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Abstract 

 
System-On-Chip (SoC) architectures are called to 

be the platform for an ever increasing number of 
interactive applications. One of the most time-
consuming tasks is to define communication interfaces 
between the different components through a number of 
scattered heterogeneous processing nodes. That is not 
only a complex task, but also very specific to a certain 
implementation, which may limit the flexibility of the 
system, and makes the solutions difficult to reuse. In 
this paper, we describe how the distributed systems 
paradigm can be extended to provide a unified 
abstraction for both hardware and software 
components. Moreover, based on that abstraction, we 
define a low-overhead system-wide communication 
architecture that offers communication transparency 
between all kinds of components. Since the 
architecture is highly compatible with standard 
distributed object software systems, it also allows 
seamless interaction with any other kind of external 
network.  
 
1. Introduction 
 

The latest consumer applications (e.g. multimedia  
processing or 3D games) demand complex designs to 
meet their real-time requirements while respecting  
other design constraints, such as low power or short 
time-to-market [10]. In this context, SYSTEMS ON 
CHIP (MPSoCs) have been proposed as a promising 
solution. Nevertheless, one major challenge in such 
systems is the integration in the platform of the 
multiple communication and APPLICATION 
PROGRAMMING INTERFACES (API) that each 
component (e.g. memory, buses, cores, etc.) is 
designed for.  Moreover, another important problem in 
SoC design is the knowledge of the position of each 
component in the final system so as to be able to 
efficiently communicate with it (i.e. is it local, remote 
etc.), which makes the correct design of the 

aforementioned SoC an even more complex task.  
Thus, new methods that allow designers to achieve 
unified inter-communication methods on SoC 
architectures in the system integration flow are 
urgently needed. 

Some concepts taken from distributed object 
platforms such as CORBA or Java RMI have already 
been applied to SoC design in order to obtain a unified 
view of Hw and Sw modules [13].  In this paper we 
present an approach which inherits most of these 
previous achievements enriched with a strong focus on 
location transparency and network transparency.  The 
resulting architecture provides a unified view of the 
whole system and also enables the designer to 
seamlessly develop multi-SoC systems with different 
network technologies. 

This paper is organized as follows. In Section 2 we 
discuss why SoCs are valid platforms for distributed 
objects systems.  In Section 3 we present the overall 
hardware SoC architecture proposed for an efficient 
unified interconnection of components. In Section 4 
we describe the synthesis process of the 
communication architecture. Section 5 provides an 
overall illustrative example. In Section 6, we describe 
different SoCs used as case studies and present our 
experimental results. In Section 7, we  give an 
overview of work relating to our approach . Finally, in 
section 8, we summarize the contributions of the paper 
and present possible directions for future research. 
 
2. SoC as a Distributed Object System 
 

Generally speaking, a distributed system consists of 
a set of heterogeneous computing and storage 
resources connected to each other via an 
interconnected network. This normally refers to 
computers interconnected through local or wide area 
networks, but the definition may also include other 
kinds of systems, using different types of networks, 
transport protocols, etc. 

Most of these systems are programmed using an 
object-oriented approach. The use of objects enforces 
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modularity and provides flexibility and reusability. 
Objects also rely on a simple communication model: 
method invocation. This same mechanism is used for 
remote communication (REMOTE METHOD 
INVOCATION or RMI), where invocations are 
translated into synchronous messages passed though a 
certain communication infrastructure.  The main 
advantage of RMI is that it provides a neat separation 
between functionality and communication. That makes 
Distributed Object Systems specially well-suited to 
deal with heterogeneity and scalability of applications. 

But communication in distributed systems means 
more than simply routing messages between remote 
objects. It requires that we handle concepts such as 
access transparency, where an object must provide the 
same interface for an object regardless of its target 
architecture or language implementation; location 
transparency, which means that the destination of the 
message is not explicitly known by the caller; or 
migration transparency, where an object may migrate 
to another node without the caller knowing it or 
requiring any special action for it. These concepts are 
all built into a common infrastructure, the middleware, 
which will handle all communication tasks, and will 
provide a common high-level abstraction to the 
communicating objects. 

