
Unified Inter-Communication Architecture for Systems-on-Chip

F. Rincón, J. Barba, F.Moya, F.J. Villanueva, D. Villa, J. Dondo, J.C. López
University of Castilla-La Mancha

fernando.rincon@uclm.es

Abstract

System-On-Chip (SoC) architectures are called to

be the platform for an ever increasing number of
interactive applications. One of the most time-
consuming tasks is to define communication interfaces
between the different components through a number of
scattered heterogeneous processing nodes. That is not
only a complex task, but also very specific to a certain
implementation, which may limit the flexibility of the
system, and makes the solutions difficult to reuse. In
this paper, we describe how the distributed systems
paradigm can be extended to provide a unified
abstraction for both hardware and software
components. Moreover, based on that abstraction, we
define a low-overhead system-wide communication
architecture that offers communication transparency
between all kinds of components. Since the
architecture is highly compatible with standard
distributed object software systems, it also allows
seamless interaction with any other kind of external
network.

1. Introduction

The latest consumer applications (e.g. multimedia
processing or 3D games) demand complex designs to
meet their real-time requirements while respecting
other design constraints, such as low power or short
time-to-market [10]. In this context, SYSTEMS ON
CHIP (MPSoCs) have been proposed as a promising
solution. Nevertheless, one major challenge in such
systems is the integration in the platform of the
multiple communication and APPLICATION
PROGRAMMING INTERFACES (API) that each
component (e.g. memory, buses, cores, etc.) is
designed for. Moreover, another important problem in
SoC design is the knowledge of the position of each
component in the final system so as to be able to
efficiently communicate with it (i.e. is it local, remote
etc.), which makes the correct design of the

aforementioned SoC an even more complex task.
Thus, new methods that allow designers to achieve
unified inter-communication methods on SoC
architectures in the system integration flow are
urgently needed.

Some concepts taken from distributed object
platforms such as CORBA or Java RMI have already
been applied to SoC design in order to obtain a unified
view of Hw and Sw modules [13]. In this paper we
present an approach which inherits most of these
previous achievements enriched with a strong focus on
location transparency and network transparency. The
resulting architecture provides a unified view of the
whole system and also enables the designer to
seamlessly develop multi-SoC systems with different
network technologies.

This paper is organized as follows. In Section 2 we
discuss why SoCs are valid platforms for distributed
objects systems. In Section 3 we present the overall
hardware SoC architecture proposed for an efficient
unified interconnection of components. In Section 4
we describe the synthesis process of the
communication architecture. Section 5 provides an
overall illustrative example. In Section 6, we describe
different SoCs used as case studies and present our
experimental results. In Section 7, we give an
overview of work relating to our approach . Finally, in
section 8, we summarize the contributions of the paper
and present possible directions for future research.

2. SoC as a Distributed Object System

Generally speaking, a distributed system consists of
a set of heterogeneous computing and storage
resources connected to each other via an
interconnected network. This normally refers to
computers interconnected through local or wide area
networks, but the definition may also include other
kinds of systems, using different types of networks,
transport protocols, etc.

Most of these systems are programmed using an
object-oriented approach. The use of objects enforces

mailto:fernando.rincon@uclm.es

modularity and provides flexibility and reusability.
Objects also rely on a simple communication model:
method invocation. This same mechanism is used for
remote communication (REMOTE METHOD
INVOCATION or RMI), where invocations are
translated into synchronous messages passed though a
certain communication infrastructure. The main
advantage of RMI is that it provides a neat separation
between functionality and communication. That makes
Distributed Object Systems specially well-suited to
deal with heterogeneity and scalability of applications.

But communication in distributed systems means
more than simply routing messages between remote
objects. It requires that we handle concepts such as
access transparency, where an object must provide the
same interface for an object regardless of its target
architecture or language implementation; location
transparency, which means that the destination of the
message is not explicitly known by the caller; or
migration transparency, where an object may migrate
to another node without the caller knowing it or
requiring any special action for it. These concepts are
all built into a common infrastructure, the middleware,
which will handle all communication tasks, and will
provide a common high-level abstraction to the
communicating objects.

