
Object Oriented Multi-Layer Router with
Application on Wireless Sensor-Actuator Networks

D. Villa∗, F. J. Villanueva∗, F. Moya∗, G. Urzaiz†, F. Rincón∗ and J. C. López∗
∗Dept. of Technology and Information Systems

University of Castilla-La Mancha
School of Computer Science. 13071 - Ciudad Real. Spain

† Universidad del Mayab, Facultad de Ingenierı́a
Carretera Mérida-Progreso Km.15.5 A.P. 96, 97310, Mérida, Yucatán, México

Abstract—This paper introduces a novel approach to transport
messages between a backbone network and a device network
(SAN) in a seamless way, even when these networks use incompat-
ible protocols or technologies. The paper shows how to leverage
a general purpose distributed object oriented middleware to
encapsulate and send messages as object invocations.

Devices and routers are modeled as standard distributed
objects. Furthermore, two different facets are available: the
programmer may choose whether this mechanism is transparent
to the client application using a socket-like API or by contrast
she may directly invoke methods on a remote object. An early
prototype will be discussed to illustrate this approach.1

I. INTRODUCTION

The wide variety of current protocols and technologies
makes more difficult to develop interoperability mechanisms
for applications running in nodes connected to different net-
works. Sometimes it is not even possible or advisable to rely
on a single network protocol. Accessing nodes in a wireless
sensor network constitutes a good example of this problem.

In short, there are two main approaches to solve the above
problem by means of intermediate bridges or gateways. First,
the special purpose sensor network may use the same protocol
stack as the main network (typically TCP/IP). This approach
has the following drawbacks:

• Nodes require a considerable amount of memory and
computing power to be able to implement a TCP/IP stack.
Even with reduced implementations such as uIP [1].

• Achieving an acceptable performance using TCP/IP in
WSAN usually requires special adaptations such as
header compression [2], modified packet encapsulations,
addressing, etc.

• A TCP/IP stack may not be suited to the specific needs
of sensor and actuator networks (SAN). For example,
wireless links would usually add redundant information
to recover lost datagrams due to frequent errors in such a
noisy environment. By contrast, TCP reacts to transmis-
sion errors reducing the source data rate assuming there
was a congestion problem [3].

An alternative approach would be to allow sensor nodes
to use a specific protocol better suited to their characteristics

1This research is partly supported by the Ministry of Education and Science
(under grant CENIT Hesperia and TIN2005-08719) and by FEDER and the
Regional Government of Castilla-La Mancha (under grants PAI08-0234-8083)

and capabilities. Gateways or base stations hold a cluster
of proxies representing each sensor or actuator and clients
invoke services on the gateway using standard protocols such
as TCP/IP. The software running in the gateway forwards the
invocations to the right sensor or actuator using the protocol
specific to that sensor network (see figure 1).
This alternative also has some drawbacks:

• Explicit gateways. Usually the programmer must be
aware of the intermediate gateway. In order to request a
service from a given sensor we need to know the address
of the intermediate gateway instead of the address of
sensor node.

• Lack of autonomy. Nodes in the sensor network may not
directly interact with external elements. It is not obvious
how they can offer services or demand services from
nodes in a different SAN.

• Multi-gateway. The gateway becomes a single point of
failure. Using multiple gateways for a single SAN is
not immediate since it may lead to ambiguity in sen-
sor/actuator access semantics or loops in message routes.

Fig. 1. Sensor network with an explicit gateway.

A. Inter-Networks

Internet is based on a single network protocol (IP). This
global addressing scheme allows the interconnection of net-
works based on different technologies for the link and physical
layers. Therefore in order to become a part of an inter-net it
must satisfy certain constraints:

• Hosts must understand the logical addressing schema.
• Hosts must be able to build and frame datagrams using

the underlying network technology.



• When there is a diffusion medium, it must allow mapping
logical addresses to physical addresses.

• A gateway or router is required to forward packets be-
tween the specific purpose network and the core network.

Traversing a network with an incompatible network protocol
is usually implemented through tunneling. Unfortunately this
approach disallows homogeneous routing schemes. Another
obvious problem is how to achieve data transmission between
devices using incompatible network and logical addresses.

