
Automatic HW/SW Interface Generation for Seamless
Integration from Object-Oriented Models
J. Barba1, F. Rincón1, F. Moya1, D. Villa1, F.J. Villanueva1 and J.C. López1

1Dept. of Technology and Information Systems. School of Computer Science, University of Castilla-La
Mancha (Spain)

Abstract - Hardware-dependent Software (HdS) synthesis is
becoming a key aspect in the development of mixed software
and hardware computation platforms due to the increasing
software content in such systems. Uniform and high-level
interface models for both HW and SW are required in order
to perform HdS development in parallel with the platform
prototyping.In this paper, an optimal hardware and software
infrastructure that enables the HW/SW interfacing from an
object-oriented perspective is presented. The generation of
such infrastructure is performed semi-automatically from
UML models. Using this approach, the resulting high-level
programming interface enables the reuse of the embedded
software.To evaluate the efficiency of our proposal a
prototype implementation on the Xilinx-V2 Pro platform has
been made.

Keywords: HW/SW interfacing, HdS generation, Object-
Oriented design methodology, SoC design, automatic
synthesis.

1 Introduction
 Nowadays, it is widely assumed that a higher
productivity in the design of complex state-of-the-art
heterogeneoteus systems (e.g. SoCs or MPSoCs) is achieved
raising the abstraction level of the models used in the
specification phase. Ideally, hardware architects and software
engineers could use a common system specification from the
beginning of the design process enabling concurrent
workflows and overcoming the drawbacks that exhibits
traditional design methodologies [1] (i.e. low productivity of
the teams involved).

 Although there have been so many proposals from the
academia, the acceptance of such ideas and their
incorporation to commercial CAD tools has been limited. The
reasons in the root of such as skepticism include: (a) models,
techniques and languages that do not satisfy the demands of
the hardware and software developers; (b) a complete and
automatic workflow, from design to synthesis and
implementation is difficult to develop; and (c) solutions with
a satisfactory degree of quality are almost impossible to
obtain.

 Only the tremendous pressure exerted by the embedded
systems market has force the IC industry to adopt significant

contributions in fields like modeling and simulation (e.g.
Transaction-level Modeling).

 Among the many aspects that should be considered in
the design of complex heterogeneous systems, this work will
be focused on HW/SW interfacing, key in the synthesis
process of Hardware-dependent Software (HdS). HdS
elaboration has become one of the principal matters of
concern in embedded systems due to the increasing amount of
software such systems contain.

 Our proposal is based on an object-oriented view of the
platform and its functional elements. We have chosen the
concept of object and the Remote Method Invocation (RMI)
semantics as the framework to unify the communication
interface for both HW and SW components. Of course, we do
not attempt to establish objects as the unique and valid
modeling concept, since it depends on the nature of the target
application. But objects provide important advantages when
applied to reconfigurable computing [2] (i.e. component state
management) and fit very well in multiple programming
models that efficiently could be used to abstract the HW/SW
interface [3][4].

 The object model has also demonstrated to be suitable
for the specification and architecture of multimedia and
streaming applications (i.e. OpenMax [5]), two of the main
research areas on which this approach will be proven.

 So, we advocate for the adoption of the object-oriented
paradigm to improve the design process of heterogeneous
embedded systems. In the case of HdS, the objects provide a
more stable development scenario, at the same time they
provide the basis of design for reuse practices [6]. In other
approaches, the interfaces offered to the programmers are
low-level and very sensitive to variations in the hardware
cores (i.e. the access through a register interface). Software
developers may then invest most of their time and effort in
rewriting a small part of the software, leading to a more
unproductive work.

 The automatic generation of software drivers and
hardware adapters is accomplished by means of a template-
based mechanism, similar to those most of the commercial
software middlewares for networked systems have. This
approach frees the designer of (re)writing and (re)defining
the system interfaces in every design phase, avoiding a non
negligible amount of work.

 By means of reusing code and models and the
automation of the software (and also hardware) adapters
generation, our approach aims to be a catalyst of the design
process, boosting the productivity of the development teams.

