
Minimalist Object Oriented Service Discovery
Protocol for Wireless Sensor Networks

D. Villa, F. J. Villanueva, F.Moya, F. Rincón, J. Barba, and J. C. López

Dept. of Technology and Information Systems
University of Castilla-La Mancha

School of Computer Science. 13071 - Ciudad Real. Spain
{David.Villa, FelixJesus.Villanueva, Francisco.Moya, Fernando.Rincon,

Jesus.Barba, JuanCarlos.Lopez}@uclm.es

Abstract. This paper presents a new Service Discovery Protocol (SDP)
suitable for Wireless Sensor Networks (WSN). The restrictions that are
imposed by ultra low-cost sensor and actuators devices (basic compo-
nents of a WSN) are taken into account to reach a minimal footprint
solution.
The WSN communication model we use is based on the picoObject

approach [1] which implements a lightweight middleware for WSN on top
of standard object oriented middlewares using a small set of interfaces.
The proposed SDP uses also this set, so it supposes the minimal overhead
for devices and communication protocols, allowing, at the same time, the
deployment of a valuable set of services.1

1 Introduction

Wireless Sensor Networks (WSNs) are called to be a key component in any per-
vasive environment, supporting the interaction (monitoring and driving) with
the physical world. A WSN is composed of low-cost nodes which contain three
types of elements: a sensor or an actuator, a generic microcontroller and a net-
work interface. Sensors and actuators are oriented either to monitorize a physic
magnitude (e.g temperature, humidity, smoke, etc.) or to modify the state of
an element which drives such a physical magnitude (e.g a valve). The micro-
controller basically adapts raw data and provides communication facilities for
applications. At last, the network interface offers wireless network connectivity.

Flexibility and quickly deployment (due mainly to their wireless interface) are
the characteristic that make WSNs to become a good solution for multiple appli-
cations such medical [4] or meteorology [5] applications, habitat monitoring [6],
etc. In general, we can envision a pervasive environment plenty of heterogeneous
WSN nodes offering different services, from the most basic (supported by indi-
vidual nodes or the whole network) to the most complex (ambient intelligent
services resident in the environment).
1 This research is partly supported by FEDER and the Spanish Government (under

grant TIN2005-08719) and by FEDER and the Regional Government of Castilla-La
Mancha (under grants PBC-05-0009-1 and PBI-05-0049)



2

However, the flexibility in the deployment of WSN (avoiding wiring) has not
found its counterpart when developing software for such a type of networks. We
believe that a real deployment of a WSN has to minimize also the configuration
requirements of the application that take advantage of the services supported
by every WSN node. With the service discovery protocol (SDP) described in
this paper, a WSN node has the capacity to announce its services and offer the
possibility to use them without any previous configuration procedure.

The proposed SDP: a) Allows very low-cost nodes to be deployed in an easy
and incremental way (following a Place & Play philosophy). b) Allows appli-
cations to discover and use the services offered along a WSN (such property is
really desirable in mobile applications). c) Is designed for heterogeneous WSNs
where different nodes have different functionalities and even are implemented in
different technologies.

The SDP described in this paper is based on our previous work called pico-
Object [1]. As we report in that reference, this approach allows a very high degree
of interoperability with standard distributed object oriented middlewares, and
provides also the capability to view and to use the WSN nodes as conventional
distributed software objects without any intermediate device. The strong foot-
print limitations determine the design of a picoObject, as well as the design of
our SDP (as we will show in the next sections).

The SDP prototype is based on ICE [17] (Internet Communication Engine),
a high quality distributed object framework developed by ZeroC, Inc. built upon
the experience of CORBA but free of legacy or bureaucracy constraints.

The rest of this paper is organized as follows. Section 2 explains some previous
works on SDPs. In section 3 the picoObject approach is briefly summarized.
Section 4 is devoted to explain our SDP in detail. In section 5 the prototype we
have used to validate our proposal is briefly described. Finally we draw some
conclusions and outline some future work.

2 Related work

In the last years, several SDPs have been designed with the aim of automatizing
the service discovery and minimizing the configuration procedures required to
integrate a service in any networking environment.

