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Abstract - Hardware-dependent Software (HdS) synthesis is 
becoming a key aspect in the development of mixed software 
and hardware computation platforms due to the increasing 
software content in such systems. Uniform and high-level 
interface models for both HW and SW are required in order 
to perform HdS development in parallel with the platform 
prototyping.In this paper, an optimal hardware and software 
infrastructure that enables the HW/SW interfacing from an 
object-oriented perspective is presented. The generation of 
such infrastructure is performed semi-automatically from 
UML models. Using this approach, the resulting high-level 
programming interface enables the reuse of the embedded 
software.To evaluate the efficiency of our proposal a 
prototype implementation on the Xilinx-V2 Pro platform has 
been made. 

Keywords: HW/SW interfacing, HdS generation, Object-
Oriented design methodology, SoC design, automatic 
synthesis. 

 

1 Introduction 
 Nowadays, it is widely assumed that a higher 
productivity in the design of complex state-of-the-art 
heterogeneoteus systems (e.g. SoCs or MPSoCs) is achieved 
raising the abstraction level of the models used in the 
specification phase. Ideally, hardware architects and software 
engineers could use a common system specification from the 
beginning of the design process enabling concurrent 
workflows and overcoming the drawbacks that exhibits 
traditional design methodologies [1] (i.e. low productivity of 
the teams involved). 

 Although there have been so many proposals from the 
academia, the acceptance of such ideas and their 
incorporation to commercial CAD tools has been limited. The 
reasons in the root of such as skepticism include: (a) models, 
techniques and languages that do not satisfy the demands of 
the hardware and software developers; (b) a complete and 
automatic workflow, from design to synthesis and 
implementation is difficult to develop; and (c) solutions with 
a satisfactory degree of quality are almost impossible to 
obtain.  

 Only the tremendous pressure exerted by the embedded 
systems market has force the IC industry to adopt significant 

contributions in fields like modeling and simulation (e.g. 
Transaction-level Modeling).  

 Among the many aspects that should be considered in 
the design of complex heterogeneous systems, this work will 
be focused on HW/SW interfacing, key in the synthesis 
process of Hardware-dependent Software (HdS). HdS 
elaboration has become one of the principal matters of 
concern in embedded systems due to the increasing amount of 
software such systems contain.  

 Our proposal is based on an object-oriented view of the 
platform and its functional elements. We have chosen the 
concept of object and the Remote Method Invocation (RMI) 
semantics as the framework to unify the communication 
interface for both HW and SW components. Of course, we do 
not attempt to establish objects as the unique and valid 
modeling concept, since it depends on the nature of the target 
application. But objects provide important advantages when 
applied to reconfigurable computing [2] (i.e. component state 
management) and fit very well in multiple programming 
models that efficiently could be used to abstract the HW/SW 
interface [3][4].  

 The object model has also demonstrated to be suitable 
for the specification and architecture of multimedia and 
streaming applications (i.e. OpenMax [5]), two of the main 
research areas on which this approach will be proven. 

 So, we advocate for the adoption of the object-oriented 
paradigm to improve the design process of heterogeneous 
embedded systems. In the case of HdS, the objects provide a 
more stable development scenario, at the same time they 
provide the basis of design for reuse practices [6]. In other 
approaches, the interfaces offered to the programmers are 
low-level and very sensitive to variations in the hardware 
cores (i.e. the access through a register interface). Software 
developers may then invest most of their time and effort in 
rewriting a small part of the software, leading to a more 
unproductive work. 

 The automatic generation of software drivers and 
hardware adapters is accomplished by means of a template-
based mechanism, similar to those most of the commercial 
software middlewares for networked systems have. This 
approach frees the designer of (re)writing and (re)defining 
the system interfaces in every design phase, avoiding a non 
negligible amount of work.  



 By means of reusing code and models and the 
automation of the software (and also hardware) adapters 
generation, our approach aims to be a catalyst of the design 
process, boosting the productivity of the development teams. 