 The paper is organized in the following sections.
Section 2 offers an overview of the related work. In section 3,
we present a general view of our HW/SW interface synthesis
process. The hardware platform which supports the proposed
embedded software development framework is analyzed in
section 4. Then, the software services that will be used by the
high-level generated primitives are explained in depth in
section 5. Finally, the paper is closed with sections 6 and 7,
presenting the experimental results, conclusions and future
work.

2 Related work
 Lately, there is a significant amount of research work in
the area of HW/SW interface modeling and HdS generation.
For example, Mignolet et al [7] provide a uniform
communication scheme for hardware and software tasks
within the OS4RS operating system. This approach is limited
to applications modeled as a set of concurrent threads (tasks)
as in TTL [8]. TTL is a task level interface that can be used
indistinctly for developing parallel application models and as
a platform interface for integrating hardware and software
tasks.

 The concept of task as a modeling concept exhibits
many drawbacks when the migration of the functionality is
considered. The election of the synchronization points is not
easy and the concept of state in tasks is not clearly defined.
On the contrary, objects have an associated semantic that
makes them more suitable for such dynamic scenarios.

 Besides, threads are also not well considered to be used
in parallel programming models since their non-determinism
[9], whereas distributed object models have proven their
viability in this area (i.e. Multiflex [10]).

 Other approaches must be also considered. For example,
the BORPH operating system [11] offers a homogeneous
UNIX interface for both software and hardware processes in
the form of file access primitives. Although the kernel
interface easies the development of applications (since it is
familiar to programmers), it is not clear that such interface
facilitates the reuse of hardware. The IOREG interface
models the access to the hardware as a memory which does
not really raise the abstraction level of the hardware part.

 In [12] a unified HW/SW component model to describe
the different parts of a HW/SW interface is presented. It
covers different abstraction levels at different steps of the
design flow and it uses a service-based model to automate the
interface implementation.

COSY [13] and ROSES [14] use a library-based approach to
generate both hardware and software wrappers. The
communication model presented in COSY is based on
channels which are implemented as FIFOs. In practice, the
interaction with the hardware cores turns into low-level
read/write operations in COSY. Regarding ROSES, once
again the available API functions for a software task that
needs to communicate with the generated hardware wrappers
are low-level, in the form of read/write put/get primitives.

 Schirner et al. present in [15] an automatic method to
synthesize HdS from TLM models. SpecC channels are
modeled using the TLM concepts and SW to HW
communication (the reverse scenario is not considered) is
implemented using the ISO/OSI layering model. Although
TLM was originally conceived for simulation and verification
purposes, it has been rapidly adopted by synthesis techniques.
The abstract, high-level concept of transaction can efficiently
model the HW/SW interface. In this line, it is worth
mentioning the work of Klingauf et al. It describes how the
concept of Hardware Procedure Call [16], on top of TLM
concepts, offers a truly high-level access mechanism to HW
functions in a service oriented manner. There are no
references to the architecture of the resulting
hardware/software supporting platform for HPCs and its
efficiency.

3 Interface Specification
 As previously mentioned, our approach is based on the
RMI semantics as the enabling concept to achieve a path to
the HW/SW interface synthesis from high-level object-
oriented models. This work is based on the Object-Oriented
Communication Engine (OOCE) [17], a hardware/software
middleware that implements the concept of RMI for SoCs in
an efficient manner.

 The distributed object model behinds OOCE specifies
how method invocations are translated to technology
dependent operations. Basically, a method invocation
becomes a transaction over the on-chip communication
infrastructure to transmit a request message from the source
to the target (client/server in the OOCE terminology). A
request message is composed by a header, which is codified
in the address lines, and a body which results in a byte
sequence that codifies the arguments in the data lines. The
way the method parameters are codified within the data
bitstream and the number and type of messages interchanged
by clients and servers is standardized in OOCE, so that
component interoperability is assured. In [17], the reader can
find an overview of the superstructure and main objectives
pursued by OOCE.

 The proposed workflow (see Figure 1) of the HW/SW
interface synthesis process makes use of the UML (Unified
Modeling Language) notation to represent the structural
aspects (Object Diagram) of the system and the relationships

(Collaboration Diagram) between the objects that are part of
the system. We have chosen UML as the modeling language
since it is object-friendly and it also has demonstrated to be
easy to use and integrate into a complete SoC design flow
[18], which is one of the future challenges in OOCE.