B. Seamless Routing

Our goal is to provide an end-to-end data transport service,
which is independent of any network or protocol technologies.
It uses its own addressing and routing mechanisms even when
the lower layers may have their own. The combination of
the middleware and the multi-layer end-to-end routing provide
many and valuable advantages:
Addressing. IDM has a true global and technology indepen-
dent addressing scheme.
Virtual Network. It makes possible the deployment of virtual
networks over any type of existing or future network.
Quality of Service. It provides facilities to apply high level
QoS policies, since it may access richer information from the
upper layers.
Flexibility. It may better suit the application requirements. Us-
ing a communications middleware does not necessarily involve
protocol overhead or a significant increase of complexity.
For example, it is possible to encapsulate application data
within Ethernet frames, whenever the QoS constraints can be
satisfied.
Platform Services. Since we use a general-purpose commu-
nications middleware, we may use many common services it
provides. In the case of our current prototype (built on top of
Ice), we will highlight a few: automatic persistency, remote
deployment, implicit activation, load balancing, transparent
service replication, etc.
Location transparency. Our routers are logic entities and thus
they may be migrated to other nodes transparently.
Functional routing. This feature allows routing algorithms
and schemes based on nodes grouped by function instead of
geographic location.
Efficiency. Our routers may be implemented in embedded
systems. They are suitable for embedding into a range of
targets, from small microcontrollers to low-end FPGA. This
is possible thanks to the picoObject approach [4].
Object Oriented. If the programmer wishes, it is possible to
see the server side as a remote object. For stream oriented
services or when the invocation semantics is unspecified, it is
possible to use an alternative socket-like API.

C. About prototypes

In section VII, several initial prototypes are described in
detail. They are implemented using Ice (Internet Communica-
tions Engine), an object oriented communications middleware
by ZeroC, Inc. Throughout this article we will refer to some of
its features and details because we consider them important to

get a better understanding of the concepts explained. The ideas
presented in this paper are not specific to Ice. Any middleware
based on heterogeneous distributed objects may also be used.

II. RELATED WORK

Multiprotocol Label Switching (MPLS, RFC3031) or Layer
Two Tunneling Protocol (L2TPv3, RFC3931) are similar to
our proposal in intent, although they differ widely in the
approach. They allow seamless end-to-end communications
with any number of intermediate heterogeneous networks, but
they rely on IP as the lowest level common protocol. This is
less than ideal in sensor networks.

CORBA3 Messaging [5] implements a message routing
strategy as an implementation detail of scalable asynchronous
interaction. Routing information is statically embedded into
the client-side proxies and there are no provisions for general
purpose dynamic routing. On the other hand the CORBA
interoperability architecture [6] defines a CORBA bridge to
communicate different CORBA domains transparently. Unfor-
tunately CORBA bridging is also static and it does not support
routing or transparent migration of objects across domains.
Besides, the overhead required to implement CORBA message
routing makes it impractical for sensor and actuator networks.

III. ADDRESSING

Traditional network addressing schemes use a logical ad-
dress to identify the host, delegating destination process
identification (server side) to the transport layer protocols.
In TCP and UDP the destination processes are identified by
port numbers. IDM uses a hierarchical addressing scheme
and destination processes are identified with suffixes. These
addresses are actually object identifiers. If global addressing
is required, it may use any identification system that guaran-
tees uniqueness. These are called GUIDs (Globally Unique
IDentifiers). It is possible but not necessary to include in the
address an identification of the host holding the object.

Therefore, clients only need to know the object identifier.
To successfully deliver data an endpoint is required. The
endpoint encapsulates the data transport for some specific
technology: TCP, UDP, IP, Ethernet, XBow, Bluetooth, etc.
The endpoint selection is automatic given the set of QoS
constraints specified by the client and the set of currently
available interfaces in the node. If these constraints are not
satisfied then the invocation may fail.

IDM provides mechanisms to find the address associated to
any endpoint of an object from its object identity. There is
no need to know the object location in advance. Indeed it is
used to find the endpoint of the adapter the object is registered
in. An adapter works as an object demultiplexer. This allows
a single object to be backed by several servants in different
hosts, even on different physical networks.

A. Object Identity

The object identity is a globally unique byte sequence
composed by two fields:



• Category Identifies the application, i.e. the common
goal for all the objects connected to the same virtual
network. Valid examples could be a P2P network, a
set of streaming service subscribers, etc. It should be
understood as a filter and thus, it is not mandatory.