Broadly used currently, some SDPs like UPnP [8], JINI lookup service [16],
Bluetooth SDP [10] or SLP [9] are considered as the de facto standards. The evo-
lution of fields like ambient intelligent, pervasive computing, or ubiquitous com-
puting has made it possible the development of an important amount of services
that use a variety of heterogeneous technologies and that need to interoperate.
This growth of services inherently implies complex configuration procedures for
integration with other networks services. Consequently, serious efforts have to be
made in order to simplify such configuration procedures and to make it possible
to support mobile services and service interoperability.

However, the current SDPs are not suitable for WSNs due to the serious
footprint restrictions the WSN nodes impose. Such restrictions have to do with



3

power supply, memory limitations, processing capacity, etc., parameters that
have not been taken into account in the design of current SDPs. For example, due
to footprint limitations, neither an XML parser (like UPnP requires) nor a Java
Virtual Machine (needed by the JINI lookup service) could be implemented in a
WSN node. Even lightweight protocols oriented to mobile devices like Bluetooth
SDP or PDP [13] do not assume such constraints in their design.

Recent works have proposed SDPs for new technologies like mobile ad-hoc
networks [12] and [11]. In these highly dynamic environments, in which services
are registered in a directory (in a similar way to yellow pages), the directory-
based structures cannot be deployed due to the lack of a fixed infrastructure. This
has been the problem usually addressed, but, once again, the minimal footprint
requeriments of WSN nodes have not been taken into consideration.

On the other hand, current platforms oriented to support WSN (good surveys
can be found in [15] and [14]) are working prototypes in which the nodes will have
to be reduced in cost (therefore probably in resources) for a eventual massive
introduction in the market.

In [7] a resource discovery protocol (called DRD) specially designed for WSN
is described. In DRD each node sends a binary XML description to another node
that has been selected as the cluster head (CH) (this node assumes the represen-
tation of all the nodes under its range) which responds to any possible query (in
SQL) in place of its cluster sensors. The CH is selected between all the nodes de-
pending on their remaining energy. Thus it is necessary to give all the nodes the
capacity of being a CH. This means that all nodes need SQLlite database, libxml2
and a binary XML parser to implement the CH functionality. Our approach, as
we will describe in section 4, provides a way to incrementally add functionality
to the nodes, so ultra low-cost sensor nodes can be easily integrated in a first step
and, then, according to its capacity, acquire new functionality. It is necessary to
clarify that when we are talking about wireless sensor nodes we are thinking on
a minimal footprint device, even more limited than current prototype platforms
like MICA, MicaZ, RockWell WINS, etc.

Finally, in [3] an homogeneous sensor network (all the nodes have the same
functionality) resource discovery protocol is proposed, centering in the optimiza-
tion of the flooding process by taking advantage of historical queries [7]. Our work
supposes that a WSN is formed by heterogeneous nodes implementing different
services that do not need to be considered in an homogeneous way (managed by
a simple table).

In general, we observe that previous works have not faced the design of SDPs
in such a way that: a) they turn out to be suitable for heterogeneous WSN, taking
into account the footprint requeriments of small devices, and, 2) they support
the use of node services by client applications without the need of a configuration
procedure. Therefore, we will focus on these issues.



4

3 picoObjects

Our SDP has been designed to give support to WSN based on picoObjects,
although it is perfectly applicable (without any change) to more powerful devices
or even to WSN based on other approaches (including, for example, some widely
used devices such as the MICA Motes).

The picoObjects are implemented as message matching automatons. From
a textual description (that includes the object interface description), the pico-
Object compiler can generate these automatons in several programming lan-
guages and for several platforms.

This approach allows the picoObjects to be embedded either into the small-
est microcontroller in the market, into the tiniest embedded Java virtual ma-
chine, or even in a low-end FPGA. For a deep description of the picoObject
approach, please refer to [1]. A picoObject implementation example can be
found in our webpage [18].

4 Abstract Service Discovery Framework

We have defined an ultra lightweight service discovery protocol, called ASDF
(Abstract Service Discovery Framework), which, using the object oriented paradigm,
provides several valuable features such as: a) An easy way for device announce-
ment. b) Extensibility and scalability. c) Legacy SDP interaction. d) Seamless
integration with standard middlewares. e) Auto-configuration for devices (in or-
der to get a place & play behavior).