 Before the generation of RTL/C/C++ code for the
hardware and software wrappers, the designer must annotate
the UML entities with the stereotypes defined in an OOCE
UML profile in order to specify (among many other aspects):
(a) whether an object is going to be a SW or a HW object
(partitioning); (b) the processor and model where the SW
object is going to run; (c) a concrete scheme of
communication (blocking or non-blocking); and (d) the bus
infrastructure and protocols used to integrate the components.
At this time, this step is performed manually by the designer
through a GUI, but the aim is to derive such deployment and
architectural information in an automatic way from a previous
exploration of the design space. Figure 2 shows a simplified
version of a minimal application where the main object
(actually, the control logic implemented in software) needs of
the cryptographic services of a hardware object that
implements the DES algorithm.

A textual representation of the resulting UML diagram
feeds: (1) a hardware interface compiler which generates the
OOCE hardware adapters or skeletons; (2) a software
interface compiler which generates the OOCE software
drivers or proxies; (3) an OOCE platform generator which

selects, from a component template library, the
communication engine components required by the
application; and finally, (4) a script that combines all the
above mentioned elements and generates a Xilinx XPS.
Considering the platform generator, notice that some features
of the component templates are tuned by this generator to be
optimal (e.g. the size of the CAMs used to perform the
translation of the bus addresses to software object’s IDs, the
size of the FIFOs that hold temporally protocol messages,
etc.). To this end, the generator uses the information
contained in the UML spec project. The two interface
compilers and the platform generator work autonomously and
they do not need of the designer’s intervention.

 At this point, the designer obtains a complete
prototyping platform which is ready to be synthesized using
Xilinx EDK standards tools. Figure 3 sketches the derived
HW and SW infrastructure from the OOCE UML annotated
diagram of Figure 2. The designer should only: (a) connect
the DES core (dashed box), implemented as an OOCE
hardware object, following a standard module interface and
activation protocol [19]. This component could be retrieved
from an existing OOCE compliant IP library, or a legacy one
may be easily adapted; and (b) write the behavior of the client
application, MAIN object (dashed ellipse), using the
generated OOCE drivers. Examples of the use of the software
DES API are also provided to the programmer.

 Hereafter, we give a more detailed view of the OOCE
elements concerning HW/SW communication.

4 Supporting hardware
4.1 IP skeletons
 A HW skeleton (HWS) is the OOCE adapter in charge
of providing connectivity to a hardware core that needs to be
accessible from software. The HWS interprets address lines
in order to detect if this specific HW core is the target of the
communication. The HWS logic activates the hardware
object interface signals to initiate the operation and decodes

Figure 2. UML OOCE annotated diagram for a minimal

cryptographic application.

Figure 1. Interface synthesis and prototype platform

generation flow in OOCE.

the stream of bytes to push the arguments to the server. Once
the core notifies that the operation has been completed, the
HWS builds a protocol response message with the output data
as the body.

 OOCE defines several skeleton templates that support
blocking and non-blocking communication semantics. The
specialization process is managed in an automatic way thanks
to the interface compiler.

4.2 The Local Network Interface
 The LNI is the bridge between the system
microprocessor, where the application runs, and the hardware
cores that implement the required functionality. The main
goal of the LNI is to keep compatible the hardware interface
and activation protocol defined in OOCE with the software
invocation mechanisms. The LNI is conceived as a
coprocessor, realizing the master interface of the on-chip bus
in order to obtain the maximum performance (e.g. using
bursts). The LNI also implements the slave bus interface,
behaving as a generic skeleton, which is actually the only
entry point to the processor from the HW objects (which
saves interruption lines).

Outgoing communication (SW to HW) is managed
almost without significant intervention of the LNI. The low
level software routines, which abstract the link with the
processor (see next section), put an already formatted request
message into the LNI Tx FIFO. Once the presence of a new
invocation is notified to the LNI and the access to the bus is
granted, the body of the message is written word by word to
the target address (which was first pushed into the Tx FIFO).

