
 Supporting Operating Systems for Reconfigurable
Computing : A Distributed Service Oriented Approach

F. Rincón1, J. Dondo2, J. Barba1, F. Moya1 and J. C. López1

1School of Computer Science, University Of Castilla-La Mancha, Ciudad Real, Spain
2Physics Department, National University of San Luis, San Luis, Argentina

Abstract - Operating systems for reconfigurable computing
are becoming an attractive field of research. They provide a
well-defined programming model and a run-time environment,
which greatly simplifies the development process and
management of reconfigurable applications. One of the main
challenges for the design of such systems is to provide both
powerful and efficient abstractions to deal with the complexity
of the integration between hardware and software domains in
general, and the special features of the reconfiguration
process in particular. The contributions in this paper try to
give solutions to both problems, first taking a distributed
system approach based on system-level middleware, and
second providing transparent reconfiguration as one of the
advanced services provided by the middleware.

Keywords: Reconfigurable computing, Distributed Objects,
FPGAs, OS4RC.

1 Introduction
 While FPGAs have become mainstream during the last
decade, reconfigurable computing has partly failed to reach
the expectations of the application designers. There are many
applications that can potentially benefit from this
computation paradigm, specially those where the
cost/performance or cost/power consumption ratios are an
issue [1]. Or even those situations that require both high
performance computation and very flexible platforms.
However, there are three main problems that must be
addressed. The first one is the high reconfiguration times of
current FPGA devices. The second one relates to the
complexity of the reconfiguration process, and the lack of a
run-time that could free applications from handling the very
low level details of the process. Finally, the programming
models for such applications are complex and it is not easy to
adapt working applications into reconfiguration computing,
sometimes requiring major redesign.

 The impact of reconfiguration delay can be minimized
using appropriate scheduling policies, and using pre-fetching
techniques, as it is well documented in the literature [2]. The

solution to the other two problems may arise from the
definition of a specialized Operating System for
Reconfigurable Computing (OS4RC). The Operating System
would provide a well-defined programming model and a run-
time environment, which greatly simplifies the development
process and management of reconfigurable applications [3].

 Almost all related works [3, 4, 5] take a task based
approach, where Hw components are considered OS tasks
and reconfigurable areas are special OS resources. The OS
then assigns Hw tasks to Hw resources following a certain
predefined policy. The interface between the OS and the Hw
tasks relies on a hardware abstraction layer. Such layer can be
a message-passing API as in [5], or can be based in the UNIX
standard Inter-process Communication primitives such as
files I/O and signals as in [4].

 While previous works demonstrate the feasibility of the
OS approach for heterogeneous reconfigurable embedded
systems management, there are a number of issues that still
have to be considered. The first one is related to hw and sw
communication, which has been reported to be one major
bottleneck in reconfigurable applications, and the reason why
several orders of magnitude speedup in certain computation
cores translate into 3 to 10 improvement ratios when
considering the whole system [6]. However, almost all
approaches rely on a layered software approach (and
therefore hard to optimize), with a hardware adaptation layer
and a general purpose communication mechanism on top.

 Another question relates to the reconfiguration time
overhead introduced by the task model since non-negligible
time is spent during the allocation and setup of the memory
and data structures that represent the task inside the OS (40
ms in [4]). In addition, mirroring Hw functionality as a task
inside the software OS may lead to scalability problems, if we
consider that in a near future we will find hundreds or
thousands of cores inside the same chip. Also the centralized
OS approach does not scale for systems with more than one
processor, which is becoming a common situation nowadays.

 As an alternative to the centralized OS described in the
previous paragraphs, in this work we adopt a communication
centric approach, which is inspired in the distributed object
paradigm [7]. This paradigm is specially well suited for

complex systems composed by a large number of concurrent
heterogeneous processing elements, and that use a globally
asynchronous locally synchronous approach. The core of the
solution is based in a lightweight middleware with two
important characteristics: 1) it provides transparent and
efficient communication mechanisms and 2) it is based on the
well-known object oriented programming model.