The ASDF is designed keeping in mind minimal footprint devices. For exam-
ple, the protocol allows the nodes to announce themselves to the network using
simple, but completely middleware compliant, messages. In spite of this, the
protocol is very scalable and can perfectly be applied to more powerful devices.

4.1 Event Channels

Our protocol uses extensively the middleware standard event service. This makes
it possible to easily decouple all involved elements. The event channel is a di-
rect implementation of the observer [2] design pattern (also known as publish-
subscribe).

The IceStorm (the ZeroC ICE event channel service) is able to employ several
transport protocols at same time (at least TCP, SSL, UDP and multicast UDP)
in a transparent way for objects and even over the same channel. Each publisher
or subscriber can even choose the protocol to use individually.

However, it is not convenient to connect too many nodes to the same event
channel due to scalability reasons. Therefore, several event channels (topics in
ICE parlance) are used. Event channels have minimal resource cost and they
can be interconnected by means of “links” to propagate events to each other.
These links have some parameters that allow to establish limits or priorities to
the event propagation.



5

Event channel federation is another technique to group some nodes (their cor-
responding event channels) together according to different criteria (functionality,
location, class of service...) in the same logic channel, but keeping the ability to
propagate certain events to other channels.

4.2 Place & Play environment

Node deployment is a key issue for sensor networks. It is very convenient that
nodes can configure themselves in an autonomous way. When an actor (an actor
is a node/device that can expose its functionality by means of an object inter-
face) is connected o returns from a sleep state, the node sends an announcement
message (adv()) to a specific event channel (called ASD.announce). Optionally,
these announcements can also be sent periodically. The adv() member function
is part of the iListener interface. Because of this, all the applications or actors
that are interested in announcing their services, must implement the aforemen-
tioned interface. The description of this interface is as follows:

module ASD {
interface iListener {

idempotent void adv(Object* prx, iProperties* prop);
};

};

The argument prx is a proxy to contact the object that sends the event. The
argument prop is an object that serves to access the node properties (see 4.3).
The next listing exposes the content of an adv() message:

Magic Number: ’I’,’c’,’e’,’P’
Protocol: 1,0 - Encoding: 1,0
Message Type: Request (0)
Compression Status: Uncompressed (0)
Message Size: 54, Request Message Body

Request Identifier: 0
Object Identity Name: publish
Object Identity Content: asdf
Operation Name: adv - Ice::OperationMode: normal (0)
Input Parameters Size: 16
Input Parameters Encoding: 1,0 - Encapsulated parameters (10 bytes)

Sometimes, the adv() message arguments are fully static. In these cases,
since the total message size is about 80 bytes, these arguments can be stored in
the device ROM.

The clients and services interested in the potential announcements that may
occur must subscribe to the event channel ASD.announce. When a subscriber
receives an adv() event, it gets the object proxy of the announced actor and
uses the introspection mechanisms to interrogate the actor. The subscriber can
also list and request the actor properties by means of the argument prop.

Although this announcement procedure has a high abstraction level, it can
be implemented on very simple devices with an identical behaviour respect to a
conventional “object”.



6

4.3 Properties

As mentioned before, the parameter prop in the adv() message is an object
proxy for a “property server”. The property server allows the clients to access
the actor properties. There are several alternatives:

– The argument prop can be a null proxy when it is not necessary or there is
not a property server for the actor.

– The proxy prop can point to a remote object in a different localization.
This allows to implements corrective property servers for many actors whose
properties are stored out of the actor, even in a big database. A single servant
can dispatch many objects using a “default servant” strategy.

– If the device has enough computing resources, the property server can be
implemented in the own device. In this case, both adv() arguments, prx
and prop, point to the same object.

The property servers implement the iProperties interface:

module ASD {
interface iProperties {

Ice::ByteSeq propget(string key);
void propset(string key, Ice::ByteSeq value);
Ice::StringSeq proplist(void);

};
};

The properties are specified by means of a string key. The property value
is a byte sequence and thereby it can store strings, configuration files, binary
drivers, images, maps, Java applets, etc

In any case, the actor properties are considered optional -not required- infor-
mation. This information is useful for administration, configuration and mon-
itoring tools but it doesn’t affect the system basic functionality. The system
services never depend on property values or their availability.