• Name Identifies the object independently of the ap-
plication. An object will have the same name in any
application it is involved in. However, a single object
implementation (servant) may have several names.

As mentioned above, the name field should conform to
a hierarchical naming scheme, setting up the basis of the
routing table functionality. One of the distinguishing features
is that the address hierarchy may be based on functional
criteria instead of geographic criteria (see figure 2). That
is a significant contribution to overall flexibility allowing
transparent node and router migration. In any case, in order
to maintain the inter-network cohesion, at least a router is
required in the border between any pair of networks.

Fig. 2. Functional routing sample.

IV. ENDPOINTS

An endpoint is a logical stand-alone structure that basically
encapsulates data transport details and distributes them to the
underlying protocol or technology. Furthermore, in regard to
IDM, differences among endpoints lie in the provided features
and not in the way they are managed. Therefore, there is no
difference between an endpoint handling a TCP connection
over VPN or a different one that sends SLIP frames over a
RS-232 line.
The endpoint is in charge of the following tasks:

• Builds the IDM frames, marshals the user data, and
generates the checksum when required.

• Hides the protocol or network interface details.
• Enumerates and checks the available capabilities of the

transport protocol.
Off-the-shelf Ice provides only three endpoint types: TCP,

UDP and SSL, although we have implemented a few more,
such as UNIX sockets, message queues or Crossbow. Figure 3
depicts how the different endpoints relate IDM with the
traditional network layer model. It also emphasizes the fact
that the endpoint selection does not depend on the underlying
protocol or network layer but on the provided features.

Each endpoint has a textual representation of the underlying
protocol, the required hardware and software addresses, and
additional information such as timeouts, coding certificates,
etc.

Fig. 3. Relations between IDM and traditional network layers.

IDM has a special type of endpoint to prepend the IDM
header to the IceP2 conventional messages. This fact simplifies
the use of IDM with the standard Ice distribution by avoiding
any modifications in the original code.
The aforementioned header fields are the following:

• Magic number “IDM”.
• Destination OID The remote object identity.
• Hop Limit Maximum number of hops. Similar to TTL

on IP.
• QoS Constraints A list of transport QoS preferences

requested by the client.

A. Quality of service management

The required quality of service is specified when requesting
access to the remote object. Some of the requirements such
as encryption or authentication may be provided as end-to-
end services. But some others such as the required bandwidth
must be guaranteed along the whole route. The following
parameters were taken into consideration although prototypes
are currently missing some of them:

Oneway/twoway invocation, Delivery acknowl-
edge/guarantee, Message ordering and multicast message
ordering, Authentication, Authorization, Maximum latency,
Required data rate, Source routing, etc.

Client must be able to specify what to do when some of the
requirements cannot be satisfied. A strict policy may lead to
the impossibility to provide the requested service.

V. MESSAGE DELIVERY

Simplest message delivery just involves the client and the
object (server); usually this is designated as direct delivery.
The client node requires the endpoints of the remote object
adapter to perform message delivery, then the runtime must
match a compatible endpoint available in the client side.

An IDM network is defined as a set of directly reachable
objects, via some endpoint. There are no relations between
the IDM network and the underlying physical networks the
client is connected to. It may happen that an object adapter
holds several endpoints despite being connected to a single
physical network. Usually, IDM routers are placed in the
border nodes, the nodes with interfaces in two or more
incompatible networks either because of technology or due
to protocol reasons (see figure 4).

2IceP is the protocol used to code Ice object method invocations. It’s similar
in many aspects to the CORBA GIOP protocol.



Fig. 4. An IDM inter-network made up of 4 different IDM networks.

In order to know the object adapter endpoints, the clients
and routers must use the ALP (Adapter Location Protocol).
The next listing shows the interface specification for this
protocol, using the SLICE3 language:
module IDM {

module ALP {

exception ObjectNotFoundException {};

interface Locator {
void add(Object* prx);
void remove(Ice::Identity id);

Object* resolve(Ice::Identity oid)
throws ObjectNotFoundException;

};

interface Lookup {
idempotent void request(Ice::Identity oid,

Lookup* callback);
idempotent void reply(Object* prx);

};
};

};

Each node has a local service, the ALP Service that im-
plements the ALP::Locator interface. Using the lookup()
method, the client node gets a remote object proxy4 which
lets it invoke remote methods.