 

 
 

Figure 1. Actors in a Remote Method Invocation 
 
Figure 1 shows the actors in remote 

communication, and the domain they belong to 
(application or middleware). Any method invocation 
must take place between a Proxy and a Skeleton. From 
the client point of view, the proxy is the requested 
object itself, since it provides exactly the same 
physical interface. On the other hand, server objects do 
not need to care about the location of client objects. 
They just provide an object interface which is exported 
through a skeleton. Communication between clients 
and servers then flows in the following way: 1) client 
requests an operation from the local proxy of the 
object. 2) The proxy translates the request into a set of 

signal assignments that will depend on the underlying 
communication architecture, 3) The skeleton receives 
proxy requests and translates them back to the 
operation provided by the server, 4) the server 
completes operation execution. 

As in many standard software middlewares the 
approach described above relies on the automatic 
generation of the proper proxies and skeletons 
depending on the kind of communication that must be 
established between objects. 
 
2.1 Global Communication Mechanism 
 

The Distributed Object paradigm can be extended 
to multiprocessor NoCs. Messages passing between 
objects can naturally be adapted to the packet 
switching transmission mechanism of embedded 
networks, while software distributed objects may be 
deployed over the different software processors in the 
NoC, simply by  adapting the embedded versions of 
standard middlewares. 

Any hardware component can also be considered a 
hardware object. Such a component doesn’t have 
exactly the same characteristics as its software 
counterparts, mainly due to the static nature of 
hardware. However, they have a well known interface, 
provide encapsulation, have a state and include the 
logic to perform computations over that state, which is 
enough for using them in a distributed objects 
environment. 

Here the challenge consists of how to define a 
global communication mechanism (system-wide 
middleware) that is able to provide communication 
transparency between any objects in the system, and 
support a unified programming model through the use 
of the same abstractions, regardless of the hardware or 
software implementation of the objects. 
 
3. SoC Hardware Inter-Communication 
Architecture 

 
In the following paragraphs, we describe our 

proposal for a system middleware that has been 
conceived with 3 objectives in mind. First, to define 
the basic communication mechanisms to allow RMI 
between any node inside the SoC, in spite of their 
hardware or software implementations. Second, it must 
be interoperable with other middlewares. That means 
that it must give external objects of the SoC the 
possibility to invoke methods from internal objects, 
and vice versa. And finally, it must be light-weight in 
cost and performance. 



3.1 Local Inter-Communication Mechanism 
 
One of the duties of the communication system is 

to cover the gap between high-level object method 
invocation and low-level protocol signaling of NoC 
network interfaces or standard buses. Invocations 
represent messages with an object and method name, 
plus a certain number of parameters of simple or 
complex types that may or may not have a return 
value. Low-level interfaces deal with data words that 
can be securely routed from/to other NIs or transmitted 
through a bus. To bridge this gap, the communication 
system defines a standard message format and a 
transport independent message passing mechanism (the 
proxies and skeletons described in section 2).  

But the communication system must also provide 
interoperability between hardware and software 
objects. That means that proxies must be able to 
communicate to their corresponding skeletons, no 
matter what their mutual hardware or software 
implementations.  Even the same proxy might 
communicate sometimes to a software implementation, 
sometimes to a hardware one of the same object. In the 
proposed architecture, all objects are interconnected to 
a common physical communication infrastructure (a 
bus, a hierarchy of buses or a NoC). So, 
interoperability is guaranteed by translating equal 
invocations to equal low-level messages. There is 
absolutely no difference then between an invocation 
message generated by a hardware or software object. 

