
J. PERVASIVE COMPUT. & COMM. 1 (1), MARCH 2008. c©TROUBADOR PUBLISHING LTD) 1

ASDF: An Object Oriented Service Discovery
Framework for Wireless Sensor Networks

D. Villa
David.VIlla@uclm.es

F. J. Villanueva
Felix.Villanueva@uclm.es

F. Moya
Francisco.Moya@uclm.es

F. Rincón
Fernando.Rincon@uclm.es

J. Barba
Jesus.Barba@uclm.es

J. C. López
JuanCarlos.Lopez@uclm.es

Dept. of Technology and Information Systems
University of Castilla-La Mancha

School of Computer Science. 13071 - Ciudad Real. Spain

Abstract—
Purpose: This paper presents a new Service Discovery

Protocol (SDP) suitable for Wireless Sensor Networks (WSN).
The constraints imposed by ultra low-cost sensor and actuators
devices (basic components of a WSN) are taken into account to
minimize the overall footprint.

Design/methodology/approach: It is based on the
lightweight WSN communication model used by picoObjects,
a tiny implementation of the distributed object concept. We
consistently follow the same design criteria aiming at minimal
overhead for devices and communication protocols. In spite of
its simplicity it is powerful enough to deploy a valuable set of
services.

Findings: This approach provides a remote interface that
client applications can use without knowing where the service is
implemented (platform and location independence).

Research limitations/implications: The future work is
mainly focused on integrating third party services using different
SDPs, making it possible the real deployment of large heteroge-
neous pervasive environments.

Practical implications: Designers may change the underly-
ing SDP model (e.g. centralized vs. distributed) without affecting
applications by just tweaking configuration settings.

Originality/value: Embedded devices can participate in the
Service Discovering Procedure providing their own services by
means of standard distributed objects. Besides, the protocol is
suitable for any kind of dynamic networked system.

Keywords: Service Discovery, Resource Discovery, Wireless
Sensor Networks, Object Oriented Middleware

Paper type: Research paper

This research is partly supported by FEDER and the Spanish Government
(under grant TIN2005-08719) and by FEDER and the Regional Government
of Castilla-La Mancha (under grants PBC-05-0009-1 and PBI-05-0049)

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are becoming the key
component in any pervasive environment. They usually imple-
ment the interaction with the physical world, both the ability
to measure physical magnitudes and the ability to react to
changes in those magnitudes by driving an actuator. A WSN
is composed of low-cost nodes which contain three types of
elements: a sensor or an actuator, a generic microcontroller and
a network interface. Sensors are meant to measure the value
of a given physical magnitude (e.g temperature, humidity,
smoke, etc.) while actuators are able to modify the state of an
element which drives such a physical magnitude (e.g. a valve).
The microcontroller basically adapts raw data and provides
communication facilities for applications. Finally the network
interface offers wireless network connectivity.

Flexibility and quick deployment (mainly due to their
wireless interface) are the characteristics that make WSNs a
nice solution for multiple applications such medical [5] or
meteorology [6] applications, habitat monitoring [7], etc. In
the short term we envision a pervasive environment plenty of
heterogeneous WSN nodes offering a wide variety of services,
ranging from the most basic (supported by either individual
nodes or the whole network) to the most complex (broadly
distributed ambient intelligence services).

However, the flexibility in the physical deployment of WSN
(wiring is unnecessary) did not match its software counterpart.
We believe that the deployment of a WSN should also care
of minimizing the configuration. With the service discovery
protocol (SDP) described in this paper, a WSN node gains the



2 J. PERVASIVE COMPUT. & COMM. 1 (1), MARCH 2008. c©TROUBADOR PUBLISHING LTD)

ability to announce its services and offer the possibility to use
them without any previous configuration procedure.
The proposed SDP:
• Allows very low-cost nodes to be deployed in an easy and

incremental way (following a Place & Play philosophy).
• Allows applications to discover and use the services

offered along a WSN (specially convenient in mobile
applications).

• Is designed for heterogeneous WSNs where different
nodes implement different functionality using different
technologies.

The SDP described in this paper is based on our previ-
ous work on picoObjects [1]. This approach achieves
a high degree of interoperability with standard distributed
object oriented middlewares, and also provides the capability
to use the WSN nodes as conventional distributed software
objects without any intermediate device. The strong footprint
limitations determine the design of a picoObject, as well as
the design of our SDP (as we will show in the next sections).

The SDP prototype is based on ICE [19] (Internet Commu-
nication Engine), a high quality distributed object framework
developed by ZeroC, Inc. built upon the experience of CORBA
but free of legacy or bureaucracy constraints.

The remaining of this paper is organized as follows. Sec-
tion II explains some previous works on SDPs. In section III
the picoObject approach is briefly summarized. Section IV
is devoted to our SDP in detail. In section XV the prototype
we used to validate our proposal is briefly described. Finally
we draw some conclusions and outline some future work.