 On the contrary, incoming communication (HW to SW)
needs a little more effort and resources. To route the relevant
bus traffic through the LNI to the processor, a Translation
Address Table (TAT) is required. Each software object in the
system has a unique Object Identification Number (OIN) and
only the OINs of the software objects reachable from
hardware are maintained in the TAT. The LNI uses the
information hold in the TAT to detect incoming messages.

The LNI activates an interrupt signal when a new message is
available to the application. HW to SW communication is a
scenario that is not usually considered by other approaches.
Thus, in OOCE, HW cores may have an “active” role in the
system, as they are able to invoke software methods as well
as asynchronously respond to a request.

5 The intermediate software layer
 The LNI represents a means to easily inject/retrieve
OOCE protocol messages into/from the communication
infrastructure. The protocol messages addressed to software
objects are available to the applications through the LNI Rx
FIFO. However, as said before, the LNI is conceived to be
tightly attached to the processor and therefore the link
between them is very dependent on the implementation.

 To abstract the processor-LNI link, we have defined a
layered software architecture that progressively offers
services that help the programmers to use this communication
infrastructure. Next, we review the main features of each
layer and how they provide the object-oriented view of the
system to the embedded software programmers.

5.1 The LNI layer
 At the lowest level, the LNI_link interface offers a
collection of services that hide the implementation details of
the communication with the coprocessor. The primitives that
support this interface are send_msg, recv_msg, register and
delete. The last two functions add/remove the OINs of the
software objects to/from the LNI TAT. The management of
the TAT is performed by putting special operation codes on
the coprocessor link that are conveniently interpreted by the
LNI.

 The implementation of the LNI layer has to be done
manually for each type of connection between the processor
and the coprocessor. In fact, the LNI layer is the only one that
must be tailored for a new target platform. The rest of the
software stack can be automatically obtained and it is
platform independent, so it has only to be written once. The
simplicity of the primitives to be coded makes this process
very easy.

5.2 The LOA layer
 The next layer in the OOCE software stack is the Local
Object Adapter, a medium-level layer that uses the LNI low-
level services. The LOA is platform independent so that it is
written just once for all platforms.

 The primitives defined in the LOA make it possible that
all the objects running in the processor may share the LNI
link. The LOA behaves as a multiplexer of the incoming
messages as well. The functionality of the LOA comprises:

Figure 3. Derived HW and SW platform.

• A constructor that initializes the internal state and
structures of the LOA.

• A set of methods to manage the Active Object Table
(AOT). The AOT maintains a set of pointers to the
software objects that can be accessible from outside the
processor.

• An activate method that links the software object to a
concrete LOA instance. The LOA includes the software
object reference into the AOT.

• A send primitive that builds the low-level protocol
message from an OOCE_msg structure and sends it using
the LNI_link functions. If a response is expected (two-
way invocations), a reference to the function that will
manage the response message is provided. This reference
is internally annotated into a list of pending requests.

• A process routine, which is actually the interrupt service
handler that manages the notifications of new messages
coming from the LNI coprocessor. Depending on the
header information of the low-level message, it selects
the response handler from the list of pending requests or
the AOT.

5.3 Software proxies
On top of the LOA layer, a collection of high-level

software routines are generated from the UML interface
object specification that represents the services offered by a
hardware core. An interface compiler has been developed to
generate the software version of the proxies and the method

response handlers, which provide the programmers with the
illusion that they are talking with software objects instead of
with hardware devices (as it really happens).

 The proxy fills the LOA structures that will be
translated into low-level protocol messages. The necessary
data come from the function arguments and the internal
parameters hold within the own proxy structure. The OOCE
development framework also defines synchronous and
asynchronous invocation semantics for software methods, as
for hardware ones. Figure 4 shows the generated C code
version of a synchronous proxy that allows accessing the
DES core implementing the cryptography operation. Due to
efficiency criteria, in most of the projects, C code is
preferred. Although C is not an object-oriented language, it
can be used to implement an object-like programming
interface using structures and pointers as shown in Figure 4.