Hardware objects implement their functional 
interfaces using signals for method invocation and 
buses for their parameters and return values. Thus, Hw 
to Hw communication requires that the proxy pack the 
invocation into a set of words and translate it into a 
read or write transaction on the bus or NI (normally a 
burst). On the other side the skeleton unpacks the 
received data and regenerates the signals for exactly 
the same signals interface, giving the illusion of a point 
to point connection for both objects. In fact, the only 
difference between both approaches is the time the 
invocation takes to reach the destination. It may seem 
that proxies and skeletons are then simply bus 
wrappers between two cores. In part they are, since 
they provide bus adaptation, but they also provide the 
semantics of RMI, so there is no need to know 
anything about an object except its logical interface to 
use it. That is not the case of current IP cores, where 
communication and functionality are not clearly 
separated. Moreover, the overheads of this approach 
are almost negligible, as will be discussed in section 5.  

From a distributed object environment point of 
view, we may say that the main difference between 
hardware and software objects is that while the former 

execute in their own node, the latter share the node 
(the processor) with many other objects. For that 
reason objects are not directly connected to the 
communication system, but a software layer exists 
between them. This layer may be as complicated as an 
operating system, or simply be a collection of routines 
that provides secure (and multiplexed) access to the 
system bus or network interface. We will refer to this 
layer as the communication API. In any case, the 
messages routed from and to software objects through 
the low-level communication infrastructure are exactly 
the same as if they were routed to their hardware 
versions. 

Invocations from software to hardware objects use 
again the same flow described before. There is a local 
software proxy which provides the same interface as 
the hardware object. The proxy is almost hollow, and 
simply translates each invocation to a remote 
invocation, using the communications API (see RMI 
invocation in figure 4a). The invocation is serialized 
by the communication software and converted into a 
low-level transaction, identical to that generated from 
the hardware version of the proxy. Hardware to 
software invocations are symmetrical from the logical 
point of view, and messages reaching software 
skeletons are translated into local invocations.  

The sceneries described before show how proxies 
and skeletons are used to provide communication 
transparency between all kinds of object (hardware or 
software). However, there are some other facilities that 
can be easily provided by the proposed architecture, 
such as location transparency. In that case a specialized 
object (locator) includes a routing table, and the hard-
coded addresses of the target objects in the proxies are 
replaced by an indirect invocation through the locator 
object. Of course, this has some negative effects on 
communication performance, however location 
transparency should be compelling to support dynamic 
object creation in reconfigurable architectures, or for 
patching buggy hardware after manufacturing, for 
example. 

 
3.2 Remote Inter-Communication Mechanism 
 

The proposed architecture also considers remote 
communication with objects external to the SoC, and 
that can be accessed through an ethernet network 
interface, for example. Two special services provide 
remote invocation capabilities to and from the SoC, but 
no modifications are necessary for any of the local 
objects involved. Invocation from external object 
methods is handled by the object adapter. This adapter 
includes the proxies for those local objects that are 
going to be accessed from the outside. It is also  



responsible for receiving the messages from the 
outside (a UDP frame from an ethernet controller, for 
example), and translating them into invocations of the 
equivalent local proxy. On the other hand, invocation 
of external objects methods is the responsibility of the 
remote server. The server provides local skeletons for 
the caller proxies of all the remote objects to be 
contacted, translates invocations received by every 
proxy to the corresponding message, and routes it 
accordingly.  Since not all objects in the system will 
require remote interaction, those two services may be 
optimally generated for the needs of the application. 
 
4. Unified Design Flow 
 

One of the main features of the proposed global 
communication architecture is that it can be fully 
automatically generated. This prevents the designer 
from dealing with complicated APIs or concrete 
communication protocols, and eases design exploration 
tasks.  

 

 
 

Figure 2. Communication Architecture Synthesis Flow 
 

The synthesis flow is depicted in figure 2. Initially 
we should model the application with an object 
oriented approach. This model will only define a set of 
entities (objects) and relationships (collaborations) in 
the domain of the problem, and thus will not be related 
to any kind of implementation. 