II. RELATED WORK

During the last years, several SDPs have been designed with
the aim of automating the discovery of networked services and
minimizing the configuration procedures required to integrate
a service in any networking environment.

Some currently broadly used SDPs such as UPnP [9], Jini
lookup service [18], Bluetooth SDP [11] or SLP [10] are
considered de facto standards. The evolution of fields such
as ambient intelligence, pervasive computing, or ubiquitous
computing has made it possible the development of an impor-
tant amount of services that use a variety of heterogeneous
technologies and that need to interoperate. This growth of
services inherently implies complex configuration procedures
for integration with other networks services. Consequently,
serious efforts have to be made in order to simplify such
configuration procedures and to make it possible to support
mobile services and service interoperability.

However, the current SDPs are not suitable for WSNs due to
the serious footprint restrictions the WSN nodes impose. Such
restrictions have to do with power supply, memory limitations,
processing capacity, etc., parameters that have not been taken
into account in the design of current SDPs. For example, due
to footprint limitations, neither an XML parser (like UPnP
requires) nor a Java Virtual Machine (needed by the JINI
lookup service) could be implemented in a WSN node. Even
lightweight protocols oriented to mobile devices like Bluetooth
SDP or PDP [15] do not assume such constraints in their
design.

Recent works have proposed SDPs for new technologies like
mobile ad-hoc networks [13][14]. In these highly dynamic en-
vironments, in which services are registered in a directory (in
a similar way to yellow pages), the directory-based structures
cannot be deployed due to the lack of a fixed infrastructure.
This has been the problem usually addressed, but, once again,
the minimal footprint requeriments of WSN nodes have not
been taken into consideration.

On the other hand, current platforms oriented to support
WSN [16][17] are working on prototypes which need to be
reduced in terms of cost (therefore probably in resources) for
an eventual massive introduction in the market.

In [8] a resource discovery protocol (called DRD) specially
designed for WSN is described. In DRD each node sends a
binary XML description to another node that has been selected
as the cluster head (CH). This node assumes the representation
of all the nodes under its range. The CH will also answer SQL
queries in place of its cluster sensors. The CH is selected
among all the nodes depending on their remaining energy.
Thus it is necessary to give all the nodes the capacity of being a
CH. This means that all nodes need SQLlite database, libxml2
and a binary XML parser to implement the CH functionality.
Our approach, as we will describe in section IV, provides
a way to incrementally add functionality to the nodes, so
that ultra low-cost sensor nodes can be easily integrated in
a first step and then, according to its capacity, acquire new
functionality. It is necessary to clarify that when we are
talking about wireless sensor nodes we are thinking on a
minimal footprint device, even more limited than widespread
prototyping platforms like MICA, MicaZ, RockWell WINS,
etc.

Finally, in [4] an homogeneous sensor network (all the
nodes have the same functionality) resource discovery protocol
is proposed, centered in the optimization of the flooding
process by taking advantage of historical queries [8]. Our
work assumes that a WSN is composed by heterogeneous
nodes implementing different services that do not need to be
considered in an homogeneous way (managed by a simple
table).

In general, we observe that previous works did not face
the design of SDPs in such a way that: a) they turn out to
be suitable for heterogeneous WSN, taking into account the
footprint requeriments of small devices, and, 2) they support
the use of node services by client applications without the
need of a configuration procedure. Therefore, we will focus
on these issues.

III. PICOOBJECTS

Our SDP has been designed to give support to WSN based
on picoObjects, although it is perfectly applicable (without
any change) to more powerful devices or even to WSN based
on other approaches (including, for example, some widely
used devices such as the MICA Motes).

The picoObjects are implemented as message matching
automatons. From a textual description (that includes the
object interface description), the picoObject compiler can
generate these automatons in several programming languages
and for several platforms.



D. VILLA ET AL.: MINIMALIST OBJECT ORIENTED SDP FOR WSN 3

This approach allows the picoObjects to be embedded
either into the smallest microcontroller in the market, into the
tiniest embedded Java virtual machine, or even in a low-end
FPGA. For a deep description of the picoObject approach,
please refer to [1]. A picoObject implementation example
can be found in our webpage [20].

IV. INTRODUCTION TO ASDF

We have defined an ultra lightweight object-oriented service
discovery protocol, called ASDF (Abstract Service Discovery
Framework), which provides several valuable features such as:
• An easy way for device announcement.
• Extensibility and scalability.
• Interaction with legacy SDP.
• Seamless integration with standard middlewares.
• Auto-configuration for devices (in order to get a place &

play behavior).
The ASDF is designed keeping in mind minimal devices.

For example, the protocol allows the nodes to announce
themselves to the network using simple messages completely
compatible with the distributed object middleware. In spite of
this, the protocol is very scalable and may be applied to more
powerful devices.

V. EVENT CHANNELS

Our protocol uses extensively the standard event service
provided by the distributed object middleware. This makes it
possible to easily decouple all involved elements. The event
channel is a direct implementation of the observer [3] design
pattern (also known as publish-subscribe).