5.4 Application programming
 Finally, Figure 5 illustrates how to use the generated
software infrastructure. The resulting code is clean and easy
to understand, which promotes reutilization and
maintainability. The application is more robust to unforeseen
changes in the hardware platform and almost the entire
software stack can be used ‘as is’ in future designs.
Therefore, the writing of the embedded software can start as
soon as desired, even in parallel with the design of the
hardware design. No matter the physical interface of the
hardware core, it can be modified or replaced by a different
core from another manufacturer; the logical interface remains
invariable.

6 Experimental results
 Since communication efficiency is crucial in typical
mixed hardware-software computation scenarios, we have
performed several experiments in order to determine the
overhead introduced by the proposed infrastructure and the

Figure 5. Example of use of the OOCE object-oriented

generated API

Figure 4. Generated C code version of a DES crypto SW

proxy for Microblaze.

automatically generated software stack. To this end, we have
measured the time invested to complete read/write operations
of various sizes using a generic OOCE-compliant hardware
object. We have compared our results against the Xilinx IPIF-
based implementation. The OPB IPIF architecture
specification is a commercial solution which facilitates the
connection of either Xilinx or the customer IP modules to the
IBM On-Chip Peripheral Bus (OPB).

Figure 6 shows that the transmission time increases
linearly with the size of the message transferred in all the
cases, as it was expected. A write operation from software
using the OOCE approach exhibits an important performance
increase (up to 40%) when the size of the transfer is beyond
the 3-word barrier. We have adapted the software proxies to
use the classical I/O register interface when the number of
writes/reads is below this limit, in order to be optimal. An
OOCE read operation (incoming requests or reception
responses) is less efficient than an OOCE write since the
software routines start to take the words from the LNI link
only when the entire message has been cached into the LNI
Rx FIFO. On the contrary, a LNI bus writing pushes the body
of the message at the same time the software proxy puts it
into the LNI Tx FIFO. We are working on a parallel version
of the reception process to improve the results obtained
concerning the OOCE read operation The speed levels that
can be achieved with OOCE can reach about 120 MB/s for
both read and write operations (just up to 80 MB/s with OPB

IPIF implementation).

 In the described experiment, we have used a Microblaze
soft processor and the LNI link has been implemented using
two FSL (Fast Serial Links) interfaces. However, these data
can be extrapolated when the Power PC version is taken into
account. In this second scenario, the LNI link is implemented
using the OCM (On Chip Memory) interface. In both cases,
one of the reasons of the small overhead is the optimized
version of the LNI and LOA software layers (only about 80
lines of C code).

 Finally, Table 1 shows the synthesis results of the
OOCE HW skeleton and the IPIF wrapper in order to
evaluate the overhead in terms of hardware resources. Three
legacy cores have been considered from OpenCores [20].
They have been modified to operate with blocks of data up to
1K words. Our skeleton architecture offers a significant
reduction in the logic used by the core wrappers compared
with the IPIF-based solution. It is worth mentioning that the
synthesized LNI component represents less than 1% of the
FPGA resources (in this case a XC2VP30 Xilinx-V2Pro), a
small overhead that is shared by all the hardware objects in
the system. This means that the percentages in the reduction
of logic can be better when the design contains two or more
hardware objects.

The adaptation work performed on the considered cores
has consisted in the creation of the hardware wrappers needed
to adapt the cores interface to the IPIF and the OOCE HW
object interface. The complexity of such adapters and the
time spent in the writing process is comparable (about 1 hour,
senior engineer). However, the time spent in the writing
process of a software application implementing a use case
was double in the case of IPIF. In addition, in the case of
OOCE, this application is fully reusable and portable to other
platforms (i.e. the Power PC version).

7 Conclusions and future work
From our point of view, the concept of object satisfies

the need for a common view of the whole system shared by
both, software and hardware engineers when facing the
design task. This fact, along with the automatic generation of
the HW/SW interfacing infrastructure, boost the productivity
of the embedded software developers because (1) they do not
have to wait for a physical platform prototype and (2)
unnecessary iterations are avoided.