 The paper is organized in the following sections. 
Section 2 offers an overview of the related work. In section 3, 
we present a general view of our HW/SW interface synthesis 
process. The hardware platform which supports the proposed 
embedded software development framework is analyzed in 
section 4. Then, the software services that will be used by the 
high-level generated primitives are explained in depth in 
section 5. Finally, the paper is closed with sections 6 and 7, 
presenting the experimental results, conclusions and future 
work. 

2 Related work 
 Lately, there is a significant amount of research work in 
the area of HW/SW interface modeling and HdS generation. 
For example, Mignolet et al [7] provide a uniform 
communication scheme for hardware and software tasks 
within the OS4RS operating system. This approach is limited 
to applications modeled as a set of concurrent threads (tasks) 
as in TTL [8]. TTL is a task level interface that can be used 
indistinctly for developing parallel application models and as 
a platform interface for integrating hardware and software 
tasks.  

 The concept of task as a modeling concept exhibits 
many drawbacks when the migration of the functionality is 
considered. The election of the synchronization points is not 
easy and the concept of state in tasks is not clearly defined. 
On the contrary, objects have an associated semantic that 
makes them more suitable for such dynamic scenarios.  

 Besides, threads are also not well considered to be used 
in parallel programming models since their non-determinism 
[9], whereas distributed object models have proven their 
viability in this area (i.e. Multiflex [10]). 

 Other approaches must be also considered. For example, 
the BORPH operating system [11] offers a homogeneous 
UNIX interface for both software and hardware processes in 
the form of file access primitives. Although the kernel 
interface easies the development of applications (since it is 
familiar to programmers), it is not clear that such interface 
facilitates the reuse of hardware. The IOREG interface 
models the access to the hardware as a memory which does 
not really raise the abstraction level of the hardware part. 

 In [12] a unified HW/SW component model to describe 
the different parts of a HW/SW interface is presented. It 
covers different abstraction levels at different steps of the 
design flow and it uses a service-based model to automate the 
interface implementation. 

COSY [13] and ROSES [14] use a library-based approach to 
generate both hardware and software wrappers. The 
communication model presented in COSY is based on 
channels which are implemented as FIFOs. In practice, the 
interaction with the hardware cores turns into low-level 
read/write operations in COSY. Regarding ROSES, once 
again the available API functions for a software task that 
needs to communicate with the generated hardware wrappers 
are low-level, in the form of read/write put/get primitives. 

 Schirner et al. present in [15] an automatic method to 
synthesize HdS from TLM models. SpecC channels are 
modeled using the TLM concepts and SW to HW 
communication (the reverse scenario is not considered) is 
implemented using the ISO/OSI layering model. Although 
TLM was originally conceived for simulation and verification 
purposes, it has been rapidly adopted by synthesis techniques. 
The abstract, high-level concept of transaction can efficiently 
model the HW/SW interface. In this line, it is worth 
mentioning the work of Klingauf et al. It describes how the 
concept of Hardware Procedure Call [16], on top of TLM 
concepts, offers a truly high-level access mechanism to HW 
functions in a service oriented manner. There are no 
references to the architecture of the resulting 
hardware/software supporting platform for HPCs and its 
efficiency. 

3 Interface Specification 
 As previously mentioned, our approach is based on the 
RMI semantics as the enabling concept to achieve a path to 
the HW/SW interface synthesis from high-level object-
oriented models. This work is based on the Object-Oriented 
Communication Engine (OOCE) [17], a hardware/software 
middleware that implements the concept of RMI for SoCs in 
an efficient manner.  

 The distributed object model behinds OOCE specifies 
how method invocations are translated to technology 
dependent operations. Basically, a method invocation 
becomes a transaction over the on-chip communication 
infrastructure to transmit a request message from the source 
to the target (client/server in the OOCE terminology). A 
request message is composed by a header, which is codified 
in the address lines, and a body which results in a byte 
sequence that codifies the arguments in the data lines. The 
way the method parameters are codified within the data 
bitstream and the number and type of messages interchanged 
by clients and servers is standardized in OOCE, so that 
component interoperability is assured. In [17], the reader can 
find an overview of the superstructure and main objectives 
pursued by OOCE.  