The IceStorm service (ZeroC ICE event channel) is able to
employ several transport protocols at same time (TCP, SSL,
UDP and multicast UDP are all implemented in the stock
version). This is entirely transparent for objects. Even on a
single shared channel each publisher or subscriber may choose
the protocols to use individually.

However, connecting too many nodes to the same event
channel may raise scalability concerns. Therefore, several
event channels (topics in ICE parlance) are used. Event
channels have minimal resource cost and they can be inter-
connected by means of “links” to propagate events to each
other. There is also a simple mechanism to specify limits or
priorities to event propagation.

Event channel federation is another technique to group some
nodes (their corresponding event channels) together according
to different criteria (functionality, location, type of service,
. . . ) in the same logic channel, while keeping the ability to
propagate certain events to other channels.

VI. PLACE & PLAY ENVIRONMENT

Node deployment is a key issue for sensor networks. It is
very convenient that nodes can configure themselves in an
autonomous way. When an actor (a node/device exposing its
functionality by means of an object interface) is connected or
returns from a sleeping state, the node sends an announcement
message (adv()) to a specific event channel called ASDA:

ASD Announce. Optionally, these announcements may also be
sent periodically. The adv() member function is part of the
iListener interface.

Because of this, all the applications or actors that are
interested in announcing their services, must implement the
aforementioned interface. The description of this interface is
as follows:
module ASD {
interface iListener {
idempotent void adv(Object* prx, iProperties* prop);

};
};

The argument prx is a proxy to contact the object that
sends the event. The argument prop is an object that holds
the node properties (see section VIII). The next listing shows
the content of an adv() message:
Magic Number: ’I’,’c’,’e’,’P’

Protocol: 1,0 - Encoding: 1,0
Message Type: Request (0)
Compression Status: Uncompressed (0)
Message Size: 54, Request Message Body

Request Identifier: 0
Object Identity Name: publish
Object Identity Content: asdf
Operation Name: adv - Ice::OperationMode: normal (0)
Input Params Size: 16
Input Params Encoding: 1,0 - Encap. params (10 bytes)

Sometimes, the adv() message arguments are fully static.
In these cases, since the total message size is about 80 bytes,
these arguments can be stored in the device ROM.

The clients and services interested in the potential an-
nouncements that may occur must subscribe to the event
channel ASDA (see figure 1). When a subscriber receives an
adv() event, it gets the object proxy of the announced actor
and uses the introspection mechanisms to interrogate the actor.
The subscriber can also list and request the actor properties
by means of the argument prop.

actor

adv(self,prop)
adv(self,prop)

subscribe(self)

ASDA : Topic Client

Fig. 1. Sequence diagram for ASDA channel interaction

Although this announcement procedure has a high abstrac-
tion level, it can be implemented on very simple devices with
an identical behaviour respect to a conventional “object”.

VII. SERVICE DESCRIPTION

The model for service description is defined in an ontology.
The MIS Model Information Service provides access to his
ontology by means of its Metamodel interface. Any peer
may obtain the set of valid attributes of a specific class or the
relations between classes.

Besides MIS is also responsible for legacy SDP integration
(see section XIV).
module MIS{



4 J. PERVASIVE COMPUT. & COMM. 1 (1), MARCH 2008. c©TROUBADOR PUBLISHING LTD)

interface Metamodel{
list getClasses();
list getPropertyNames(string classID);
string getValueType(string classID, string propertyID);
list getLegalValues(string classID, string propertyID);

};
};

The description of a specific service requires two items:
The property set

The properties represent constraints of a specific
actor. That is, a temperature sensor holds several
properties: maximum and minimum values, preci-
sion, localization, etc. The next section describes
properties in detail.

The interface
This is defined in Slice language and corresponds
to a single class of the ontology1. These are non-
behavioral interfaces. Their purpose is to identify
a type of service and any object may inherit from
one or several of these interfaces. The following
listing shows some of these type of service interfaces.
Section XIII shows how to use this information in the
service discovery process.

module Service {
interface PresenceSensor{};
interface TemperatureSenser{};
interface MotionSensor{};
[...]

};

VIII. PROPERTIES

As mentioned above, the parameter prop in the adv()
message is an object proxy for a “property context”. This prop-
erty context allows the clients to access the actor properties.
There are several alternatives here:
• The argument prop can be a null proxy when it is not

necessary or the actor does not have any property.
• If the device has enough computing resources, its prop-

erty context may be implemented in the device itself. In
this case, both adv() arguments, prx and prop, may
point to the same object. This service description storage
option is known as Unstructured Distributed [12].

• The proxy prop may also point to a remote object in
a different location. This allows to implement collective
property contexts (called Property Servers) for many
actors whose properties are stored outside the actor,
perhaps in a full blown database. Even a single servant
may be able to dispatch method invocations for many
objects using a “default servant” strategy. This service
description storage option supports centralized and hybrid
models.