4.4 Basic interface for actors

All actors (sensors or actuators) implement a very simple interface to expose their
state value. The sensor state is the measured value of the physical magnitude.
There are different interfaces that depends on the type of data they manage.
Some of them are shown next:

module iBool {
interface W { void set(bool v); };
interface R { nonmutating bool get(); };

};

module iByte {
interface W { void set(byte v); };
interface R { nonmutating byte get(); };

};
...



7

4.5 Interaction model for actors

Depending on the application interacts with actors, there are four basic types
of actor behaviors: Passive) To get the state value of a passive sensor, the
client needs to invoke explicitly the actor’s get() method and then will receive
the reply in a synchronous way. Active) The active actor is able to send a
set() message in a pre-programmed way to another object (usually an event
channel). That message indicates the current state of the actor. Proactive)
It’s also an active sensor but it sends the set() event when a change occurs
in its state. Reactive) A reactive sensor is an active sensor that sends set()
events only if a client invokes its standard ice ping() method. The ice ping()
standard functionality has been extended so when this method is invoked, the
actor, besides the conventional ice ping() behaviour, sends an event to the
pre-defined event channel to publish its state.

Therefore, when we talk about active actors (or active sensors), we refer to
both, reactive and proactive ones. All active objects implement the interface
iActive that is shown below:

module ASD {
interface iActive { idempotent void topic(Object* prx); };

};

The passive actors requires a two-way communication model while the active
ones could use a one-way communication model.

Using the topic() method, an specialized service can instruct the actor
about the remote object (event channel) where the actor must send its events.

4.6 Actor set-up

The active sensors need an event channel to send their state updates. When
an actor announces itself, a “channel monitor” service does the following tasks
(figure 1):

1) Using the middleware introspection features, it asserts that the new actor
is actually an active actor (it implements the iActive interface). 2) It creates an
event channel using the object identity as the channel name. If that event channel
already exists (it has been created before) then no further actions are needed
and the process finishes. 3) After creating the corresponding event channel, the
monitor invokes the actor’s topic() member function with the proxy for the
new event channel as the argument.

This process is designed keeping in mind that actors are implemented as
picoObjects: this means that they are not able to create event channels by
themselves and need of the existence of the channel monitor. For a more powerful
device, capable of running a standard middleware, the monitor makes no sense,
since its functionality is performed by the standard middleware procedures.

Since every actor creates its own specialized event channel to send its events,
this approach allows to take under control the message flow, improving at the
same time the system scalability.



8

actor

adv(self,prop)
adv(self,prop)

subscribe(self)

ice_isA(’ASD::iActive’)

<<create>>

topic(cb)

Fig. 1. Sequence diagram for Channel Monitor Service.

4.7 Multi-requests

In WSNs, it is usual that a service requires to query to a certain set of sensors:
for example, the service may need to compute the temperature average in a big
room with many installed sensors. As a way to simplify this operation, we use
reactive actors (see section 4.5).

ice_ping()

<<create>>

link(channel 1)

link(channel n)

...

subscribe(self)

<<create>>

subscribe(actor 1)

subscribe(actor n)...

ice_ping()
set(value)

set(value)

set(value)

application

cb : Topic

actor

actor

channel

<<create>>

Fig. 2. Sequence diagram for multi-requests.

If a client is interested in the value of a set of sensors, it can create a new
event channel. All involved sensors event channels are linked to the new one
(if it is known that several nodes share some kind of functional or structural
relation the new event channel may be created by default). The clients that are
interested in the state of this set of sensors may subscribe to the new channel.



9

The most efficient way to send the ice ping() to a set of actors is that they
hold an additional multicast endpoint. But this is not always possible because
it depends on the underlying network technology. For these cases, an alternative
solution is proposed (as shown in figure 2).

To make it possible a multiple request, another new event channel is created.
All the involved sensors are subscribed to it. This task can be done by an external
application, transparently to the nodes. From this moment, when a client sends
an ice ping() message, all the nodes receive it.

With the multi-request procedure and thanks to the ICE Storm channels
event federation mechanism any external application can configurate its partic-
ular vision of the world attending to different aspects like functionality, position,
security, etc.