There are several ways to implement the ALP service. In
our initial prototypes, we considered two alternatives:

• A distributed service that allows any host to ask for
the existence of a specific object. This service uses the
multicast or broadcast mechanisms provided by the avail-
able endpoints. Each node must listen to request()
messages and it must answer by means of reply()
messages. These messages are part of the interface
ALP::Lookup and actually that interface is implemented
as an ALP Service facet (see figure 5).

• The Ice Locator, which implements indirect binding in
Ice may be a centralized (although it may be replicated)
alternative to the ALP service. IDM has a wrapper that
allows using the IceGrid::Locator service with minimal
overhead. This is useful in big virtual network domains
and when the hosts have enough resources to run as an
IceGrid node. However it has a drawback: hosts must
know in advance the endpoints of any Locator replica
and at least one of them must be compatible.

In both cases, hosts serving objects must register them to
make them available, either in the Locator or in the local
ALP Service. Both may co-exists at the same time in the same
network.

3Specification Language for Ice.
4A proxy is a local intermediary which acts on behalf the remote object.

Fig. 5. IDM block diagram.

The ALP service has a cache that temporally stores resolved
endpoints. The goal of that cache is to minimize the perfor-
mance penalty imposed by the ALP messages. When the ALP
is centralized, the IDM runtime incorporates a local cache due
to the same reason.

Indirect delivery is used for those objects that are not
reachable with any of the client endpoints. In these cases,
at least a router is needed: Note it may happen a particular
situation, the client QoS requirements may prevent endpoint
usage even if the target is reachable.

VI. ROUTING

Hosts belonging an IDM network require a routing table
that determines when is the direct delivery possible and when
an IDM router is needed and which one. A router is also a
standard distributed object. The main difference with respect
to the objects is they may accept and forward messages whose
destination is another object.

The next listing shows a routing table sample. It uses
simplified object identifiers due to readability reasons.

Router.Row.NetA.Subnet1.* = tcp, *
Router.Row.NetA.Subnet2.* = tcp, *
Router.Row.NetB. * = udp tcp, NetA.Subnet1.R2
Router.Row.* = tcp, NetA.Subnet2.R1

That routing table contains the next information:

• All the objects prefixed with NetA.Subnet1 or
NetA.Subnet2 are directly reachable (direct delivery).

• All the objects prefixed with NetB may be reachable by
means of the router NetA.Subnet1.R2.

• For everything else, it must use NetA.Subnet2.R3 (the
default router).

Each row in the routing table includes an endpoint type
list which may be used to contact objects connected to that
network. Because an IDM network is formed one or “physical”
networks using the same compatible protocol set. To use the
IDM ALP mechanism at least a compatible type of endpoint
must be known.



A. Dynamic Routing

It results relatively easy to implement dynamic routing
algorithms. Each routing protocol message is defined as a
object method in the specific interface. To support a new
routing protocol is enough that the router needs to implement
the respective interface as a new facet. As example, the next
listing shows the interface for the RIP2 [7] protocol:
module Routing {

sequence <Ice::Identity> IdentitySeq;

interface RIP {
void request(IdentitySeq oids, Ice::Identity src);
void response(IdentitySeq oids, Ice::Identity src);

};
};

In both methods, the parameter oids is an router identifier
list (that may be empty in the request() message) and the
src parameter is the identifier of the router that makes the
invocation.

This approach allows to implement several dynamic routing
protocols in the same router, although in that case, it must
exists an administratively defined criterion to avoid conflicts
in the routing table updates.

B. Network Management

Because routers and servers are conventional distributed
objects, it is possible to use all the standard services available
in the middleware such as application deployment or remote
management (IceGrid in the case of Ice). This allows very
interesting features, some of them found in a current network
management platforms, but with no significant overhead.

a) Planning The topology design, the user and network
requirements analysis, the maintenance and operation costs
may be calculated before the system deployment. b) Deploy-
ment It allows distribute configuration files, libraries and cus-
tomized binaries for each host or routing device. c) Monitor-
ing/Accounting The system performance, available bandwidth,
mean latency and many other variables may be measured
easily in each router or server. d) Configuration Management
New or improved software version may be deployed to routers,
including replacements for routing protocols or administrative
priorities.

