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Abstract - Operating systems for reconfigurable computing 
are becoming an attractive field of research. They provide a 
well-defined programming model and a run-time environment, 
which greatly simplifies the development process and 
management of reconfigurable applications. One of the main 
challenges for the design of such systems is to provide both 
powerful and efficient abstractions to deal with the complexity 
of the integration between hardware and software domains in 
general, and the special features of the reconfiguration 
process in particular. The contributions in this paper try to 
give solutions to both problems, first taking a distributed 
system approach based on system-level middleware, and 
second providing transparent reconfiguration as one of the 
advanced services provided by the middleware. 
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1 Introduction 
  While FPGAs have become mainstream during the last 
decade, reconfigurable computing has partly failed to reach 
the expectations of the application designers. There are many 
applications that can potentially benefit from this 
computation paradigm, specially those where the 
cost/performance or cost/power consumption ratios are an 
issue [1]. Or even those situations that require both high 
performance computation and very flexible platforms. 
However, there are three main problems that must be 
addressed. The first one is the high reconfiguration times of 
current FPGA devices. The second one relates to the 
complexity of the reconfiguration process, and the lack of a 
run-time that could free applications from handling the very 
low level details of the process. Finally, the programming 
models for such applications are complex and it is not easy to 
adapt working applications into reconfiguration computing, 
sometimes requiring major redesign. 

 The impact of reconfiguration delay can be minimized 
using appropriate scheduling policies, and using pre-fetching 
techniques, as it is well documented in the literature [2]. The 

solution to the other two problems may arise from the 
definition of a specialized Operating System for 
Reconfigurable Computing (OS4RC). The Operating System   
would provide a well-defined programming model and a run-
time environment, which greatly simplifies the development 
process and management of reconfigurable applications [3].  

 Almost all related works [3, 4, 5] take a task based 
approach, where Hw components are considered OS tasks 
and reconfigurable areas are special OS resources. The OS 
then assigns Hw tasks to Hw resources following a certain 
predefined policy. The interface between the OS and the Hw 
tasks relies on a hardware abstraction layer. Such layer can be 
a message-passing API as in [5], or can be based in the UNIX 
standard Inter-process Communication primitives such as 
files I/O and signals as in [4]. 

 While previous works demonstrate the feasibility of the 
OS approach for heterogeneous reconfigurable embedded 
systems management, there are a number of issues that still 
have to be considered. The first one is related to hw and sw 
communication, which has been reported to be one major 
bottleneck in reconfigurable applications, and the reason why 
several orders of magnitude speedup in certain computation 
cores translate into 3 to 10 improvement ratios when 
considering the whole system [6]. However, almost all 
approaches rely on a layered software approach (and 
therefore hard to optimize), with a hardware adaptation layer 
and a general purpose communication mechanism on top. 

 Another question relates to the reconfiguration time 
overhead introduced by the task model since non-negligible 
time is spent during the allocation and setup of the memory 
and data structures that represent the task inside the OS (40 
ms in [4]). In addition, mirroring Hw functionality as a task 
inside the software OS may lead to scalability problems, if we 
consider that in a near future we will find hundreds or 
thousands of cores inside the same chip. Also the centralized 
OS approach does not scale for systems with more than one 
processor, which is becoming a common situation nowadays. 

 As an alternative to the centralized OS described in the 
previous paragraphs, in this work we adopt a communication 
centric approach, which is inspired in the distributed object 
paradigm [7]. This paradigm is specially well suited for 



complex systems composed by a large number of concurrent 
heterogeneous processing elements, and that use a globally 
asynchronous locally synchronous approach.  The core of the 
solution is based in a lightweight middleware with two 
important characteristics: 1) it provides transparent and 
efficient communication mechanisms and 2) it is based on the 
well-known object oriented programming model.  

 However, the main contribution of this work is not the 
use of the middleware itself, since they are well known in the 
software world since the early 90s. The novelty resides in the 
relationship between the middleware and the OS, where the 
former is normally built upon the services provided by the 
later. Our proposal is to set the middleware at the lowest 
implementation level, and to provide communication facilities 
as core primitives (communication engine). This approach 
has several advantages. First, it is a thin layer specially 
designed for minimizing communication overhead. Next, it 
offers different degrees of communication transparency (in 
the access, location, communication technology, etc.). 
Finally, the object model provides a very simple but powerful 
abstraction for modeling interactions. Any entity in the 
system is an object offering a well specified set of operations 
invocable by any other entity, regardless of its location and 
implementation.  