The Property Context implements the iProperties inter-
face:
module ASD {
dictionary<string, Object> PropDict;

module iProperties {
interface R {

idempotent Ice::StringSeq keys();

1A simple script takes an ontology description (.OWL file) and generates
Slice declarations.

idempotent PropDict getp(Ice::StringSeq keys);
};
interface RW extends R {
void setp(PropDict dict);

};
};

class boolValue { bool value; };
class byteValue { byte value; };
...

}

Properties are specified by means of key, value pairs. The
key is just a text string naming the property. The value
is an object of a primitive type such as boolValue or
byteValue. We are currently adopting the Standard Property
Service Specification by OMG [2] because it provides a more
feature-full interface.

We should emphasize that actor properties are considered
optional (not required) information. It is useful for administra-
tion, configuration and monitoring tools but it doesn’t affect
the system basic functionality. System services never depend
on property values or their availability.

IX. BASIC INTERFACE FOR ACTORS

All actors (sensors or actuators) implement a very simple
interface to expose the value of their internal state. Therefore
the sensor state is the value of the measured physical magni-
tude. There are different interfaces that depends on the type
of data they manage. Some of them are shown below:
module iBool {
interface R { idempotent bool get(); };
interface W { void set(bool v, Ice::Identity oid); };

};

module iByte {
interface R { idempotent byte get(); };
interface W { void set(byte v, Ice::Identity oid); };

};

module iFloat {
...

X. INTERACTION MODEL FOR ACTORS

Depending on how the application interacts with actors,
there are four basic types of actor behavior:

Passive
To get the state value of a passive sensor, the client
needs to invoke explicitly the get() method of
the actor and then it will receive the reply in a
synchronous way.

Active
The active actor is able to send a set() message in
a pre-programmed way to another object (usually an
event channel). That message indicates the current
state of the actor.

Proactive
This is a special case of an active sensor but it sends
the set() event when a change occurs in its state.

Reactive
A reactive sensor is also an active sensor which
sends set() events only if a client invokes its
standard ice ping() method. The ice ping()
standard functionality has been extended so that



D. VILLA ET AL.: MINIMALIST OBJECT ORIENTED SDP FOR WSN 5

when this method is invoked, the actor will send an
event to the pre-defined event channel to publish its
state, in addition to the conventional ice ping()
behaviour.

Therefore, when we talk about active actors (or active sen-
sors), we refer to both, reactive and proactive ones. All active
objects implement the interface iActive shown below:

module ASD {
interface iActive { idempotent void topic(Object* prx); };

};

The passive actors requires a two-way communication
model while the active ones could use a one-way commu-
nication model.

Using the topic() method, an specialized service can
instruct the actor about the remote object (event channel) that
the actor must use to publish its events.

XI. ACTOR SET-UP

The active sensors need an event channel to send their state
updates. When an actor announces itself, a “channel monitor”
service does the following tasks (figure 2):

• Using the middleware introspection features, it verifies
that the new actor is actually an active actor (implements
the iActive interface).

• It creates an event channel using the object identity as the
channel name. If that event channel already exists (it has
been created before) then no further actions are needed
and the process finishes.

• After creating the corresponding event channel, the mon-
itor invokes the topic() method of the actor with the
proxy for the new event channel as the argument.

actor

adv(self,prop)
adv(self,prop)

subscribe(self)

ice_isA(’ASD::iActive’)

<<create>>

topic(cb)

ASDA : Topic

Fig. 2. Sequence diagram for Channel Monitor Service.

This process is designed keeping in mind that actors are
implemented as picoObjects. This means that they are not
able to create event channels by themselves and therefore they
need an external channel monitor. For a more powerful device,
capable of running a standard middleware, the monitor makes
no sense, since its functionality is performed by the standard
middleware procedures.

Since every actor creates its own specialized event channel
to send its events, this approach allows a fine-grain control
of the message flow, improving at the same time the system
scalability.

XII. MULTI-REQUESTS

In WSNs it is quite a common situation when a service
needs to query a certain set of sensors. For example, a
service may need to compute the average temperature in a
big room with many sensors installed. As a way to simplify
this operation, we use reactive actors (see section X).

ice_ping()

<<create>>

link(channel 1)

link(channel n)

...

subscribe(self)

<<create>>

subscribe(actor 1)

subscribe(actor n)...

ice_ping()
set(value)

set(value)

set(value)

application

cb : Topic

actor

actor

channel

<<create>>

Fig. 3. Sequence diagram for multi-requests.

If a client is interested in the value of a set of sensors,
it should create a new event channel. The event channels
associated to all the involved sensors are linked to the new
one. If it is known that several nodes share some kind of
functional or structural relation this new event channel may
already be created by default. The clients that are interested
in the state of this set of sensors may subscribe to this new
channel.

The most efficient way to send the ice ping() to a set
of actors is that they hold an additional multicast endpoint.
But this is not always possible because it depends on the
underlying network technology. For these cases, an alternative
solution is proposed (as shown in figure 3).

To make it possible a multiple request, another new event
channel is created. All the involved sensors are subscribed
to it. This may even be achieved by an external application,
transparently to the nodes. From this moment, when a client
sends an ice ping() message, all the subscribed nodes will
receive it.