VII. PROTOTYPES AND RESULTS

We developed some early prototypes to illustrate the possi-
bilities and to evaluate the overhead of IDM. IDM is compared
with conventional Ice invocations and traditional TCP/UDP
sockets. The following results are obtained in a compatible
IBM-PC computer with Intel Core2 Duo 2.33GHz processor,
100Mbps Ethernet NIC and Debian GNU/Linux OS. The
programs are built with ZeroC Ice version 3.3 with GNU GCC
4.3 compiler.

These latency and throughput tests are inspired by the
benchmarks made by ZeroC that are available in their web-
page [9] as well as the source code used to make the tests.

The intention of these tests is to prove that the IDM
overhead does not imply significant performance degradation.

TABLE I
LATENCY BENCHMARKS.

Latency socket ICE IDM
(Twoway)
Local 23 31 32
Remote (direct) 268 274 278
Remote (1 IP hop) 312 360 384
Remote (1 IDM hop) N/A N/A 2 537
(Oneway)
Local (oneway) 8 13 15
Remote (direct) 76 98 112
Remote (1 IDM hop) N/A N/A 1049

TABLE II
THROUGHPUT BENCHMARKS.

Throghput socket ICE IDM
Local 292 365 485
Remote (direct) 42 394 43 051 43 276
Remote (1 IDM hop) N/A N/A 98 291
Remote (2 IDM hops) N/A N/A 101 265

Moreover, note that we are using TCP endpoints for all the
tests. When more suitable endpoints are available it will be
possible to obtain better results than Ice and even better than
raw TCP/IP sockets in many cases. For example, with the
adequate application requirements we may send a multicast
multimedia stream in a LAN encapsulating messages directly
on Ethernet frames. This is an important overhead reduction.

The full source code used to make these tests, the current
reference implementation of the prototype and other relevant
information is available in the IDM webpage [10].

A. Latency

The latency tests measure the time needed to complete
an invocation to a remote object sending a null or very
small payload. The table I shows the average times for a
set of 100 000 ice_ping() method invocations. This is the
simplest message that may be implemented in Ice, it does
not have any argument nor it returns a value. For the sake
of comparison with BSD sockets, the raw socket test sends
single byte requests and replies. In order to prevent batching
of several messages in a single segment each message is
forced to be sent immediately with a flush() call. Twoway
invocations are synchronous, they will not be sent until the
previous response arrives. Oneway invocations may be sent
without a pause.

B. Throughput

Our performance tests measure the efficiency of the protocol
when transmitting raw data. Table II shows average times per
invocation where each invocation sends 500KB of raw data in
a loop of 1000 iterations. All the invocations are twoway.

C. API

We intend to deploy IDM as a library for advanced end-to-
end services in a way as transparent to the user as possible.



In this section we will see a brief overview of the library
interface.

From the point of view of the application programmer,
server implementation is almost identical to the standard Ice
implementation. A special object adapter must be used, it is
called IDM::Adapter. This is a simple decorator of the
standard Ice ObjectAdapter. When this adapter is created, it
will automatically be registered in the available ALP service.
The following C++ listing shows the implementation of a
minimal IDM accessible object.
class HelloI : virtual public Demo::Hello {
public:
void sayHello(const string& name,

const Ice::Current& current) {
cout << "Hello from ’" << name << "’" << endl;

}
};

class SimpleServer : public Ice::Application {
public:
int run(int argc, char* argv[]) {

Ice::ObjectPtr serv = new HelloI;
IDM::AdapterPtr adapter =
new IDM::Adapter(communicator(), "testAdapter");

adapter->add(serv,
communicator()->stringToIdentity(argv[1]));

adapter->activate();

communicator()->waitForShutdown();
return EXIT_SUCCESS;

}
};

int main(int argc, char* argv[]) {
SimpleServer app;
return app.main(argc, argv);

}

The IDM client requires certain modifications in relation to
a conventional Ice client implementation. It needs to create
an IDM::Socket instance and then invoke the plug()
method, that takes an object identifier and returns a proxy to
make invocations to the specified remote object. That class is
responsible for looking up the node routing table and uses the
ALP Service to get the reference to contact the remote object
(either for direct or indirect delivery). The listing bellow shows
the client implementation to access the server shown above.
class SimpleClient : public Ice::Application {
public:
int run(int argc, char* argv[]) {
IDM::SocketPtr sock = new IDM::Socket(communicator());
Ice::ObjectPrx obj = sock->plug(argv[1], IDM::QoS());