Figure 1. Actors in a Remote Method Invocation

Figure 1 shows the actors in remote

communication, and the domain they belong to
(application or middleware). Any method invocation
must take place between a Proxy and a Skeleton. From
the client point of view, the proxy is the requested
object itself, since it provides exactly the same
physical interface. On the other hand, server objects do
not need to care about the location of client objects.
They just provide an object interface which is exported
through a skeleton. Communication between clients
and servers then flows in the following way: 1) client
requests an operation from the local proxy of the
object. 2) The proxy translates the request into a set of

signal assignments that will depend on the underlying
communication architecture, 3) The skeleton receives
proxy requests and translates them back to the
operation provided by the server, 4) the server
completes operation execution.

As in many standard software middlewares the
approach described above relies on the automatic
generation of the proper proxies and skeletons
depending on the kind of communication that must be
established between objects.

2.1 Global Communication Mechanism

The Distributed Object paradigm can be extended
to multiprocessor NoCs. Messages passing between
objects can naturally be adapted to the packet
switching transmission mechanism of embedded
networks, while software distributed objects may be
deployed over the different software processors in the
NoC, simply by adapting the embedded versions of
standard middlewares.

Any hardware component can also be considered a
hardware object. Such a component doesn’t have
exactly the same characteristics as its software
counterparts, mainly due to the static nature of
hardware. However, they have a well known interface,
provide encapsulation, have a state and include the
logic to perform computations over that state, which is
enough for using them in a distributed objects
environment.

Here the challenge consists of how to define a
global communication mechanism (system-wide
middleware) that is able to provide communication
transparency between any objects in the system, and
support a unified programming model through the use
of the same abstractions, regardless of the hardware or
software implementation of the objects.

3. SoC Hardware Inter-Communication
Architecture

In the following paragraphs, we describe our

proposal for a system middleware that has been
conceived with 3 objectives in mind. First, to define
the basic communication mechanisms to allow RMI
between any node inside the SoC, in spite of their
hardware or software implementations. Second, it must
be interoperable with other middlewares. That means
that it must give external objects of the SoC the
possibility to invoke methods from internal objects,
and vice versa. And finally, it must be light-weight in
cost and performance.

3.1 Local Inter-Communication Mechanism

One of the duties of the communication system is

to cover the gap between high-level object method
invocation and low-level protocol signaling of NoC
network interfaces or standard buses. Invocations
represent messages with an object and method name,
plus a certain number of parameters of simple or
complex types that may or may not have a return
value. Low-level interfaces deal with data words that
can be securely routed from/to other NIs or transmitted
through a bus. To bridge this gap, the communication
system defines a standard message format and a
transport independent message passing mechanism (the
proxies and skeletons described in section 2).

But the communication system must also provide
interoperability between hardware and software
objects. That means that proxies must be able to
communicate to their corresponding skeletons, no
matter what their mutual hardware or software
implementations. Even the same proxy might
communicate sometimes to a software implementation,
sometimes to a hardware one of the same object. In the
proposed architecture, all objects are interconnected to
a common physical communication infrastructure (a
bus, a hierarchy of buses or a NoC). So,
interoperability is guaranteed by translating equal
invocations to equal low-level messages. There is
absolutely no difference then between an invocation
message generated by a hardware or software object.

Hardware objects implement their functional
interfaces using signals for method invocation and
buses for their parameters and return values. Thus, Hw
to Hw communication requires that the proxy pack the
invocation into a set of words and translate it into a
read or write transaction on the bus or NI (normally a
burst). On the other side the skeleton unpacks the
received data and regenerates the signals for exactly
the same signals interface, giving the illusion of a point
to point connection for both objects. In fact, the only
difference between both approaches is the time the
invocation takes to reach the destination. It may seem
that proxies and skeletons are then simply bus
wrappers between two cores. In part they are, since
they provide bus adaptation, but they also provide the
semantics of RMI, so there is no need to know
anything about an object except its logical interface to
use it. That is not the case of current IP cores, where
communication and functionality are not clearly
separated. Moreover, the overheads of this approach
are almost negligible, as will be discussed in section 5.

From a distributed object environment point of
view, we may say that the main difference between
hardware and software objects is that while the former

execute in their own node, the latter share the node
(the processor) with many other objects. For that
reason objects are not directly connected to the
communication system, but a software layer exists
between them. This layer may be as complicated as an
operating system, or simply be a collection of routines
that provides secure (and multiplexed) access to the
system bus or network interface. We will refer to this
layer as the communication API. In any case, the
messages routed from and to software objects through
the low-level communication infrastructure are exactly
the same as if they were routed to their hardware
versions.