With the multi-request procedure and thanks to the ICE
Storm event channel federation mechanism any external appli-
cation can configure its particular view of the world according
to different aspects such as functionality, position, security,
etc.

XIII. SERVICE LOOKUP

When an application needs to find an object that provides
a given service, the application creates an event channel to be
used as “callback” and subscribes to it. Then, the application
invokes the lookup() method on the ASDS (ASD Search)
event channel with the following information:



6 J. PERVASIVE COMPUT. & COMM. 1 (1), MARCH 2008. c©TROUBADOR PUBLISHING LTD)

lookup(cb, query)

<<create>>

subscribe(self)

lookup(cb, query)

adv(actor, prop)

adv(actor, prop)

ASDS : Topic actor : ASD:iSearch

Fig. 4. Distributed service lookup.

• The service interface (the ontology class).
• A set of properties that objects must match.
• The proxy of the callback event channel. The application

is responsible for releasing the callback event channel
when it is not needed.

interface iSearch {
dictionary<string, ByteSeq> PropDict;
void lookup(Object* prx, string tid, PropDict query);
void discover();

};

The actors subscribed to the ASDS channel that match the
seach criteria will send an adv() message to the channel
proxy specified by the application in the lookup() message.
If other applications or services are also interested in the
potential replies, they can also subscribe to the published
channel proxy. A sequence diagram of this procedure is shown
in figure 4.

To ensure that actor replies are not sent before the interested
parties subscribe to the callback channel, the actor waits for
a fixed time before the announcement event is sent. Besides
additional random timeout can be implemented to improve the
system scalability.

A. Service Directory

Given the type and the amount of information contained in
the Property Servers they can play an active role in service
discovery. The Property Server may subscribe to the ASDS
channel to receive all of the lookup() events. It then
evaluates the search criteria for all its known actors generating
announcements for every matching actor (see figure 5).

This behaviour may even coexist with the distributed direc-
tory service described before. A Property Server just needs to
wait for a given timeout before it produces an answer. If a
matching service is able to respond itself then the Property
Server will skip it. In a worst case scenario there will be two
identical announcements for each actor but since announce-
ments are idempotent there will be no negative consequences
from the functional point of view.

B. Hierarchical Service Lookup

Service discovery may not scale up indefinitely. As in most
of the ASD protocol it was designed for environments with
a predictable amount of devices. But sometimes it may be
needed to look for a service in the upper level of the hierarchy.

lookup(cb, query)

<<create>>

subscribe(self)

lookup(cb, query)

adv(actor, prop)

adv(actor, prop)

ASDS : Topic
Property Server

: ASD:iSearch

subscribe(self) only if actor

doesn’t answer

Fig. 5. Property Server as a Service Directory.

Then we rely on IceGrid, another standard service included in
the ZeroC ICE middleware.

Among the many features included in IceGrid (replication,
load balancing, implicit activation, . . . ) we are mainly con-
cerned with the following two:

IceGrid/Locator
It allows contacting remote objects indirectly through
an indirect proxy. These objects must be previ-
ously registered into another component called Ice-
Grid/Registry.

IceGrid/Query
This service offers an interface for querying the
Registry database of well-known objects. The fol-
lowing listing shows some methods included in this
interface:

interface Query {
Object* findObjectById(Ice::Identity id);
Object* findObjectByType(string type);
Ice::ObjectProxySeq findAllObjectsByType(string type);
Ice::ObjectProxySeq findAllReplicas(Object* proxy);

};

Therefore IceGrid/Query is used as a service directory
since it allows queries by service type. Nonetheless this is
only one side of the problem. We also need to provide a
specialized Locator object with the ability to redirect requests
to the upper hierarchical level when needed. Besides we must
match against the set of properties requested in the lookup()
invocation.

From the point of view of clients and actors this new
component called ExternalLocator is fully transparent and its
behaviour is similar to what is described in section XIII-A. The
only noticeable difference is that while ExternalLocator works
as a two-level hierarchical directory 6, the PropertyServer is
a centralized directory.

wired

network

WSN−1
WSN−2

gateways

Locator

Locator

Locator

Fig. 6. Service lookup delegation to upper domain level



D. VILLA ET AL.: MINIMALIST OBJECT ORIENTED SDP FOR WSN 7

C. Support for ’pull’ discover

The advertisement model described in VI is known as
Passive Directory or Pure Push Model, that is, the actors offer
their services explicitly and the clients do not have any other
way to detect them. This is not the most convenient model for
WSN, where power consumption is a very important issue. It
would be better if the actors would only send advertisements
when are connected or optionally with a low periodicity.

Therefore the ASD search service provides a generic envi-
ronment discovery mechanism, supporting a hybrid Push/Pull
model. In these cases, the clients may send a discover()
message to the ASDS topic to query updated advertisements.
From the server side there are two different alternatives:

Disributed
The actors are ASDS subscribers and send adv()
messages when they receive the discover() re-
quest (see figure 7).

