automatic way, with a minimum participation of the 
designer, (b) it is flexible since it is extremely easy to 
adapt it to new target technologies and (c) it enables the 
use of parallel programming models that help to abstract 
both hardware and software interfaces.Future work is 
being focused on developing a real co-design object-
oriented design methodology thanks to the introduction of 
concepts such as locations transparency and access 
transparency. 
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Table 2. OOCE components synthesis results. 

 ROA LNI Proxy Skeleton 

Slices 912 30 25 24 

FF 825 113 6 0 

LUTs 2161 167 27 43 

Critical 
path (ns) 

6.615  7.140 1.07 2.65 

 