 However, the main contribution of this work is not the
use of the middleware itself, since they are well known in the
software world since the early 90s. The novelty resides in the
relationship between the middleware and the OS, where the
former is normally built upon the services provided by the
later. Our proposal is to set the middleware at the lowest
implementation level, and to provide communication facilities
as core primitives (communication engine). This approach
has several advantages. First, it is a thin layer specially
designed for minimizing communication overhead. Next, it
offers different degrees of communication transparency (in
the access, location, communication technology, etc.).
Finally, the object model provides a very simple but powerful
abstraction for modeling interactions. Any entity in the
system is an object offering a well specified set of operations
invocable by any other entity, regardless of its location and
implementation.

 We can consider the middleware as an integration layer
for all those operations (or services) provided by the different
(and distributed) entities of the system. This will be the base
upon which a scalable distributed operating system could be
built. In this context transparent reconfiguration management
can be considered one more service of the middleware [8].

 The remainder of the paper is organized in the following
way. In section 2 we describe the foundations of the system-
level communication engine, the implications of
transparency, and the object oriented model. In section 3 we
introduce a set of basic services that are useful on their own
(such as the memory allocation service) but are also the
foundations of the reconfiguration service. Section 4 is
devoted to the reconfiguration service provided by the
Reconfiguration Controller. Here a detailed description of the
explicit and implicit reconfiguration process is presented. In
section 5 we characterize the cost in terms of area and delay
of an implementation prototype of the complete middleware.
Finally, in section 6 we draw some conclusions.

2 Communication Engine
 The communication engine (or OOCE1 [9] from now
on) is based on the Distributed Object Model (DOM), where
objects communicate with other objects by means of a
message-passing mechanism. A transaction in OOCE is
viewed as the set of messages that the client/initiator object
and the server/target object exchange in order to fire the

1 Object-Oriented Communication Engine

execution of a method in the later. The overall process is
called a remote method invocation. The object, as the
building block in OOCE, provides a unified view of the hw
and sw parts. The object interface, the set of methods that an
object implements, determines the API to use that object
(figure 1a). This high-level interface remains invariable no
matter what the final implementation of the object is. It is the
basis for a true HW/SW interface abstraction.

 Let us consider the interaction between two different
software components (objects) A and B (figure 1b). A has a
client role and executes method M on server B, which
interface definition is described in figure 1a. A and B are
designed as if they were assigned to the same processing
node, and all M invocations between them are considered to
be local (figure 1c and 1d).

Figure 1: B interface definition and A-B local interaction

 In a second case, B is implemented in Hw. In the Sw
side, B will be replaced by an adapter (a proxy) with exactly
the same interface than B, so client A will not suffer any kind
of modification. The proxy is already part of the middleware,
and translates the invocation into a serialized message (figure
2a). The message reaches a special Hw core (the NI2) that
buffers the data, requests bus access, and sends the message
through the system communication infrastructure (the bus,
Network-On-Chip, ...). From the Hw point of view, the
middleware provides a systematic way to translate operations
in the interface into a set of signals (figure 2b), and defines a
very simple handshake protocol to receive an invocation
request and the arguments, and returns the result (if required
by the operation). The task of the designer is to code the
functionality that corresponds to the different operations, and
to follow defined the protocol. The connection to the system
communication infrastructure is done through a Hw adapter
(the skeleton), that receives the Sw message from the NI, and
translates it to the signal-based interface of B's Hw
implementation.

2 From Network Interface

 One important aspect that should be outlined is that both
hardware and software adapters are automatically generated
from B's functional interface. Another unique characteristic
of the middleware is that access transparency is also provided
for Hw to Sw invocations, where Hw cores are able to
directly invoke through the NI operations from objects
executing inside the microprocessor. Furthermore,
communication capabilities are not restricted to the chip
domain, but the middleware can also interoperate with off-
chip resources. This is done through a special Hw
component, the External Object Adapter (EAO) that
translates and routes on-chip messages to other formats
through an external link, such as CORBA-formatted
messages encapsulated in UDP packets through an ethernet
link, for example. This is possible thanks to the definition of
fixed communication semantics that translate one operation
invocation into the same message regardless of the location of
the communication initiator (hw, sw or off-chip).