Centralized
A specialized service called Cache Service is an
ASDA subscriber and it store all the advertisement
information. This service is also an ASDS subscriber.
When it receives discover(), it sends adv()
messages for each previously advertised actor (see
figure 8).

In both alternatives, the clients receive conventional actor
advertisements by means of ASDA channel.

The pure Push Model may be achieved when the Cache
Service knows the objects in advance. However, that situation
is not convenient for dynamic environments such as WSNs.

actor : iSearch

adv(self,prop)

subscribe(self)

ASDS : Topic ASDA : Topic Client

adv(actor,prop)

 discover()

subscribe(self)

discover()

Fig. 7. Distributed discover

actor

adv(self,prop)

subscribe(self)

discover()

subscribe(self)

subscribe(self)

ASDA : Topic ASDS : Topic ClientCache : iSearch

adv(actor,prop)

adv(actor,prop)

 

adv(actor,prop)

discover()

store info

in the cache

Fig. 8. Centralized discover: cache

XIV. LEGACY SDP INTEGRATION

In large heterogeneous pervasive environments where dif-
ferent networks are deployed (multimedia network, personal

body networks, control networks, etc.) it is not likely that
a single SDP covers all the different networks. It is also
unrealistic to assume that all devices implement just the same
SDP. Devices and services from different manufacturers will
probably implement several SDPs. Again, a real deployment
will require interoperability of several SDPs, at least, for a
basic interaction.

We are working on the design and implementation of new
procedures that allow a complete interoperability among other
SDPs. Looking at the current de facto standard protocols
(UPnP, IETF SLP, Bluetooth SDP and Jini are being consid-
ered) a set of common primitives will be derived in order to
ease the development of bridges between the ASDF and other
SDPs (see table I).

With these kind of semi-automatic bridges ASDF may
be used to locate and use services that are offered by a
specific WSN node from an UPnP service and without any
modification of such a service. To achieve this, we are working
on matching the UPnP primitives with the events that can be
directly interpreted by the picoObjects that are installed
in the WSN nodes.

The choice of the primitives to be implemented and the
granularity of the implementation needs to be carefully ana-
lyzed and will strongly depend on the SDPs to be integrated.
Each external SDP requires a semi-custom SDP Gateway
which translates SDP primitives to and from ASDF primitives.

Another topic related to SDP legacy integration is
how to match the ASDF nomenclature with a third
party platform nomenclature. This correspondence is a
responsibility of the the MIS service. For example, in
UPnP service templates the string “urn:schemas-upnp-
org:service:TemperatureSensor:1” identifies a temperature sen-
sor service in the UPnP domain. Our model information
service defines the class TemperatureSensor where a especific
instance has been defined for the UPnP temperature service.

With this model, when an UPnP SDP Gateway identifies
a native lookup request for any service, this gateway asks
the MIS service for the correspondence between the UPnP
service and our ASDF naming scheme. For example the UPnP
service “urn:schemas-upnp-org:service:TemperatureSensor:1”
is translated by the MIS into a TemperatureSensor string and
the SDP Gateway will invoke an ASDF lookup to find the
TemperatureSensor service.

Finally, it is also necessary to instantiate a specific service
gateway between the UPnP service and picoObject clients.
This instantiation is also implemented by the SDP Gateway
when it receives an answer to the request for a specific service.

XV. EXPERIMENTAL RESULTS

Table II shows the size of the messages used in the ASDF
protocol, assuming that it has been implemented in ICE. Some
of them are standard ICE messages. In the tests, the object
identity was 8 bytes long and it used IPv4 endpoints.

In the current prototypes, we are using 8-bit micro-
controllers although it is underutilized. These are the main
technical characteristics:
• Model: Microchip PIC 16LF876A, 10MHz



8 J. PERVASIVE COMPUT. & COMM. 1 (1), MARCH 2008. c©TROUBADOR PUBLISHING LTD)

ASDF UPnP SSDP JINI BlueTooth IETF SLP
Search Directory No directory Search Lookup Service SearchRequest SrvTypeRqst

SearchResponse
Find service at No directory Lookup Service Search Req/Resp SrvTypeRqst/AttrRqst
diretory ServiceAttributeReq/Resp
Find service (no Multicast SSDP Not supported ServiceSearchReq/Resp SrvTypeRqst/AttrRqst
directory) ServiceAttributeReq/Resp
Advertisements Mulicast SSDP Announce protocol Register service in the DAAdvert/SAAdvert

(Lookup Service) SDP server
Registration Advertisements Registration in a Register service in the SrvReg

Lookup Service SDP server
Subscription Subscription to GENA Not supported Not supported Not supoorted

events
Renew leases Application policies Lease Renewal Manager Not supported Not supported

not supported
Disconnect bye bye SSDP message Remove/Cancel Leasing Not supported Not supported

in Lookup Service

TABLE I
UPNP, JINI, BLUETOOTH SDP, IETF SLP AND ASDF COMPARISON

Name of the ASDF Message Size of Message (in bytes)
Ice::Object::ice ping 46
IceStorm::TopicManager::create 71
IceStorm::Topic::subscribe 97
IceStorm::Topic::link 91
ASD::iListener::adv 96 (+46 if prop. server)
ASD::iActive::topic 88
ASD::iSearch::lookup >92 (depends on query)
iByte::W::set 42