 The proposed workflow (see Figure 1) of the HW/SW 
interface synthesis process makes use of the UML (Unified 
Modeling Language) notation to represent the structural 
aspects (Object Diagram) of the system and the relationships 



(Collaboration Diagram) between the objects that are part of 
the system. We have chosen UML as the modeling language 
since it is object-friendly and it also has demonstrated to be 
easy to use and integrate into a complete SoC design flow 
[18], which is one of the future challenges in OOCE. 

 Before the generation of RTL/C/C++ code for the 
hardware and software wrappers, the designer must annotate 
the UML entities with the stereotypes defined in an OOCE 
UML profile in order to specify (among many other aspects): 
(a) whether an object is going to be a SW or a HW object 
(partitioning); (b) the processor and model where the SW 
object is going to run; (c) a concrete scheme of 
communication (blocking or non-blocking); and (d) the bus 
infrastructure and protocols used to integrate the components. 
At this time, this step is performed manually by the designer 
through a GUI, but the aim is to derive such deployment and 
architectural information in an automatic way from a previous 
exploration of the design space. Figure 2 shows a simplified 
version of a minimal application where the main object 
(actually, the control logic implemented in software) needs of 
the cryptographic services of a hardware object that 
implements the DES algorithm.  

A textual representation of the resulting UML diagram 
feeds: (1) a hardware interface compiler which generates the 
OOCE hardware adapters or skeletons; (2) a software 
interface compiler which generates the OOCE software 
drivers or proxies; (3) an OOCE platform generator which 

selects, from a component template library, the 
communication engine components required by the 
application; and finally, (4) a script that combines all the 
above mentioned elements and generates a Xilinx XPS. 
Considering the platform generator, notice that some features 
of the component templates are tuned by this generator to be 
optimal (e.g. the size of the CAMs used to perform the 
translation of the bus addresses to software object’s IDs, the 
size of the FIFOs that hold temporally protocol messages, 
etc.). To this end, the generator uses the information 
contained in the UML spec project. The two interface 
compilers and the platform generator work autonomously and 
they do not need of the designer’s intervention. 

 At this point, the designer obtains a complete 
prototyping platform which is ready to be synthesized using 
Xilinx EDK standards tools. Figure 3 sketches the derived 
HW and SW infrastructure from the OOCE UML annotated 
diagram of Figure 2. The designer should only: (a) connect 
the DES core (dashed box), implemented as an OOCE 
hardware object, following a standard module interface and 
activation protocol [19]. This component could be retrieved 
from an existing OOCE compliant IP library, or a legacy one 
may be easily adapted; and (b) write the behavior of the client 
application, MAIN object (dashed ellipse), using the 
generated OOCE drivers. Examples of the use of the software 
DES API are also provided to the programmer. 

 Hereafter, we give a more detailed view of the OOCE 
elements concerning HW/SW communication. 

4 Supporting hardware 
4.1 IP skeletons 
 A HW skeleton (HWS) is the OOCE adapter in charge 
of providing connectivity to a hardware core that needs to be 
accessible from software. The HWS interprets address lines 
in order to detect if this specific HW core is the target of the 
communication. The HWS logic activates the hardware 
object interface signals to initiate the operation and decodes 

 
Figure 2. UML OOCE annotated diagram for a minimal 

cryptographic application. 

 
Figure 1. Interface synthesis and prototype platform 

generation flow in OOCE. 



the stream of bytes to push the arguments to the server. Once 
the core notifies that the operation has been completed, the 
HWS builds a protocol response message with the output data 
as the body. 