Figure 2: B Hw implementation in OOCE

The overhead introduced by the communication engine is
rather low. Messages include the minimum amount of
information: the serialized invocation arguments plus 1 or 2
additional words coding the size of the message, and the
identifiers of the target object and requested operation. The
latency of the invocation depends very much on the size of
the message and the use or not of a zero copy policy in the
NI. Figure 3 shows the results for one way invocations
(writes) from hw to sw and sw to hw in a NI prototype for the
microblaze processor. The extra overhead from hw to sw
invocations is due to the interrupt handler latency in the
microblaze processor.

 To sum up, the communication engine contributes to
simplify the integration of hardware and software entities

through a common and well-known abstraction (the object),
while it provides very low communication latencies.

1w 2w 8w 16w 64w
0

50

100

150

200

250

sw->hw (zero
copy)
sw->hw
(buffered)
hw->sw (zero
copy)
hw->sw
(buffered)

Figure 3: Hw ↔ Sw invocation times in cycles

3 Basic Services
 In addition to the communication engine in section 2,
the system middleware is composed of a number of basic
services. The services, as the rest of the objects in the
middleware, are distributed and therefore not bound to a
concrete hardware or software implementation. They can be
even accessed from off-chip clients through the use of a
special adapter (external object adapter [9]). Following we
describe three of them, useful on their own, but that will be
required to build the more complex reconfigurable service.

3.1 Memory Allocation Service

 One important problem with dynamically reconfigurable
environments is that the need for memory may be difficult to
predict at design time. Bitstreams for new object types may
be deployed at any time, and extra unpredictable space is also
needed for state storage of object instances with persistence
capabilities. The solution adopted in this approach is to define
a dynamic memory allocation service, provided by an
specialized object called the Allocator. The Allocator has two
main characteristics. On one side it centralizes memory
management for the whole system. On the other side it offers
a well known interface, completely independent from a
concrete implementation technology or memory hierarchy.
The service interface is based on two methods. The allocate
method requests the allocation of a certain memory block
size, while the release method frees the memory block.

 The return value for the allocate method is a proxy (a
reference) to a generic memory block (Memory). The
Memory interface is a generic technology independent
description of the capabilities of a memory: read and write

operations of a single or a sequence of words. Such
description is a logical representation for real memories in the
system. Then, any memory block in the system can be
modeled with the Memory interface and used by means of its
proxy, while from the implementation point of view, we are
simply reading and writing to a certain address computed
from a base (the proxy reference) plus an offset, the address
specified in the methods.

 There are several alternatives for the implementation of
the allocator, depending on the speed, available size, and
other requirements. As a last resort, when the scheduling
must be performed in very few cycle clocks, the allocator can
be fully implemented in hardware. However, reconfiguration
latency is usually so high that a full software implementation
would provide better memory use while still keeping an
acceptable overhead.

3.2 Object Location Service

 One of the characteristics of the system-level
middleware is that it provides access transparency
mechanisms to the resources. One of these mechanism is
location transparency which allows clients to invoke methods
from a remote object without any prior knowledge of their
real location. Concerning dynamic reconfiguration, the use of
this service is unavoidable, since the reference (address
assigned in the memory map) of a reconfigurable component
can be deferred to the instantiation inside a certain
reconfigurable area, at runtime. The location service, then is
in charge of providing a valid endpoint (the address where
the instanced component is located) when a client requests
the location of a concrete object.