 We can consider the middleware as an integration layer 
for all those operations (or services) provided by the different 
(and distributed) entities of the system. This will be the base 
upon which a scalable distributed operating system could be 
built. In this context transparent reconfiguration management 
can be considered one more service of the middleware [8]. 

 The remainder of the paper is organized in the following 
way. In section 2 we describe the foundations of the system-
level communication engine, the implications of 
transparency, and the object oriented model. In section 3 we 
introduce a set of basic services that are useful on their own 
(such as the memory allocation service) but are also the 
foundations of the reconfiguration service. Section 4 is 
devoted to the reconfiguration service provided by the 
Reconfiguration Controller. Here a detailed description of the 
explicit and implicit reconfiguration process is presented. In 
section 5 we characterize the cost in terms of area and delay 
of an implementation prototype of the complete middleware. 
Finally, in section 6 we draw some conclusions. 

2 Communication Engine 
 The communication engine (or OOCE1 [9] from now 
on) is based on the Distributed Object Model (DOM), where 
objects communicate with other objects by means of a 
message-passing mechanism. A transaction in OOCE is 
viewed as the set of messages that the client/initiator object 
and the server/target object exchange in order to fire the 
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execution of a method in the later. The overall process is 
called a remote method invocation.  The object, as the 
building block in OOCE, provides a unified view of the hw 
and sw parts. The object interface, the set of methods that an 
object implements, determines the API to use that object 
(figure 1a). This high-level interface remains invariable no 
matter what the final implementation of the object is. It is the 
basis for a true HW/SW interface abstraction. 

 Let us consider the interaction between two different 
software components (objects) A and B (figure 1b). A has a 
client role and executes method M on server B, which 
interface definition is described in figure 1a. A and B are 
designed as if they were assigned to the same processing 
node, and all M invocations between them are considered to 
be local (figure 1c and 1d). 

 

Figure 1: B interface definition and A-B local interaction 

 In a second case, B is implemented in Hw. In the Sw 
side, B will be replaced by an adapter (a proxy) with exactly 
the same interface than B, so client A will not suffer any kind 
of modification. The proxy is already part of the middleware, 
and translates the invocation into a serialized message (figure 
2a). The message reaches a special Hw core (the NI2) that 
buffers the data, requests bus access, and sends the message 
through the system communication infrastructure (the bus, 
Network-On-Chip, ...). From the Hw point of view, the 
middleware provides a systematic way to translate operations 
in the interface into a set of signals (figure 2b), and defines a 
very simple handshake protocol to receive an invocation 
request and the arguments, and returns the result (if required 
by the operation). The task of the designer is to code the 
functionality that corresponds to the different operations, and 
to follow defined the protocol. The connection to the system 
communication infrastructure is done through a Hw adapter 
(the skeleton), that receives the Sw message from the NI, and 
translates it to the signal-based interface of B's Hw 
implementation. 

                                                           
2 From Network Interface 



 One important aspect that should be outlined is that both 
hardware and software adapters are automatically generated 
from B's functional interface. Another unique characteristic 
of the middleware is that access transparency is also provided 
for Hw to Sw invocations, where Hw cores are able to 
directly invoke through the NI operations from objects 
executing inside the microprocessor. Furthermore, 
communication capabilities are not restricted to the chip 
domain, but the middleware can also interoperate with off-
chip resources. This is done through a special Hw 
component, the External Object Adapter (EAO) that 
translates and routes on-chip messages to other formats 
through an external link, such as CORBA-formatted 
messages encapsulated in UDP packets through an ethernet 
link, for example. This is possible thanks to the definition of 
fixed communication semantics that translate one operation 
invocation into the same message regardless of the location of 
the communication initiator (hw, sw or off-chip). 

 

 

Figure 2: B Hw implementation in OOCE 

  

The overhead introduced by the communication engine is 
rather low. Messages include the minimum amount of 
information: the serialized invocation arguments plus 1 or 2 
additional words coding the size of the message, and the 
identifiers of the target object and requested operation. The 
latency of the invocation depends very much on the size of 
the message and the use or not of a zero copy policy in the 
NI. Figure 3 shows the results for one way invocations 
(writes) from hw to sw and sw to hw in a NI prototype for the 
microblaze processor. The extra overhead from hw to sw 
invocations is due to the interrupt handler latency in the 
microblaze processor. 