Current work is focused on the definition of a complete
design methodology to exploit the potential of the distributed
object approach stated in OOCE. This methodology will
integrate the automatic HW/SW interface generation here
proposed into an Electronic-System Level workflow. Our aim
is to offer an incremental development cycle for SoC design
making use of the concept of location transparency [17].
Rapid design space exploration, verification and synthesis

Table 1. Synthesis results and comparison

Hardware overhead
FFs LUTs

IPIF HWS+LNI IPIF HWS+LNI
DES 1432 842 (-41%) 2312 1635 (-29%)
CORDI 404 229 (-43%) 630 370 (-41%)
MDCT 734 603 (-18%) 1093 1198 (+9 %)
LNI 123 376

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 64

transfer siz e (32 b it w ords)

tim
e

(n
or

m
al

iz
ed

 to
 1

 w
or

d
tra

ns
fe

r)

O P B IP IF W R /R D

O O C E W R (S W ->HW)

O O C E R D (S W <-HW)

Figure 6. Performance of on-chip read/write transactions using

Xilinx IPIF and OOCE.

from TLM models of the communication engine are also in
the agenda.

8 Acknowloedges
This work has been funded by the Spanish Ministry of

Science and Innovation under the project DAMA (TEC2008-
06553/TEC), and by the Regional Government of Castilla-La
Mancha under project RGRID (PAI08-0234-8083).

9 References

[1] Jerraya, A.A., “HW/SW Implementation from Abstract
Architecture Models”. DATE, 2007.
[2] Dondo, J. et al., “Dynamic reconfiguration management
based on a distributed object model”, 17th FPL International
Conference, 2007.
[3] Jerraya, A.A., Bouchhima, A. and Petrot, F.,
“Programming models and HW-SW interfaces abstraction for
multi-processor SoC”. DAC, 2006.
[4] Paulin, P.G., et al., “Distributed Object Models for Multi-
Processor SoC’s, with Application to Low-power Multimedia
Wireless Systems”. DATE, 2006.
[5] The Khronos Group Inc, “OpenMax Integration Layer
API Specification”, version 1.1.1, September. 2007.
[6] Rincón, F. et al., “Model reuse through hardware design
paterns”. DATE, 2005.
[7] Mignolet, J.-Y. et al., “Infrastructure for design and
management of relocatable tasks in a heterogeneous
reconfigurable system-on-chip”. DATE, 2003.
[8] Van de Wolf, P., et al., “Design and Programming of
Emebedded Multiprocessors: An Interface-centric approach”.
CODES+ISS'04, 2004.
[9] Edward A. Lee, “The Problem with Threads”, Computer,
vol. 39, no. 5, pp. 33-42, May 2006.
[10] Paulin, P.G. et al. “Parallel Programming Models for a
Multiprocessor SoC Platform Applied to Networking and
Multimedia”, IEEE Transactions on VLSI systems, vol. 14,
17, July 2006.
[11] So, H. K. and Brodersen, R., “A unified
hardware/software runtime environment for FPGA-based
reconfigurable computers using BORPH”. Trans. on
Embedded Computing Sys. 7, 2, 1-28, Feb 2008.
[12] Bouchhima, A., et al., “A unified HW/SW interface
model to remove discontinuities between HW and SW
design”. EMSOFT’05, 2005.
[13] Brunel, J., et al., “COSY communication IP's”. DAC,
2007.
[14] Wagner, F. R., Cesário, W., and Jerraya, A.A.,
“Hardware/software IP integration using the ROSES design
environment”. Trans. on Embedded Computing Sys. 6, 3, July
2007.
[15] Schirner, G., Gerstlauer, A., and Domer, R., “Automatic
generation of hardware dependent software for MPSoCs from
abstract system specifications”. ASPDAC, 2008.

[16] Klingauf, W. et al.., “Embedded software development
on top of transaction-level models”. CODES+ISSS '07, 2007.
[17] Barba, J., et al., “OOCE: Object-Oriented Commu-
nication Engine for SoC Design”. 10th Euromicro Conference
on DSD, 2007.
[18] Riccobene, E., et al. “A model-driven design envi-
ronment for embedded systems”. DAC, 2006.
[19] Barba, J. et al., “Lightweight Communication Infra-
structure for IP integration”. IPSOC Conference, 2006.
[20] OpenCores. http://www.opencores.org