Invocations from software to hardware objects use
again the same flow described before. There is a local
software proxy which provides the same interface as
the hardware object. The proxy is almost hollow, and
simply translates each invocation to a remote
invocation, using the communications API (see RMI
invocation in figure 4a). The invocation is serialized
by the communication software and converted into a
low-level transaction, identical to that generated from
the hardware version of the proxy. Hardware to
software invocations are symmetrical from the logical
point of view, and messages reaching software
skeletons are translated into local invocations.

The sceneries described before show how proxies
and skeletons are used to provide communication
transparency between all kinds of object (hardware or
software). However, there are some other facilities that
can be easily provided by the proposed architecture,
such as location transparency. In that case a specialized
object (locator) includes a routing table, and the hard-
coded addresses of the target objects in the proxies are
replaced by an indirect invocation through the locator
object. Of course, this has some negative effects on
communication performance, however location
transparency should be compelling to support dynamic
object creation in reconfigurable architectures, or for
patching buggy hardware after manufacturing, for
example.

3.2 Remote Inter-Communication Mechanism

The proposed architecture also considers remote
communication with objects external to the SoC, and
that can be accessed through an ethernet network
interface, for example. Two special services provide
remote invocation capabilities to and from the SoC, but
no modifications are necessary for any of the local
objects involved. Invocation from external object
methods is handled by the object adapter. This adapter
includes the proxies for those local objects that are
going to be accessed from the outside. It is also

responsible for receiving the messages from the
outside (a UDP frame from an ethernet controller, for
example), and translating them into invocations of the
equivalent local proxy. On the other hand, invocation
of external objects methods is the responsibility of the
remote server. The server provides local skeletons for
the caller proxies of all the remote objects to be
contacted, translates invocations received by every
proxy to the corresponding message, and routes it
accordingly. Since not all objects in the system will
require remote interaction, those two services may be
optimally generated for the needs of the application.

4. Unified Design Flow

One of the main features of the proposed global
communication architecture is that it can be fully
automatically generated. This prevents the designer
from dealing with complicated APIs or concrete
communication protocols, and eases design exploration
tasks.

Figure 2. Communication Architecture Synthesis Flow

The synthesis flow is depicted in figure 2. Initially
we should model the application with an object
oriented approach. This model will only define a set of
entities (objects) and relationships (collaborations) in
the domain of the problem, and thus will not be related
to any kind of implementation.

The inputs to the flow will be the object,
collaboration and deployment diagrams that are
typically obtained using UML for the modeling phase.
The first one describes the interaction between objects
(of a certain class) at run time. The collaboration
diagram describes interaction between objects in terms
of sequenced messages for concrete use cases. Finally,
the deployment diagram should define how objects are
to be implemented (Hw or Sw), and even additional
information for Hw objects such as the relationship
between parameters and ports, the number of
concurrent requests a method may support, etc. All
these 3 diagrams will be used to generate a single slice
file. Slice is an Interface Description Language (IDL)
for the Internet Communication Protocol [8] (ICE), a
CORBA-like middleware platform. The slice
description will contain user-defined data types and the
object interfaces with only those methods that are
really used in the application. The file will also contain
some metadata to capture the information in the
deployment diagram. The deployment diagram will
also be used to generate a configuration file for the
synthesis of the low-level communication
infrastructure. That will be the XPipes compiler [9] in
our case, and it will define the number of processing
elements in the system and possible routes between
them. The Slice description is still implementation
technology (Hw or Sw) and language independent.

The synthesis of the communication architecture is
performed by three kinds of compilers. The XPipes
compiler will synthesize the lower layer of the NoC,
that will provide message transport. The Slice-to-C++
and Slice-to-VHDL are responsible for the generation
of the second layer, the system middleware, which is in
fact a collection of proxies and skeletons of the
different objects plus additional logic (and code) to
provide run-time communication services, such as a
directory service for indirect location of the objects,
remote communication outside the NoC, etc. On the
application domain, client and server objects will
simply connect (or instantiate in the Sw domain) to the
corresponding proxies and skeletons.