4.8 Service Lookup

When an application needs to find a object that provides certain service, the
application creates an event channel to be used as “callback” and subscribes
to it. Then, the application invokes the lookup() method over the ASD.search
event channel indicating the property values it wants and the callback event
channel proxy. The lookup() method belongs to the ASD::iSearch interface.
The application is responsible for the event channel dispose.

interface iSearch {
dictionary<string, ByteSeq> PropDict;
void lookup(Object* prx, PropDict query);

};

The actors (subscribed to the ASD.search channel) that match the criterion
send an adv() message to the channel proxy specified by the application in the
lookup() message. If other applications or services are interested in the potential
replies, they can subscribe to the published channel proxy. A sequence diagram
of this procedure is shown in figure 3.

To ensure that actor replies are not sent before others can subscribe to the
callback channel, the actor waits for a fixed time before the announcement event
is sent. Also, other additional random timeout can be implemented to improve
the system scalability.

4.9 Legacy SDP Integration

In large heterogeneous pervasive environments where different networks are de-
ployed (multimedia network, personal body networks, control networks, etc.) it
is not likely than only one SDP covers all the different networks. It is also un-
realistic to assume that all devices implement just the same SDP. Devices and
services from different manufacturers will probably implement several SDPs.
Again, a real deployment will require interoperability of several SDPs, at least,
for a basic interaction.

We are working on the design and implementation of new procedures that
allow a complete interoperability with other SDPs. Looking at the current de



10

lookup(cb, query)

<<create>>

subscribe(self)

lookup(cb, query)

adv(actor, prop)

adv(actor, prop)

Fig. 3. Sequence diagram for service lookup.

Name of the ASDF Message Size of Message (in bytes)

Ice::Object::ice ping 46
IceStorm::TopicManager::create 71
IceStorm::Topic::subscribe 97
IceStorm::Topic::link 91
ASD::iListener::adv 96 (+46 if prop. server)
ASD::iActive::topic 88
ASD::iSearch::lookup >92 (depends on query)
iByte::W::set 42

Table 1. Size of messages employed in ASDF

facto standard protocols (UPnP, Bluetooth SDP and JINI are being considered)
a set of common primitives will be derived so as to make it easy the development
of bridges between the ASDF and other SDPs.

Our target is to provide the ASDF with a basic interoperability to, for exam-
ple, localize and execute services that are offered by a specific WSN node from
an UPnP service and without any modification of such a service. To achieve this,
we are working on matching the UPnP primitives with the events that can be
directly interpreted by the ppicoObjects that are installed in the WSN nodes.

The choice of the primitives to be implemented and the granularity of the
implementation have to be carefully selected and will strongly depend on the
SDPs to be integrated.

5 Experimental results

The table 1 shows the size of the messages used in the ASDF protocol, assuming
that it has been implemented in ICE. Some of them are standard ICE messages.
In the tests, the object identity was 8 bytes long and it used IPv4 endpoints.

In the current prototypes, we are using a 8-bit micro-controller although it
is underutilized. Its characteristics are:

– Model: Microchip PIC 16LF876A, 10MHz



11

Type of actor bytecode VM total footprint RAM used

TCP passive (without adv()) 350 333 683 36
TCP passive (periodic adv()) 455 411 866 36
TCP reactive (periodic adv()) 527 411 938 64
UDP reactive (periodic adv()) 368 411 779 64

Table 2. footprint for several picoObject nodes (in bytes)

– Program memory: 8 KiB
– RAM: 368 bytes
– I/O: 1 USART, 22 i/o pins, two 8-bit timers and one 16-bit timer.

The table 2 shows the size of several prototype actors. The indicated size
includes the complete implementation that runs in the aforementioned micro-
controller. No other library or software component is needed. The picoObject
execution model is composed by a automaton specification (the bytecode) and
a small interpreter (a virtual machine, VM) implemented in assembly language.
All of them are about two orders of magnitude smaller than any other previous
implementation of small embedded standard middlewares.

6 Conclusions

In this paper we have presented a SDP (called ASDF) suitable for low-cost nodes
in the WSN field. This SDP allows a place & play behavior, so nodes and services
can be deployed in a easy and flexible way without any configuration procedure.

Based on a previous work (picoObjects), the proposed SDP provides the
WSN nodes with an advertisement service by means of events. Additionally, it
allows external applications to lookup services offered by the WSN nodes.