 OOCE defines several skeleton templates that support 
blocking and non-blocking communication semantics. The 
specialization process is managed in an automatic way thanks 
to the interface compiler. 

4.2 The Local Network Interface 
 The LNI is the bridge between the system 
microprocessor, where the application runs, and the hardware 
cores that implement the required functionality. The main 
goal of the LNI is to keep compatible the hardware interface 
and activation protocol defined in OOCE with the software 
invocation mechanisms. The LNI is conceived as a 
coprocessor, realizing the master interface of the on-chip bus 
in order to obtain the maximum performance (e.g. using 
bursts). The LNI also implements the slave bus interface, 
behaving as a generic skeleton, which is actually the only 
entry point to the processor from the HW objects (which 
saves interruption lines).  

Outgoing communication (SW to HW) is managed 
almost without significant intervention of the LNI. The low 
level software routines, which abstract the link with the 
processor (see next section), put an already formatted request 
message into the LNI Tx FIFO. Once the presence of a new 
invocation is notified to the LNI and the access to the bus is 
granted, the body of the message is written word by word to 
the target address (which was first pushed into the Tx FIFO).  

 On the contrary, incoming communication (HW to SW) 
needs a little more effort and resources. To route the relevant 
bus traffic through the LNI to the processor, a Translation 
Address Table (TAT) is required. Each software object in the 
system has a unique Object Identification Number (OIN) and 
only the OINs of the software objects reachable from 
hardware are maintained in the TAT.  The LNI uses the 
information hold in the TAT to detect incoming messages. 

The LNI activates an interrupt signal when a new message is 
available to the application. HW to SW communication is a 
scenario that is not usually considered by other approaches. 
Thus, in OOCE, HW cores may have an “active” role in the 
system, as they are able to invoke software methods as well 
as asynchronously respond to a request. 

5 The intermediate software layer 
 The LNI represents a means to easily inject/retrieve 
OOCE protocol messages into/from the communication 
infrastructure. The protocol messages addressed to software 
objects are available to the applications through the LNI Rx 
FIFO. However, as said before, the LNI is conceived to be 
tightly attached to the processor and therefore the link 
between them is very dependent on the implementation.  

 To abstract the processor-LNI link, we have defined a 
layered software architecture that progressively offers 
services that help the programmers to use this communication 
infrastructure. Next, we review the main features of each 
layer and how they provide the object-oriented view of the 
system to the embedded software programmers. 

5.1 The LNI layer 
 At the lowest level, the LNI_link interface offers a 
collection of services that hide the implementation details of 
the communication with the coprocessor. The primitives that 
support this interface are send_msg, recv_msg, register and 
delete. The last two functions add/remove the OINs of the 
software objects to/from the LNI TAT. The management of 
the TAT is performed by putting special operation codes on 
the coprocessor link that are conveniently interpreted by the 
LNI.  

 The implementation of the LNI layer has to be done 
manually for each type of connection between the processor 
and the coprocessor. In fact, the LNI layer is the only one that 
must be tailored for a new target platform. The rest of the 
software stack can be automatically obtained and it is 
platform independent, so it has only to be written once. The 
simplicity of the primitives to be coded makes this process 
very easy.  

5.2 The LOA layer 
 The next layer in the OOCE software stack is the Local 
Object Adapter, a medium-level layer that uses the LNI low-
level services. The LOA is platform independent so that it is 
written just once for all platforms. 

 The primitives defined in the LOA make it possible that 
all the objects running in the processor may share the LNI 
link. The LOA behaves as a multiplexer of the incoming 
messages as well. The functionality of the LOA comprises:  

 
Figure 3. Derived HW and SW platform. 



• A constructor that initializes the internal state and 
structures of the LOA. 

• A set of methods to manage the Active Object Table 
(AOT). The AOT maintains a set of pointers to the 
software objects that can be accessible from outside the 
processor.  

• An activate method that links the software object to a 
concrete LOA instance. The LOA includes the software 
object reference into the AOT. 