The inputs to the flow will be the object, 
collaboration and deployment diagrams that are 
typically obtained using UML for the modeling phase. 
The first one describes the interaction between objects 
(of a certain class) at run time. The collaboration 
diagram describes interaction between objects in terms 
of sequenced messages for concrete use cases. Finally, 
the deployment diagram should define how objects are 
to be implemented (Hw or Sw), and even additional 
information for Hw objects such as the relationship 
between parameters and ports, the number of 
concurrent requests a method may support, etc. All 
these 3 diagrams will be used to generate a single slice 
file. Slice is an Interface Description Language (IDL) 
for the Internet Communication Protocol [8] (ICE), a 
CORBA-like middleware platform. The slice 
description will contain user-defined data types and the 
object interfaces with only those methods that are 
really used in the application. The file will also contain 
some metadata to capture the information in the 
deployment diagram. The deployment diagram will 
also be used to generate a configuration file for the 
synthesis of the low-level communication 
infrastructure. That will be the XPipes compiler [9] in 
our case, and it will define the number of processing 
elements in the system and possible routes between 
them. The Slice description is still implementation 
technology (Hw or Sw) and language independent. 

The synthesis of the communication architecture is 
performed by three kinds of compilers. The XPipes 
compiler will synthesize the lower layer of the NoC, 
that will provide message transport. The Slice-to-C++ 
and Slice-to-VHDL are responsible for the generation 
of the second layer, the system middleware, which is in 
fact a collection of proxies and skeletons of the 
different objects plus additional logic (and code) to 
provide run-time communication services, such as a 
directory service for indirect location of the objects, 
remote communication outside the NoC, etc. On the 
application domain, client and server objects will 
simply connect (or instantiate in the Sw domain) to the 
corresponding proxies and skeletons. 

In order to obtain a light-weight implementation of 
the middleware, every component is optimally 
synthesized. That means that only the necessary 
hardware or software versions of proxies and skeletons 
are generated (depending on the type of invocation: 
Hw-Hw, Hw-Sw or Sw-Hw). Even for the internal 
architecture of these components, the interface, data 
type marshalling logic and temporary data storage is 
only included for the methods explicitly used in the 
collaboration diagrams. That makes it possible to reuse 
components with more functionality than needed by 
the application, but without paying an extra cost in the 



communication architecture for it. The same policy 
applies to run-time services such as indirect invocation 
or remote (to the outside of the NoC) communication. 
The Object adapter, for example, will only include the 
logic for a message passing between those objects 
marked as invocable from outside the NoC, while the 
Remote adapter will provide remote proxies for the 
remote objects really used from the NoC. 
 
5. Illustrative Example 

 
We will illustrate the concepts discussed previously 

with a little image filtering application.  Despite the 
simplicity of the example, it is straightforward to 
extend it to much more complex systems. 

There are only three objects involved: the one 
requiring the filtering, the filter object itself and an 
iterator object used by the latter in order to get the 
pixels of a certain image. The collaboration diagram 
(figure 3) captures the sequence of invocations 
between the objects. 

 

 
 

Figure 3. Collaboration diagram of the example 
 

We will consider three versions of the application: 
1) purely software, 2) mixed, with a hardware iterator 
and 3) mixed with a hardware filter and iterator. The 
first of them does not require the services of the 
communication system defined, since all objects are 
local to the same processor, so we will concentrate the 
description on the last two. 

Figure 4 shows a piece of code for each of the two 
mixed-mode implementations. In 4a, the iterator is 
implemented in hardware, so the software iterator class 
in the listing is in fact the proxy view of the hardware 
object. The invocation of the indirect operator (*) of 
the iterator results in an RMI call from the 
communication API provided as part of the 
middleware. But from the caller point of view (the 
filter object) there is no difference from using the 
proxy to the hardware iterator from a real software 
iterator. They have exactly the same interface. 