In order to obtain a light-weight implementation of
the middleware, every component is optimally
synthesized. That means that only the necessary
hardware or software versions of proxies and skeletons
are generated (depending on the type of invocation:
Hw-Hw, Hw-Sw or Sw-Hw). Even for the internal
architecture of these components, the interface, data
type marshalling logic and temporary data storage is
only included for the methods explicitly used in the
collaboration diagrams. That makes it possible to reuse
components with more functionality than needed by
the application, but without paying an extra cost in the

communication architecture for it. The same policy
applies to run-time services such as indirect invocation
or remote (to the outside of the NoC) communication.
The Object adapter, for example, will only include the
logic for a message passing between those objects
marked as invocable from outside the NoC, while the
Remote adapter will provide remote proxies for the
remote objects really used from the NoC.

5. Illustrative Example

We will illustrate the concepts discussed previously

with a little image filtering application. Despite the
simplicity of the example, it is straightforward to
extend it to much more complex systems.

There are only three objects involved: the one
requiring the filtering, the filter object itself and an
iterator object used by the latter in order to get the
pixels of a certain image. The collaboration diagram
(figure 3) captures the sequence of invocations
between the objects.

Figure 3. Collaboration diagram of the example

We will consider three versions of the application:
1) purely software, 2) mixed, with a hardware iterator
and 3) mixed with a hardware filter and iterator. The
first of them does not require the services of the
communication system defined, since all objects are
local to the same processor, so we will concentrate the
description on the last two.

Figure 4 shows a piece of code for each of the two
mixed-mode implementations. In 4a, the iterator is
implemented in hardware, so the software iterator class
in the listing is in fact the proxy view of the hardware
object. The invocation of the indirect operator (*) of
the iterator results in an RMI call from the
communication API provided as part of the
middleware. But from the caller point of view (the
filter object) there is no difference from using the
proxy to the hardware iterator from a real software
iterator. They have exactly the same interface.

In figure 4b the software filter has also been
implemented in hardware. For that reason, the code in
the run method has been replaced by another RMI call.
The software filter is then again a proxy to the
hardware real object. The filter still uses the iterator to
get the data of the image, but now it uses a hardware
version of the iterator proxy. Invocations from the
hardware filter to the indirect operator of the iterator

result in exactly the same messages as the ones
generated by the software proxy in figure 4a.

Iterator.cpp (iterator proxy)

filter.cpp (Sw object) filter.cpp (filter proxy)

main.cpp main.cpp

Iter::RGB operator *() {
 RGB rgb;
 RMI(ITEROBJ_ID,
 DEREF_ID,
 &rgb,null);
 return rgb;
}
 …

filter::void run() {
 …
 pixel = *it;
 …
}

filter::void run() {
 RMI(FILTEROBJ_ID,
 RUN_ID,
 void, null);
}

Figure 4. Mixed mode filtering implementation

int main() {
 filter f; f.run();
 return 0;
}

int main() {
 filter f; f.run();
 return 0;
}

It is worth noting in this example that, from the

main program point of view, there is no way to
distinguish if the filter object is implemented in
hardware or software, since both provide exactly the
same interface, and therefore are interchangeable.
Also, Sw-Sw invocations are normal procedure calls
that take place inside the processor. On the other hand,
Sw-Hw invocations can be divided into a Sw-Sw
invocation from the caller to the proxy of the callee,
and a Hw-Hw invocation from the proxy to the callee.
The first one belongs to the application domain, while
the second one is performed by the communication
middleware. Finally, Hw distributed objects (or
servants) can be simultaneously and transparently
invoked from different objects.

6. Experimental Results

The SoC described on the previous section has

been implemented on the Xilinx XUP-V2Pro platform,
following the approach in section 3.1. Each of the
main programs has been assigned to a microblaze
software processor as a stand-alone application, while
hardware versions of the filter and the iterator objects
have been synthesized from a VHDL description. We
have also tested two different transport infrastructures:
1) the OPB bus which is available on the board, 2) a 3-

switch NoC synthesized from an xpipes description.
From this experiment we can conclude that: 1) the
effort for migrating a software object to a hardware
implementation is only related to the coding of the
functionality of the object. No changes to the rest of
the objects are required, but a regeneration of the
proxies of the new object is necessary. 2) The transport
architecture can also be replaced transparently. To do
this it is only necessary to resynthesize the
corresponding proxies and skeletons using another
transport protocol. 3) This change, however, will affect
the performance of the communication. As shown in
table 1, for example, for such a simple test case, the
bus is more appropriate than the NoC, since the latency
of the messages is considerably lower for the same
kind of generated adapters. That will not be the case
for typical SoCs, where the number of objects and
communicating threads will be more suited to the NoC
transport alternative.