 To sum up, the communication engine contributes to 
simplify the integration of hardware and software entities 

through a common and well-known abstraction (the object), 
while it provides very low communication latencies. 
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Figure 3: Hw ↔ Sw invocation times in cycles 

3 Basic Services  
 In addition to the communication engine in section 2, 
the system middleware is composed of a number of basic 
services. The services, as the rest of the objects in the 
middleware, are distributed and therefore not bound to a 
concrete hardware or software implementation. They can be 
even accessed from off-chip clients through the use of a 
special adapter (external object adapter [9]). Following we 
describe three of them, useful on their own, but that will be 
required to build the more complex reconfigurable service. 

3.1 Memory Allocation Service 

 One important problem with dynamically reconfigurable 
environments is that the need for memory may be difficult to 
predict at design time. Bitstreams for new object types may 
be deployed at any time, and extra unpredictable space is also 
needed for state storage of object instances with persistence 
capabilities. The solution adopted in this approach is to define 
a dynamic memory allocation service, provided by an 
specialized object called the Allocator. The Allocator has two 
main characteristics. On one side it centralizes memory 
management for the whole system. On the other side it offers 
a well known interface, completely independent from a 
concrete implementation technology or memory hierarchy.  
The service interface is based on two methods. The allocate 
method requests the allocation of a certain memory block 
size, while the release method frees the memory block. 

 The return value for the allocate method is a proxy (a 
reference) to a generic memory block (Memory). The 
Memory interface is a generic technology independent 
description of the capabilities of a memory: read and write 



operations of a single or a sequence of words. Such 
description is a logical representation for real memories in the 
system. Then, any memory block in the system can be 
modeled with the Memory interface and used by means of its 
proxy, while from the implementation point of view, we are 
simply reading and writing to a certain address computed 
from a base (the proxy reference) plus an offset, the address 
specified in the methods. 

 There are several alternatives for the implementation of 
the allocator, depending on the speed, available size, and 
other requirements. As a last resort, when the scheduling 
must be performed in very few cycle clocks, the allocator can 
be fully implemented in hardware. However, reconfiguration 
latency is usually so high that a full software implementation 
would provide better memory use while still keeping an 
acceptable overhead. 

3.2 Object Location Service 

 One of the characteristics of the system-level 
middleware is that it provides access transparency 
mechanisms to the resources. One of these mechanism is 
location transparency which allows clients to invoke methods 
from a remote object without any prior knowledge of their 
real location. Concerning dynamic reconfiguration, the use of 
this service is unavoidable, since the reference (address 
assigned in the memory map) of a reconfigurable component 
can be deferred to the instantiation inside a certain 
reconfigurable area, at runtime. The location service, then is 
in charge of providing a valid endpoint (the address where 
the instanced component is located) when a client requests 
the location of a concrete object. 

 Two entities are involved in the location process. The 
proxy, on one side, instead of a static endpoint, hardcoded at 
design time, stores a reference for the locator object. On the 
other side, the location service (or directory service), provides 
the valid endpoint from the requested object identity. When 
an invocation is received, the proxy will first request the 
current location of the remote object (through the object  
identifier). The locator contains a location table where object 
identities are linked with valid endpoints. Once the location is 
obtained, it will perform a second request: the real invocation. 
It may seem that indirection implies certain communication 
overhead, and extra invocation latency, due to the extra 
messages to the locator object. However, since locations are 
not so volatile, such overhead can be easily avoided with a 
simple reference cache register. Since the responsibility for 
locating the remote server falls completely on the client 
proxy, the fact that the reference is direct (fixed) or indirect 
(through the location service), does not affect the client at all. 

 The interface for the locator object has two kinds of 
methods. The locate method provides the location 
functionality previously described. The rest of the methods 

are used for the administration of the location table inside the 
locator. 