TABLE II
SIZE OF MESSAGES EMPLOYED IN ASDF

• Program memory: 8 KiB
• RAM: 368 bytes
• I/O: 1 USART, 22 i/o pins, two 8-bit timers and one

16-bit timer.
Table III shows the size of several prototype actors. The size

shown includes the complete implementation that runs in the
aforementioned micro-controller. No other library or software
component is needed. The picoObject execution model is
composed by a automaton specification (the bytecode) and
a small interpreter (a virtual machine, VM) implemented in
assembly language. All of them are about two orders of
magnitude smaller than any other previous implementation of
small embedded standard middlewares.

XVI. CONCLUSIONS

In this paper we have presented a SDP (called ASDF)
suitable for low-cost nodes in the WSN field. This SDP
allows a place & play behavior, so nodes and services can be
deployed in a easy and flexible way without any configuration
procedure.

Type of actor bytecode VM total RAM
footprint used

TCP passive (without adv()) 350 333 683 36
TCP passive (periodic adv()) 455 411 866 36
TCP reactive (periodic adv()) 527 411 938 64
UDP reactive (periodic adv()) 368 411 779 64

TABLE III
FOOTPRINT FOR SEVERAL PICOOBJECT NODES (IN BYTES)

Based on a previous work (picoObjects), the proposed
SDP provides the WSN nodes with an advertisement service
by means of events. Additionally, it allows external applica-
tions to lookup services offered by the WSN nodes in several
ways.

The design of the ASDF allows incremental addition of
functionality according to the device capabilities. Moreover,
we have implemented an ASDF prototype using an standard
distributed middleware whose common services (event chan-
nels, replication, persistence, location transparency, security,
etc.) have allowed an easy and reliable implementation.

Due to the interfaces shown in this paper, an application
does not distinguish between the advertisement generated by
a service resident in a conventional PC or by a node in a WSN.
This fact represents a great advantage for quick development
of applications which use WSN services making unnecessary
to integrate complex custom WSN protocols.

In a near future, our work is mainly focused on widening the
range of platforms supported by the picoObject compiler at
same time that we integrate third party services using different
SDPs (UPnP and Bluetooth SDP bridges are currently under
development) making it possible the real deployment of large
heterogeneous pervasive environments with a place & play
philosophy.



D. VILLA ET AL.: MINIMALIST OBJECT ORIENTED SDP FOR WSN 9

REFERENCES

[1] D. Villa, F.J. Villanueva, F. Moya, F. Rincón, J. Barba, J.C. López.
Embedding a general purpose middleware for seamless interoperability
of networked hardware and software components Grid and Pervasive
Computing, GPC 2006, Taiwan May 2006. Lecture Notes in Computer
Science 3947.

[2] Object Management Group, Property Service Specification , April 2000.
Available in http://www.omg.org/, document id: 00-06-22.

[3] E. Gamma, R.H., R. Johnson, J. Vlissides, Design Patterns, Elements
of Object-Oriented Software. 1995, Addison-Wesley.

[4] F. Stann and J. Heidemann. BARD:Bayesian-assisted resource discovery
in sensor networks in Proceedings of the IEEE Infocom, 2005.

[5] Timmons, N.F.; Scanlon, W.G., Analysis of the performance of IEEE
802.15.4 for medical sensor body area networking, IEEE SECON 2004,
October 2004

[6] J. Lundquist, D. Cayan, and M. Dettinger., Meteorology and Hydrology
in Yosemite National Park: A Sensor Network Application, Information
Processing in Sensor Networks (IPSN), April 2003

[7] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson,
Wireless Sensor Networks for Habitat Monitoring, WSNA’02, September
2002

[8] S. Tilak, K. Chiu, N.B. Abu-Ghazaleh and T. Fountain, Dynamic
Resource Discovery for Wireless Sensor Networks IFIP International
Symposium on Network-Centric Ubiquitous Systems (NCUS 2005)

[9] Microsoft, UPnP Device Architecture v1.0 Available at
http://www.upnp.org/download/UPnPDA10 20000613.htm, June 2000.

[10] E. Guttman and C. Perkins and J. Veizades and M. Day, Service Location
Protocol, Version 2, RFC 2608, 1999.

[11] Bluetooth SIG, Specification of the Bluetooth System v2.0, available at
http://www.bluetooth.org. November, 2004.

[12] Raluca Marin-Perianu, Pieter Hartel, Hans Scholten, A Classification of
Service Discovery Protocols, June 2005.

[13] U.C. Kozat and L. Tassiulas. Service Discovery in mobile ad-hoc
networks: an overall perspectiva on architectural choices and network
layer support issues Journal on Ad-hoc Networks, 2004.