In figure 4b the software filter has also been 
implemented in hardware. For that reason, the code in 
the run method has been replaced by another RMI call. 
The software filter is then again a proxy to the 
hardware real object. The filter still uses the iterator to 
get the data of the image, but now it uses a hardware 
version of the iterator proxy. Invocations from the 
hardware filter to the indirect operator of the iterator 

result in exactly the same messages as the ones 
generated by the software proxy in figure 4a. 

 

Iterator.cpp (iterator proxy) 
 
 
 
 
 
 
 
 
filter.cpp (Sw object)                       filter.cpp (filter proxy) 
 
 
 
 
 
 
 
main.cpp                                           main.cpp 
 
 
 
 
 

Iter::RGB operator *() { 
   RGB rgb; 
   RMI(ITEROBJ_ID, 
           DEREF_ID, 
          &rgb,null); 
   return rgb; 
} 
  … 

filter::void run() { 
   … 
   pixel = *it; 
   … 
} 

filter::void run() { 
   RMI(FILTEROBJ_ID, 
       RUN_ID, 
       void, null); 
} 

Figure 4. Mixed mode filtering implementation 

int main() { 
   filter f; f.run(); 
   return 0; 
} 

int main() { 
   filter f; f.run(); 
   return 0; 
} 

 
It is worth noting in this example that, from the 

main program point of view, there is no way to 
distinguish if the filter object is implemented in 
hardware or software, since both provide exactly the 
same interface, and therefore are interchangeable. 
Also, Sw-Sw invocations are normal procedure calls 
that take place inside the processor. On the other hand, 
Sw-Hw invocations can be divided into a Sw-Sw 
invocation from the caller to the proxy of the callee, 
and a Hw-Hw invocation from the proxy to the callee. 
The first one belongs to the application domain, while 
the second one is performed by the communication 
middleware. Finally, Hw distributed objects (or 
servants) can be simultaneously and transparently 
invoked from different objects. 
 
6. Experimental Results 

 
The SoC described on the previous section has 

been implemented on the Xilinx XUP-V2Pro platform, 
following the approach in section 3.1. Each of the 
main programs has been assigned to a microblaze 
software processor as a stand-alone application, while 
hardware versions of the filter and the iterator objects 
have been synthesized from a VHDL description. We 
have also tested two different transport infrastructures: 
1) the OPB bus which is available on the board, 2) a 3-



switch NoC synthesized from an xpipes description. 
From this experiment we can conclude that: 1) the 
effort for migrating a software object to a hardware 
implementation is only related to the coding of the 
functionality of the object. No changes to the rest of 
the objects are required, but a regeneration of the 
proxies of the new object is necessary. 2) The transport 
architecture can also be replaced transparently. To do 
this it is only necessary to resynthesize the 
corresponding proxies and skeletons using another 
transport protocol. 3) This change, however, will affect 
the performance of the communication. As shown in 
table 1, for example, for such a simple test case, the 
bus is more appropriate than the NoC, since the latency 
of the messages is considerably lower for the same 
kind of generated adapters. That will not be the case 
for typical SoCs, where the number of objects and 
communicating threads will be more suited to the NoC 
transport alternative. 