3.3 Object Factory 

 The factory service physically instantiates an object into 
a reconfigurable area. It is possible to create objects of any 
type at run time. It is only necessary to previously register the 
new object type or class, with a reference to the memory 
location of the partial bitstream: 

  registerClass(classID, biststreamRef) 

 The factory keeps an internal table with the registered 
classes and it may be managed by using methods deleteClass 
and updateClass for entry deletion and updates respectively. 
New objects are created invoking the createObject method, 
supplying the object type, the reconfigurable area in which it 
should be allocated, and the physical system address where 
requests from clients should be served: 

  createObject(classID, areaID, endpoint) 

 As a result of the invocation, the factory will transfer the 
partial bitstream from the memory to the reconfigurable area, 
and it will configure the skeleton with the corresponding 
endpoint. Once reconfiguration is done the object is ready to 
be activated and to serve invocations. 

4 Reconfiguration Service 
 The reconfiguration controller (RC) component has two 
main tasks. On one side it is the responsible for the location 
(creation) and/or the eviction (destruction) of the 
Dynamically Reconfigurable Objects. On the other side the 
RC is also responsible for the management of the different 
tables used in the location service. To this end, the RC makes 
use of the basic services, provided by the system-level 
middleware, described in previous sections.  

 To accomplish these tasks, the RC holds an internal 
table, named KnownObjects Table, indexed by the object 
identities, to register known dynamic reconfigurable objects 
(that is, objects which classes have been previously registered 
in the Object Factory). For each entry the RC controls: (1) 
The region within the reconfiguration fabric where the object 
is instantiated, (2) a pointer to the block in memory where the 
object state is stored, (3) and the address of each dynamic 
reconfigurable object into the system memory map. The RC 
object interface implements a set of management operations 
in order to administrate the KnownObjects table: addObject, 
removeObject and updateObjectRef to insert, delete and 
update the table entries; isKnown to check whether a certain 
object has been already registered; and isActive to check 
whether an object is already loaded in any of the 
reconfigurable areas. 



 Objects can be created explicitly or implicitly. In the 
first case, a direct invocation with all the necessary 
information must be issued to the RC. Explicit 
reconfiguration is automatically fired when a request to a non 
existent object is detected. In this case, previously to the 
creation of the object, it might be necessary to evict a 
reconfigurable area. But how this is carried out will depend 
on concrete scheduling policies, and is out of the scope of this 
paper. In the following subsections we describe in more detail 
the concrete procedure for both cases. 

 One final comment is that all object creation and 
destruction processes include object state management 
(object persistence [10]). That is state storage in case of 
replacement and state retrieval when a persistent object 
becomes active again.  

 

Figure 4: Explicit reconfiguration sequence diagram 

4.1 The Reconfiguration process  

4.1.1 Explicit reconfiguration  
 In this case, the reconfiguration process is initiated 
through an invocation of the allocate method, passing the 
object identifier and target reconfiguration area as the 
arguments of the operation. 

 Figure 4 shows the sequence diagram of the whole 
reconfiguration process. After the allocate method invocation, 
the RC looks up for the object identifier in the KnownObjects 
Table. If the object is in the table, the RC invokes the 
createObject method of the Object Factory, and waits for the 
completion of the bitstream reconfiguration. Following, the 

factory updates the object endpoint where requests from 
clients should be served.  The next step is the retrieval of the 
state of the instantiated object, if it is a persistent one, and if it 
had already been previously evicted.  The reconfigurable 
object is then requested to load its state (setState) from the 
specified location. Once the state has been downloaded, the 
object is activated (and thus able to receive operation 
invocations) through the start command. Finally, the location 
of the new object is registered in the location service.  

 

Figure 5: Implicit reconfiguration sequence diagram 

4.1.2 Implicit reconfiguration  
 The implicit reconfiguration process (figure 5) starts 
when an object invokes another object that is not instantiated, 
and therefore the invocation will not be acknowledged. The 
proxy will detect the failure, and will request the location 
service for the new endpoint of the target object. If the object 
is not instantiated, the locator delegates the request to the RC. 
Then the RC examines its KnownObjects table in order to 
find if this object is known to the factory. If it is, it will start 
the reconfiguration process immediately, in the same way that 
it was described for the explicit reconfiguration process. If 
the object is not known, the RC will send an error message to 
the calling object proxy   through the locator.  