 Two entities are involved in the location process. The
proxy, on one side, instead of a static endpoint, hardcoded at
design time, stores a reference for the locator object. On the
other side, the location service (or directory service), provides
the valid endpoint from the requested object identity. When
an invocation is received, the proxy will first request the
current location of the remote object (through the object
identifier). The locator contains a location table where object
identities are linked with valid endpoints. Once the location is
obtained, it will perform a second request: the real invocation.
It may seem that indirection implies certain communication
overhead, and extra invocation latency, due to the extra
messages to the locator object. However, since locations are
not so volatile, such overhead can be easily avoided with a
simple reference cache register. Since the responsibility for
locating the remote server falls completely on the client
proxy, the fact that the reference is direct (fixed) or indirect
(through the location service), does not affect the client at all.

 The interface for the locator object has two kinds of
methods. The locate method provides the location
functionality previously described. The rest of the methods

are used for the administration of the location table inside the
locator.

3.3 Object Factory

 The factory service physically instantiates an object into
a reconfigurable area. It is possible to create objects of any
type at run time. It is only necessary to previously register the
new object type or class, with a reference to the memory
location of the partial bitstream:

 registerClass(classID, biststreamRef)

 The factory keeps an internal table with the registered
classes and it may be managed by using methods deleteClass
and updateClass for entry deletion and updates respectively.
New objects are created invoking the createObject method,
supplying the object type, the reconfigurable area in which it
should be allocated, and the physical system address where
requests from clients should be served:

 createObject(classID, areaID, endpoint)

 As a result of the invocation, the factory will transfer the
partial bitstream from the memory to the reconfigurable area,
and it will configure the skeleton with the corresponding
endpoint. Once reconfiguration is done the object is ready to
be activated and to serve invocations.

4 Reconfiguration Service
 The reconfiguration controller (RC) component has two
main tasks. On one side it is the responsible for the location
(creation) and/or the eviction (destruction) of the
Dynamically Reconfigurable Objects. On the other side the
RC is also responsible for the management of the different
tables used in the location service. To this end, the RC makes
use of the basic services, provided by the system-level
middleware, described in previous sections.

 To accomplish these tasks, the RC holds an internal
table, named KnownObjects Table, indexed by the object
identities, to register known dynamic reconfigurable objects
(that is, objects which classes have been previously registered
in the Object Factory). For each entry the RC controls: (1)
The region within the reconfiguration fabric where the object
is instantiated, (2) a pointer to the block in memory where the
object state is stored, (3) and the address of each dynamic
reconfigurable object into the system memory map. The RC
object interface implements a set of management operations
in order to administrate the KnownObjects table: addObject,
removeObject and updateObjectRef to insert, delete and
update the table entries; isKnown to check whether a certain
object has been already registered; and isActive to check
whether an object is already loaded in any of the
reconfigurable areas.

 Objects can be created explicitly or implicitly. In the
first case, a direct invocation with all the necessary
information must be issued to the RC. Explicit
reconfiguration is automatically fired when a request to a non
existent object is detected. In this case, previously to the
creation of the object, it might be necessary to evict a
reconfigurable area. But how this is carried out will depend
on concrete scheduling policies, and is out of the scope of this
paper. In the following subsections we describe in more detail
the concrete procedure for both cases.

 One final comment is that all object creation and
destruction processes include object state management
(object persistence [10]). That is state storage in case of
replacement and state retrieval when a persistent object
becomes active again.

Figure 4: Explicit reconfiguration sequence diagram

4.1 The Reconfiguration process

4.1.1 Explicit reconfiguration
 In this case, the reconfiguration process is initiated
through an invocation of the allocate method, passing the
object identifier and target reconfiguration area as the
arguments of the operation.

 Figure 4 shows the sequence diagram of the whole
reconfiguration process. After the allocate method invocation,
the RC looks up for the object identifier in the KnownObjects
Table. If the object is in the table, the RC invokes the
createObject method of the Object Factory, and waits for the
completion of the bitstream reconfiguration. Following, the

factory updates the object endpoint where requests from
clients should be served. The next step is the retrieval of the
state of the instantiated object, if it is a persistent one, and if it
had already been previously evicted. The reconfigurable
object is then requested to load its state (setState) from the
specified location. Once the state has been downloaded, the
object is activated (and thus able to receive operation
invocations) through the start command. Finally, the location
of the new object is registered in the location service.