 
Table 1. Execution time and message latencies 

 
Latencies (cycles) Total Per Message 

Sw 170 + 338 * #pixels - 

Hw it / Bus 170 + 298 * #pixels 2 

Hw filter / Bus 170 + 12 * #pixels 2 

Hw it / NoC 170 + 328 * #pixels 32 

Hw filter / NoC 170 + 42 * #pixels 32 
 
In order to evaluate the overhead of the 

communication architecture, we have defined the 
simplest possible situation, where a very simple 
hardware object with an internal register with two 
methods (1) set_value , 2) get_value), is accessed from 
another client hardware object. The objects have been 
deployed over the XUP-V2Pro board, following the 
flow in section 4. Alternatively,, we have repeated the 
implementation, keeping the same functionality on 
both objects, but this time using the IPIF wrapper 
generator from Xilinx tools. The synthesis results are 
shown in table 2. Each pair of columns corresponds to 
one block: the data in the first one is related to the 
whole component (in terms of FPGA resources 
consumed and critical path), while the second relates 
only to the functional part of the block (without the 
skeleton or proxy logic).  The numbers show how the 
resources consumed in both approaches keep almost 
constant for the core functionality of the blocks. 
However, there is an important deviation when 
considering the whole block, specially for the client. 
This is due to the use of the IPIF parametric core as the 
base of the OPB wrappers. Although the IPIF core is 

supposed to be highly optimized, it is clear from the 
numbers that a specifically customized proxy can be 
far more efficient, since it only includes the logic that 
it really needs. This difference should decrease as the 
core requires more advanced communication services 
(such as DMA, interrupts), but it gives a hint on the 
adaptability of the proposed approach. 

Remote inter-communication has also been 
experimentally verified. In this case the same get/set 
object from the second experiment has been invoked 
from an external client object running ICE (a 
commercial middleware) on a PC. Thus, an object 
adapter has been generated for the get/set object. The 
adapter receives the invocation from the client as a 
TCP encapsulated ICE message, and translates it into a 
message for the skeleton of the get/set, as if it was a 
local proxy. Currently, the adapter has been prototyped 
in software using the embedded version of ICE 
compiled on top of a microblaze processor. That 
provided automatic interoperability with the client, and 
made use of the software TCP stack.  

 
Table 2. Proxy and Skeleton area results 

 
 IPIF client Proxy IPIF server Proxy 

Slices 208 5 59 5 

FF 189 13 97 2 

LUTs 346 8 18 13 

Critical 
path 

0.37 0.01 3.25 2.65 

 
7. Related Work 
 

The ideas presented in this paper complement 
previous work on system-level abstractions. 
Orthogonalization of concerns in system-level design 
as proposed by [11], and more recently by [1] and [5], 
provide an object model similar to what this paper 
assumes, but most actual implementations focus on a 
structural view of the system and do not consider 
location transparency. In [12] a uniform 
communication mechanism for Hw and Sw resources 
is proposed, based on a central Hw-Sw OS and a Hw 
abstraction layer to provide task abstractions for Hw 
components.  Previous work by Paulin et al [13] 
already applies concepts from distributed object 
middlewares to SoCs but they do not even consider 
one of the key features, location transparency.  Some 
early ideas on how reconfigurable computing may 
benefit from these concepts are found in [7].  Previous 
results on automated generation of communication 
infrastructure for SoC design in [3, 4] are also 
applicable to the proxy/skeleton generation. 



Object based and object oriented approaches [6, 2, 
14] have also been used extensively to reduce the 
effort of translating some software components into 
hardware components or to improve the co-simulation 
of the system. Our hardware objects require a subset of 
what is provided by these extensions. Therefore we 
remain compatible with their approaches and we also 
keep full compatibility with standard IP based 
methodologies. 
 
8. Conclusions 

 
The communication architecture presented in this 

paper extends the distributed object paradigm to SoC 
platforms.  The proxy and skeleton abstractions plus 
the use of the RMI semantics, provide a simple way to 
uncouple component functionality from 
communication implementation. From the designer 
perspective, this provides a homogeneous view of the 
system as a collection of communicating objects. From 
the point of view of implementation, the model 
presented provides communication and location 
transparency for any kind of local interaction between 
hardware and software components, blurring the 
hardware and software interface barrier. But it also 
provides the possibility of remote (may be off-chip) 
interaction with other objects.   

Moreover, all the services and components that   
make up the middleware can automatically be 
generated, based on a few descriptions of? the 
interfaces of the objects, and on the deployment over a 
certain platform. This enhances the possibility of 
future reuse and eases design space exploration tasks. 
And, as the experimental results show, the 
communication architecture does not incur high 
overheads. 
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