The design of the ASDF allows incremental addition of functionality accord-
ing to the device capabilities. Moreover, we have implemented an ASDF proto-
type using an standard distributed middleware whose common services (event
channels, replication, persistence, location transparency, security, etc.) have al-
lowed an easy and reliable implementation.

Due to the interfaces shown in this paper, an application does not distinguish
between the advertisement generated by a service resident in a conventional PC
or by a node in a WSN. This fact represents a great advantage for quickl devel-
opment of applications which use WSN services making unnecessary either to
integrate in such applications complex WSN specific protocols or to use different
programming languages.

In a near future, our work is mainly focused on widening the range of plat-
forms supported by the picoObject compiler at same time that we integrate
third party services using different SDPs (UPnP and Bluetooth SDP bridges are
currently under development) making it possible the real deployment of large
heterogeneous pervasive environments under a place & play philosophy.



12

References

1. D. Villa, F.J. Villanueva, F. Moya, F. Rincón, J. Barba, J.C. López. Embedding
a general purpose middleware for seamless interoperability of networked hardware
and software components Grid and Pervasive Computing, GPC 2006, Taiwan May
2006. Lecture Notes in Computer Science 3947.

2. E. Gamma, R.H., R. Johnson, J. Vlissides, Design Patterns, Elements of Object-
Oriented Software. 1995, Addison-Wesley.

3. F. Stann and J. Heidemann. BARD:Bayesian-assisted resource discovery in sensor
networks in Proceedings of the IEEE Infocom, 2005.

4. Timmons, N.F.; Scanlon, W.G., Analysis of the performance of IEEE 802.15.4 for
medical sensor body area networking, IEEE SECON 2004, October 2004

5. J. Lundquist, D. Cayan, and M. Dettinger., Meteorology and Hydrology in Yosemite
National Park: A Sensor Network Application, Information Processing in Sensor
Networks (IPSN), April 2003

6. A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson, Wireless
Sensor Networks for Habitat Monitoring, WSNA’02, September 2002

7. S. Tilak, K. Chiu, N.B. Abu-Ghazaleh and T. Fountain, Dynamic Resource Dis-
covery for Wireless Sensor Networks IFIP International Symposium on Network-
Centric Ubiquitous Systems (NCUS 2005)

8. Microsoft, UPnP Device Architecture v1.0 Available at
http://www.upnp.org/download/UPnPDA10 20000613.htm, June 2000.

9. E. Guttman and C. Perkins and J. Veizades and M. Day, Service Location Protocol,
Version 2, RFC 2608, 1999.

10. Bluetooth SIG, Specification of the Bluetooth System v2.0, available at
http://www.bluetooth.org. November, 2004.

11. U.C. Kozat and L. Tassiulas. Service Discovery in mobile ad-hoc networks: an over-
all perspectiva on architectural choices and network layer support issues Journal
on Ad-hoc Networks, 2004.

12. F. Sailhan and V. Issarny. Scalable Service Discovery for MANET Proceedings of
the 3rd IEEE conference on Pervasive Computing and communications, 2005.

13. C. Campo and M. Munoz and J.C. Perea and A. Marin and C. Garcia Rubio, PDP
and GSDL, a new service discovery middleware to support spontaneous interactions
in pervasive systems, Pervasive Computing and Communications Workshop, 2005.

14. M. Kuorilehto, M. Hannikainen and T. Hamalainen, A Survey of Application Dis-
tribution in Wireless Sensor Networks EURASIP journal on Wireless Communi-
cations and Networking 2005:5,pp 774-788.

15. P. Baronti, P. Pillai, V. Chook, S. Chessa, A. Gotta, Y. Fun Hu, Wireless Sen-
sor Networks: a Survey on the State of the Art and the 802.15.4 and ZigBee
Standards Technical Report ISTI-2006-TR-18, Istituto di Scienza e Tecnologie
dell’Informazione del CNR, Pisa, Italy, November 2006, pp.41.

16. Sun Microsystems, Jini Architecture Specification, ed. 1.2, available online at
http://www.sun.com/,

17. ZeroC, Inc., ICE Home Page, available online at http://www.zeroc.com/,
18. ARCO Group, PicoObject Web demostration example, available at http://arco.inf-

cr.uclm.es/marisa.html.en