Figure 5: Implicit reconfiguration sequence diagram

4.1.2 Implicit reconfiguration
 The implicit reconfiguration process (figure 5) starts
when an object invokes another object that is not instantiated,
and therefore the invocation will not be acknowledged. The
proxy will detect the failure, and will request the location
service for the new endpoint of the target object. If the object
is not instantiated, the locator delegates the request to the RC.
Then the RC examines its KnownObjects table in order to
find if this object is known to the factory. If it is, it will start
the reconfiguration process immediately, in the same way that
it was described for the explicit reconfiguration process. If
the object is not known, the RC will send an error message to
the calling object proxy through the locator.

4.2 Dynamically Reconfigurable Objects

 Dynamically reconfigurable objects (DROs) hardly
differ from static ones. Both types of objects expose exactly
the same functional interface to the client, and the main
difference lies in the way the object is created or destroyed.
For the case of non-persistent objects, the skeleton of the

reconfigurable object is extended with two new methods : the
start operation will activate the object for incoming
invocations acceptance; the stop operation will disable the
reception of incoming method invocations, and wait for the
completion of pending ones.

 Handling object persistence requires extra
modifications, three new methods and special logic for state
persistence management. They are the getState and setState
methods for saving and downloading the state respectively,
and initState for initialization matters. The main difficulty
with state management is that, although completely defined at
design time, the designer can freely choose how to implement
it. So attributes can be stored in special purpose registers, in
memory blocks, or using any other storage resource. For that
reason, and also due to implementation efficiency, the
responsibility of state management is transferred to the
designer, and those methods are redirected to the object. The
designer then decides the way that the state is read from and
loaded into the object.

5 Experimental Results
 The OOCE communication engine plus the basic and
reconfiguration services have been prototyped on the Xilinx
XUP-V2Pro board. Such implementation followed a mixed
hardware and software approach taking profit of the
transparency provided by the communication engine. In fact
there are three different implementations of the service, two
fully software, and another one with a hardware version of
the factory and locator.

 Figure 6 shows the reconfiguration latency for three
different object sizes. All of them measure the whole
reconfiguration process delay from the explicit
reconfiguration invocation until the created object is
registered in the location service (locator). All three objects
were stateless so the measured delay does not include
persistence overhead, which is characterized separately in
figure 6. The experiment was carried out with a software and
a hardware versions of the factory and allocator, showing a
very different latency in each case. The software version is
based on the Xilinx drivers for the OPB ICAP peripheral,
using the I/O primitives for the microprocessor. This version
has been optimized for removing some redundancy, which
reduced the time for the first object from 17ms in the Xilinx-
based approach to the 2,93ms in our Sw version. The
hardware factory includes a hardware FIFO and is optimized
for burst reads and writes from the DDR memory to the ICAP
controller. As a result, the latency does not suffer from the
memory I/O bottleneck, and is completely delimited by the
ICAP reprogramming latency, thus is near the technological
limit of the device (from hundreds of microseconds to a
dozen of milliseconds). However, the main conclusion is that
the bistream reconfiguration time is still so large (even in the
best case) that the rest of the reconfiguration management
process is almost negligible (less than 1 us).

138KB 1,4MB 4,9MB
0

50

100

150

200

250

300

Sw
reconfig.
times
Hw
reconfig.
times

Figure 6: Reconfiguration times for different partial
reconfiguration sizes

 Table 1 shows the hardware cost (in number of flip
flops, LUTs and FPGA slices) of the system for the mixed hw
and sw approach. In order to establish a reference, we have
also included the cost of a bus master adapter generated using
the Xilinx IPIF approach, as the RC skeleton is also a master
of the bus. One thing to note is that most of the cost in the
RC object skeleton is due to the use of two FIFOs for state
transference, in order to make an efficient use of the bus
through burst reads and writes. This cost could be greatly
reduced removing the FIFOs at the expense of increasing bus
contention.