4.2 Dynamically Reconfigurable Objects 

 Dynamically reconfigurable objects (DROs) hardly 
differ from static ones. Both types of objects expose exactly 
the same functional interface to the client, and the main 
difference lies in the way the object is created or destroyed. 
For the case of non-persistent objects, the skeleton of the 



reconfigurable object is extended with two new methods : the 
start operation will activate the object for incoming 
invocations acceptance; the stop operation will disable the 
reception of incoming method invocations, and wait for the 
completion of pending ones. 

 Handling object persistence requires extra 
modifications, three new methods and special logic for state 
persistence management. They are the getState and setState 
methods for saving and downloading the state respectively, 
and initState for initialization matters. The main difficulty 
with state management is that, although completely defined at 
design time, the designer can freely choose how to implement 
it. So attributes can be stored in special purpose registers, in 
memory blocks, or using any other storage resource. For that 
reason, and also due to implementation efficiency, the 
responsibility of state management is transferred to the 
designer, and those methods are redirected to the object. The 
designer then decides the way that the state is read from and 
loaded into the object. 

5 Experimental Results 
 The OOCE communication engine plus the basic and 
reconfiguration services  have been prototyped on the Xilinx 
XUP-V2Pro board.  Such implementation followed a mixed 
hardware and software approach taking profit of the 
transparency provided by the communication engine. In fact 
there are three different implementations of the service, two 
fully software, and another one with a hardware version of 
the factory and locator. 

 Figure 6 shows the reconfiguration latency for three 
different object sizes. All of them measure the whole 
reconfiguration process delay from the explicit 
reconfiguration invocation until the created object is 
registered in the location service (locator). All three objects 
were stateless so the measured delay does not include 
persistence overhead, which is characterized separately in 
figure 6. The experiment was carried out with a software and 
a hardware versions of the factory and allocator, showing a 
very different latency in each case. The software version is 
based on the Xilinx drivers for the OPB ICAP peripheral, 
using the I/O primitives for the microprocessor. This version 
has been optimized for removing some redundancy, which 
reduced the time for the first object from 17ms in the Xilinx-
based approach to the 2,93ms in our Sw version. The 
hardware factory includes a hardware FIFO and is optimized 
for burst reads and writes from the DDR memory to the ICAP 
controller. As a result, the latency does not suffer from the 
memory I/O bottleneck, and is completely delimited by the 
ICAP reprogramming latency, thus is near the technological 
limit of the device (from hundreds of microseconds to a 
dozen of milliseconds). However, the main conclusion is that 
the bistream reconfiguration time is still so large (even in the 
best case) that the rest of the reconfiguration management 
process is almost negligible (less than 1 us). 
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Figure 6: Reconfiguration times for different partial 
reconfiguration sizes 

 Table 1 shows the hardware cost (in number of flip 
flops, LUTs and FPGA slices) of the system for the mixed hw 
and sw approach. In order to establish a reference, we have 
also included the cost of a bus master adapter generated using 
the Xilinx IPIF approach, as the RC skeleton is also a master 
of the bus. One thing to note is that  most of the cost in the 
RC object skeleton is due to the use of two FIFOs for state 
transference, in order to make an efficient use of the bus 
through burst reads and writes. This cost could be greatly 
reduced removing the FIFOs at the expense of increasing bus 
contention.  

 Finally, we have also characterized the overhead due to 
state persistence management. The experiments were carried 
out using the DDR memory in the XUP board for state 
storage. Figure 7 shows the latency for both load and store 
state operations for objects with state of 1, 16 and 64 32-bit 
word sizes. Again, the results show that the introduced 
overhead is very low when compared to the bitstream 
reconfiguration time. 

 

Table 1 : Hardware costs for the middleware entities 

Component FFs LUTs Slices 

Locator 48 196 121 

Factory 755 1230 701 

RC object skeleton 234 593 316 

Master IPIF bus adapter 97 18 59 
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Figure 8: State transference time in ns 

 

6 Conclusions 
 The main contribution of this paper is the definition of a 
system-level middleware, based on the distributed object 
paradigm, as the foundation for building a distributed 
operating system for reconfigurable computing. The 
middleware is composed of a communication engine that 
provides transparent and efficient communication capabilities 
to objects in the system, regardless of their location and 
implementation. Additionally, a set of services have been 
defined to allocate memory, locate objects by their name or 
type, create and destroy dynamic objects and transparently 
handle explicit and implicit object reconfiguration with state 
persistence. 
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