Table 1. Execution time and message latencies

Latencies (cycles) Total Per Message

Sw 170 + 338 * #pixels -

Hw it / Bus 170 + 298 * #pixels 2

Hw filter / Bus 170 + 12 * #pixels 2

Hw it / NoC 170 + 328 * #pixels 32

Hw filter / NoC 170 + 42 * #pixels 32

In order to evaluate the overhead of the

communication architecture, we have defined the
simplest possible situation, where a very simple
hardware object with an internal register with two
methods (1) set_value , 2) get_value), is accessed from
another client hardware object. The objects have been
deployed over the XUP-V2Pro board, following the
flow in section 4. Alternatively,, we have repeated the
implementation, keeping the same functionality on
both objects, but this time using the IPIF wrapper
generator from Xilinx tools. The synthesis results are
shown in table 2. Each pair of columns corresponds to
one block: the data in the first one is related to the
whole component (in terms of FPGA resources
consumed and critical path), while the second relates
only to the functional part of the block (without the
skeleton or proxy logic). The numbers show how the
resources consumed in both approaches keep almost
constant for the core functionality of the blocks.
However, there is an important deviation when
considering the whole block, specially for the client.
This is due to the use of the IPIF parametric core as the
base of the OPB wrappers. Although the IPIF core is

supposed to be highly optimized, it is clear from the
numbers that a specifically customized proxy can be
far more efficient, since it only includes the logic that
it really needs. This difference should decrease as the
core requires more advanced communication services
(such as DMA, interrupts), but it gives a hint on the
adaptability of the proposed approach.

Remote inter-communication has also been
experimentally verified. In this case the same get/set
object from the second experiment has been invoked
from an external client object running ICE (a
commercial middleware) on a PC. Thus, an object
adapter has been generated for the get/set object. The
adapter receives the invocation from the client as a
TCP encapsulated ICE message, and translates it into a
message for the skeleton of the get/set, as if it was a
local proxy. Currently, the adapter has been prototyped
in software using the embedded version of ICE
compiled on top of a microblaze processor. That
provided automatic interoperability with the client, and
made use of the software TCP stack.

Table 2. Proxy and Skeleton area results

 IPIF client Proxy IPIF server Proxy

Slices 208 5 59 5

FF 189 13 97 2

LUTs 346 8 18 13

Critical
path

0.37 0.01 3.25 2.65

7. Related Work

The ideas presented in this paper complement
previous work on system-level abstractions.
Orthogonalization of concerns in system-level design
as proposed by [11], and more recently by [1] and [5],
provide an object model similar to what this paper
assumes, but most actual implementations focus on a
structural view of the system and do not consider
location transparency. In [12] a uniform
communication mechanism for Hw and Sw resources
is proposed, based on a central Hw-Sw OS and a Hw
abstraction layer to provide task abstractions for Hw
components. Previous work by Paulin et al [13]
already applies concepts from distributed object
middlewares to SoCs but they do not even consider
one of the key features, location transparency. Some
early ideas on how reconfigurable computing may
benefit from these concepts are found in [7]. Previous
results on automated generation of communication
infrastructure for SoC design in [3, 4] are also
applicable to the proxy/skeleton generation.

Object based and object oriented approaches [6, 2,
14] have also been used extensively to reduce the
effort of translating some software components into
hardware components or to improve the co-simulation
of the system. Our hardware objects require a subset of
what is provided by these extensions. Therefore we
remain compatible with their approaches and we also
keep full compatibility with standard IP based
methodologies.

8. Conclusions

The communication architecture presented in this

paper extends the distributed object paradigm to SoC
platforms. The proxy and skeleton abstractions plus
the use of the RMI semantics, provide a simple way to
uncouple component functionality from
communication implementation. From the designer
perspective, this provides a homogeneous view of the
system as a collection of communicating objects. From
the point of view of implementation, the model
presented provides communication and location
transparency for any kind of local interaction between
hardware and software components, blurring the
hardware and software interface barrier. But it also
provides the possibility of remote (may be off-chip)
interaction with other objects.