Demo::HelloPrx prx = Demo::HelloPrx::uncheckedCast(obj);
prx->sayHello("John");

return EXIT_SUCCESS;
}

};

int main(int argc, char* argv[]) {
SimpleClient app;
return app.main(argc, argv);

}

VIII. CONCLUSIONS AND FUTURE RESEARCH

At first sight the design and implementation of a network
protocol on top of the transport layer may seem contradictory
or useless. We tried to show in this paper that the features
provided by IDM may become very valuable in many different
scenarios. Some of them are:

• Technology-independent universal logical addressing.
• Transparent end-to-end transport.
• Better efficiency due to the fact that the application

designer may easily select the most appropriate transport.

• Additional features may be added transparently and they
may be decoupled from the transport, such as ciphering,
accounting, authentication, authorization, etc.

• Functional routing.
• Router and node migration.

The potential of IDM is currently being studied in the
following areas:

• MANET Networks (Mobile Ad-hoc Networks). Each node
in the ad-hoc network may include an IDM router,
achieving an homogeneous access to the main network.

• Implementation of the IDM router in embedded systems
based on microcontrollers and FPGAs for the develop-
ment of highly efficient gateways for SAN networks and
heterogeneous clusters.

• Metrics and evaluation of network performance and qual-
ity of service.

• Virtual network providing QoS services. An early pro-
posal was already published by some of the authors of
this paper.

Regarding the implementation of new endpoints, we must
highlight that a wide variety of protocols such as Zigbee,
BlueTooth and Ethernet are being developed in our prototypes.
We are also prototyping endpoint decorators. These are a set of
stackable endpoints which may be used to provide additional
features to an existing endpoint, such as ciphering, deliv-
ery guarantees, accounting, etc. These decorators allow easy
composition of endpoint functionalities leading to interesting
combinations. For example, to transmit a private audio stream
over an Ethernet network we may use an Ethernet endpoint
which is able to transport data directly on Ethernet datagrams.
This endpoint would be decorated with a ciphering endpoint
to guarantee privacy. We would get the minimum protocol
overhead for the requirements of the application, avoiding in
this example the UDP and IP headers.

REFERENCES

[1] A. Dunkels, J. Alonso, T. Voigt, “Making TCP/IP Viable for
Wireless Sensor Networks”, The First European Workshop on
Wireless Sensor Networks. EWSN 2004.
The First European Workshop on Wireless Sensor Networks

[2] A. Dunkels, “Full TCP/IP for 8-Bit Architectures. In Proceed-
ings of the first international conference on mobile applications,
systems and services” MOBISYS 2003, San Francisco, May 2003.

[3] G. Holland, N. Vaidya, “Analysis of TCP Performance over
Mobile Ad Hoc Networks” MOBICOM’99, August 1999.

[4] F. Moya, D. Villa, F.J. Villanueva, J. Barba, F. Rincón, J.C.
López, J. Dondo “Embedding Standard Distributed Object-
Oriented Middlewares in Wireless Sensor Networks,” Wireless
Communications and Mobile Computing Journal, Mar 2007.

[5] Object Management Group, “CORBA Messaging”, in Common
Object Request Broker Architecture (CORBA) Specification,
Version 3.1, Part 1: CORBA Interfaces, ch. 17, pp. 419-494, Jan
2008.

[6] Object Management Group, “ORB Interoperability Architecture”,
in Common Object Request Broker Architecture (CORBA) Spec-
ification, Version 3.1, Part 2: CORBA Interoperability, ch. 7, pp.
15-64, Jan 2008.

[7] G. Malkin, “RIP Version 2”, RFC 2453, Nov 1998.



[8] S. Deering, R. Hinden, “Internet Protocol, Version 6 (IPv6)”,
RFC 2480, Dec 1998.

[9] Ice Perfomance Tests. Available online at
http://www.zeroc.com/performance/index.html.

[10] IDM Webpage. Available online at http://arco.esi.uclm.es/idm.