[14] F. Sailhan and V. Issarny. Scalable Service Discovery for MANET
Proceedings of the 3rd IEEE conference on Pervasive Computing and
communications, 2005.

[15] C. Campo and M. Munoz and J.C. Perea and A. Marin and C. Garcia
Rubio, PDP and GSDL, a new service discovery middleware to support
spontaneous interactions in pervasive systems, Pervasive Computing and
Communications Workshop, 2005.

[16] M. Kuorilehto, M. Hannikainen and T. Hamalainen, A Survey of Appli-
cation Distribution in Wireless Sensor Networks EURASIP journal on
Wireless Communications and Networking 2005:5,pp 774-788.

[17] P. Baronti, P. Pillai, V. Chook, S. Chessa, A. Gotta, Y. Fun Hu, Wireless
Sensor Networks: a Survey on the State of the Art and the 802.15.4
and ZigBee Standards Technical Report ISTI-2006-TR-18, Istituto di
Scienza e Tecnologie dell’Informazione del CNR, Pisa, Italy, November
2006, pp.41.

[18] Sun Microsystems, Jini Architecture Specification, ed. 1.2, available
online at http://www.sun.com/,

[19] ZeroC, Inc., ICE Home Page, available online at http://www.
zeroc.com/,

[20] ARCO Group, PicoObject Web demostration example, available at
http://mauchly.inf-cr.uclm.es/wiki/index.php/
Arco_Projects

David Villa received his MS degree in Computer
Engineering from the University of Castilla-La Man-
cha in 2002. Since then he works as a Teaching
Assistant at the University of Castilla-La Mancha
(UCLM). He is currently pursuing the PhD degree in
Computer Science from UCLM. His current research
interests include heterogeneous distributed systems,
and distributed embedded system design.

Félix J. Villanueva received the Computer Eng.
Diploma from the University of Castilla-La Mancha
(UCLM) in 2001. In 1998 he joined the Computer
Architecture and Networks Group at UCLM where
he is now working as Teaching Assistant. He is
currently pursuing the PhD degree in Computer
Science from UCLM. His research interests include
wireless sensor networks, ambient intelligence and
embedded systems.

Francisco Moya received his MS and PhD degrees
in Telecommunication Engineering from the Tech-
nical University of Madrid (UPM), Spain, in 1996
and 2003 respectively. From 1999 he works as an
Assistant Professor at the University of Castilla-
La Mancha (UCLM). His current research interests
include heterogeneous distributed systems and net-
works, electronic design automation, and its appli-
cations to large-scale domotics and system-on-chip
design.

Fernando Rincón completed his graduate studies
in Computer Science at the Autonomous Univer-
sity of Barcelona in 1993. In 2003 he obtained
the PhD degree from the University of Castilla-
La Mancha, where he is currently an Assistant
Professor. His research interests include System-On-
Chip integration, Hw run-time reconfiguration and
Heterogeneous Distributed Systems.

Jesús Barba received the Computer Engineering
Diploma from the University of Castilla-La Man-
cha (UCLM), Spain, in 2001. In 1998 he joined
the Computer Architecture and Networks Group at
UCLM where he is working as Teaching Assistant
with the Department of Information and Systems
Technology from 2001. He is currently pursuing the
PhD degree in Computer Science from UCLM. His
research interests include SoCs, HW/SW integration
and embedded distributed systems.

Juan Carlos López received the MS and PhD de-
grees in Telecommunication (Electrical) Engineering
from the Technical University of Madrid (UPM) in
1985 and 1989, respectively. From Sep 1990 to Aug
1992, he was a Visiting Scientist in the Department
of Electrical and Computer Engineering at Carnegie
Mellon University, Pittsburgh, PA (USA). His re-
search activities center on computer-aided design of
integrated circuits and systems. His work is focused
on algorithms for automatic synthesis, co-design and
embedded computing. From 1989 to 1999, he has

been an Associate Professor of the Department of Electrical Engineering at
UPM. Currently, Dr. López is a Professor of Computer Architecture and Dean
of the School of Computer Science at the University of Castilla-La Mancha.

http://www.omg.org/
http://www.sun.com/
http://www.zeroc.com/
http://www.zeroc.com/
http://mauchly.inf-cr.uclm.es/wiki/index.php/Arco_Projects
http://mauchly.inf-cr.uclm.es/wiki/index.php/Arco_Projects

	Introduction
	Related work
	picoObjects
	Introduction to ASDF
	Event Channels
	Place & Play environment
	Service Description
	Properties
	Basic interface for actors
	Interaction model for actors
	Actor set-up
	Multi-requests
	Service Lookup
	Service Directory
	Hierarchical Service Lookup
	Support for 'pull' discover

	Legacy SDP Integration
	Experimental results
	Conclusions
	References
	Biographies
	David Villa
	Félix J. Villanueva
	Francisco Moya
	Fernando Rincón
	Jesús Barba
	Juan Carlos López