Moreover, all the services and components that
make up the middleware can automatically be
generated, based on a few descriptions of? the
interfaces of the objects, and on the deployment over a
certain platform. This enhances the possibility of
future reuse and eases design space exploration tasks.
And, as the experimental results show, the
communication architecture does not incur high
overheads.

9. Acknowledgement

This work has been funded by the Spanish Ministry

of Education and Science (TIN2005-08719) and the
Regional Government of Castilla-La Mancha (JCCM
PBI-05-0049).

10. References

[1] W. Cesario, L. Gauthier, D. Lyonnard, G. Nicolescu, and
A.A. Jerraya, “Object based hardware/software component
interconnection model for interface design in system-on-a-
chip circuits”, The Journal of Systems and Software, 2004.

[2] R. Damasevicius and V. Stuikys, “Application of the
object-oriented principles for hardware and embedded
system design”, Integration, the VLSI Journal, 2004.

[3] V. D’silva, S. Ramesh, and A Sowmya, “Bridge over
troubled wrappers: Automated interface synthesis”, In
Proceedings of the Intl. Conf. on VLSI Design, 2004.

[4] A. Gerstlauer, “Communication abstractions for system-
level design and synthesis”, Technical Report CECS-TR-03-
30, UC Irvine, 2003.

[5] A. Gerstlauer, D. Shin, R. Dmer, and D. D. Gajski,
“System-level communication modeling for Network-on-
Chip synthesis”, In Proceedings of theASP-DAC, 2004.

[6] E. Grimpe and F. Oppenheimer, “Extending the SystemC
synthesis subset by object-oriented features”, In Proceedings
of CODES+ISSS, October 2003.

[7] Ronald Hecht, Stepah Kubish, Harald Michelsen, Elmar
Zeeb, and Dirk Timmermann, “A distributed object system
approach for dynamic reconfiguration”, In Reconfigurable
Architectures Workshop (RAW 06), Rhodos, Greece, April
2006.

[8] Michi Henning, “A new approach to object-oriented
middleware”, IEEE Internet Computer, vol 8, pp. 66–75,
2004.

[9] Antoine Jalabert, Srinivasan Murali, Luca Benini, and
Giovanni De Micheli, “XPipes compiler: A tool for
instantiating application specific Networks on Chip”, In
Proceedings of Design, Automation and Test in Europe
Conference (DATE’04), volume 4, pp. 1 – 6, February 2004.

[10] Ahmed Jerraya and Wayne Wolf, Multiprocessor
Systems-on-Chips, Morgan Kaufmann, Elsevier, 2005.

[11] K. Keutzer, A. R. Newton, J.M. Rabaey, and A.
Sangiovanni-Vicentelli, “System-level design:
orthogonalization of concerns and platform-based design”
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, December 2000.

[12] J-Y. Mignolet, V. Nollet, P. Coene, D. Verkest, S.
Vernalde, and R. Lauwereins, “Infrastructure for design and
management of relocatable tasks in a heterogeneous
reconfigurable System-on-Chip”, In Proceedings of the
DATE ’03 Conference, 2003.

[13] P.G. Paulin, C. Pilkington, M. Langevin, E.
Bensoudane, O. Benny, D. Lyonnard, B. Lavigueur, and D.
Lo, “Distributed object models for multi-processor soc’s,
with application to low-power multimedia wireless systems”,
In Proceedings of the Design and Test in Europe (DATE ’06)
Conference, Munich, Germany, 2006.

[14] C. Schulz-Key, M. Winterholer, T. Schweizer, T. Kuhn,
and W. Rosenstiel, In Proceedings of theASP-DAC, 2004.

	1. Introduction
	2. SoC as a Distributed Object System
	2.1 Global Communication Mechanism
	3. SoC Hardware Inter-Communication Architecture
	3.1 Local Inter-Communication Mechanism
	3.2 Remote Inter-Communication Mechanism

	4. Unified Design Flow
	5. Illustrative Example
	6. Experimental Results
	7. Related Work
	8. Conclusions
	9. Acknowledgement
	10. References