 Finally, we have also characterized the overhead due to
state persistence management. The experiments were carried
out using the DDR memory in the XUP board for state
storage. Figure 7 shows the latency for both load and store
state operations for objects with state of 1, 16 and 64 32-bit
word sizes. Again, the results show that the introduced
overhead is very low when compared to the bitstream
reconfiguration time.

Table 1 : Hardware costs for the middleware entities

Component FFs LUTs Slices

Locator 48 196 121

Factory 755 1230 701

RC object skeleton 234 593 316

Master IPIF bus adapter 97 18 59

1 word 16 words 64 words128 words
0

500
1000

1500

2000
2500

3000

3500
4000

state
retrieval
state
storage

Figure 8: State transference time in ns

6 Conclusions
 The main contribution of this paper is the definition of a
system-level middleware, based on the distributed object
paradigm, as the foundation for building a distributed
operating system for reconfigurable computing. The
middleware is composed of a communication engine that
provides transparent and efficient communication capabilities
to objects in the system, regardless of their location and
implementation. Additionally, a set of services have been
defined to allocate memory, locate objects by their name or
type, create and destroy dynamic objects and transparently
handle explicit and implicit object reconfiguration with state
persistence.

7 Acknowledgements
 This research is supported by the Spanish Government
(under grant TEC2008-06553), and by FEDER and the
Regional Government of Castilla-La Mancha (under grant
PAI08-0234-8083).

8 References

[1] C. Bobda, “Introduction to Reconfigurable Computing:.
Architectures, algorithms and applications”, Springer, 2007.

[2] J. Noguera and R. Badia, “Multitasking on
Reconfigurable Architectures: Microarchitecture Support and
Dynamic Scheduling”, ACM Transactions of Embedded
Computing Systems, Vol. 3, No. 2, May. 2004.

[3] C. Steiger, H.Walder and M. Platzner, “Operating
Systems for Reconfigurable Embedded Platforms: Online
Scheduling of Real-Time Tasks”, IEEE Transactions on
Computers, Vol. 53, No. 11, Nov. 2004.

[4] H. Kwok-Hay So and R. Brodersen, “A Unified
Hardware/Software Runtime Environment for FPGA-Based
Reconfigurable Computers using BORPH”, ACM
Transactions of Embedded Computing Systems, Vol. 7, No.
2, Feb. 2008.

[5] J-Y Mignolet, V, Nollet, P. Coene, D.Verkest,
S.Vernalde, R. Lauwereins. “Infrastructure for Design and
Management of Relocatable Tasks in a Heterogeneous
Reconfigurable System-on-Chip”, Design and Test in Europe
(DATE), 2003.

[6] J. L. Tripp, A. A. Hanson and M. Gokhale, “Partitioning
Hardware and Software for Reconfigurable Supercomputing
applications: A Case Study”, High Performance Networking
and Computing, 2005.

[7] P.G. Paulin, C. Pilkington, M. Langevin, E.
Bensoudane, O. Benni, D. Lyonnard, B. Lavigueur and D.
Lo, “Distributed Object Models for Multi-Processor SoCs,
With Application to Low-Power Multimedia Wireless
Systems”, Design Automation and Test in Europe (DATE),
Munich, Germany, App. 482-487, Mar. 2006.

[8] R. Hecht, S. Kubish, H. Michelsen, E. Zeeb, and Dirk
Timmermann, “A Distributed Object System Approach for
Dynamic Reconfiguration”, Reconfigurable Architectures
Workshop (RAW), Rhodos, Greece, April 2006.

[9] F. Rincón, J. Barba, F. Moya, F. Villanueva, D. Villa, J.
Dondo and J.C. López, “Transparent IP Cores Integration
Based on the Distributed Object Paradigm”, Lecture Notes in
Electrical Engineering, Vol. 38, 2009.

[10] J. Dondo, F. Rincón, J. Barba, F. moya, F. J.
Villanueva, D. Villa and J.C. López, “Dynamic
Reconfiguration Management based on a Distributed Object
Model”, Field Programmable Logic and Applications (FPL),
Aug., 2007.