• A send primitive that builds the low-level protocol 
message from an OOCE_msg structure and sends it using 
the LNI_link functions. If a response is expected (two-
way invocations), a reference to the function that will 
manage the response message is provided. This reference 
is internally annotated into a list of pending requests.  

• A process routine, which is actually the interrupt service 
handler that manages the notifications of new messages 
coming from the LNI coprocessor. Depending on the 
header information of the low-level message, it selects 
the response handler from the list of pending requests or 
the AOT.  

5.3 Software proxies 
On top of the LOA layer, a collection of high-level 

software routines are generated from the UML interface 
object specification that represents the services offered by a 
hardware core. An interface compiler has been developed to 
generate the software version of the proxies and the method 

response handlers, which provide the programmers with the 
illusion that they are talking with software objects instead of 
with hardware devices (as it really happens).  

 The proxy fills the LOA structures that will be 
translated into low-level protocol messages. The necessary 
data come from the function arguments and the internal 
parameters hold within the own proxy structure. The OOCE 
development framework also defines synchronous and 
asynchronous invocation semantics for software methods, as 
for hardware ones. Figure 4 shows the generated C code 
version of a synchronous proxy that allows accessing the 
DES core implementing the cryptography operation. Due to 
efficiency criteria, in most of the projects, C code is 
preferred. Although C is not an object-oriented language, it 
can be used to implement an object-like programming 
interface using structures and pointers as shown in Figure 4. 

5.4 Application programming 
 Finally, Figure 5 illustrates how to use the generated 
software infrastructure. The resulting code is clean and easy 
to understand, which promotes reutilization and 
maintainability. The application is more robust to unforeseen 
changes in the hardware platform and almost the entire 
software stack can be used ‘as is’ in future designs. 
Therefore, the writing of the embedded software can start as 
soon as desired, even in parallel with the design of the 
hardware design. No matter the physical interface of the 
hardware core, it can be modified or replaced by a different 
core from another manufacturer; the logical interface remains 
invariable. 

6 Experimental results 
 Since communication efficiency is crucial in typical 
mixed hardware-software computation scenarios, we have 
performed several experiments in order to determine the 
overhead introduced by the proposed infrastructure and the 

 
Figure 5. Example of use of the OOCE object-oriented  

generated API 

 
Figure 4. Generated C code version of a DES crypto SW 

proxy for Microblaze. 



automatically generated software stack. To this end, we have 
measured the time invested to complete read/write operations 
of various sizes using a generic OOCE-compliant hardware 
object. We have compared our results against the Xilinx IPIF-
based implementation. The OPB IPIF architecture 
specification is a commercial solution which facilitates the 
connection of either Xilinx or the customer IP modules to the 
IBM On-Chip Peripheral Bus (OPB).  

Figure 6 shows that the transmission time increases 
linearly with the size of the message transferred in all the 
cases, as it was expected. A write operation from software 
using the OOCE approach exhibits an important performance 
increase (up to 40%) when the size of the transfer is beyond 
the 3-word barrier. We have adapted the software proxies to 
use the classical I/O register interface when the number of 
writes/reads is below this limit, in order to be optimal. An 
OOCE read operation (incoming requests or reception 
responses) is less efficient than an OOCE write since the 
software routines start to take the words from the LNI link 
only when the entire message has been cached into the LNI 
Rx FIFO. On the contrary, a LNI bus writing pushes the body 
of the message at the same time the software proxy puts it 
into the LNI Tx FIFO. We are working on a parallel version 
of the reception process to improve the results obtained 
concerning the OOCE read operation The speed levels that 
can be achieved with OOCE can reach about 120 MB/s for 
both read and write operations (just up to 80 MB/s with OPB 

IPIF implementation). 

 In the described experiment, we have used a Microblaze 
soft processor and the LNI link has been implemented using 
two FSL (Fast Serial Links) interfaces. However, these data 
can be extrapolated when the Power PC version is taken into 
account. In this second scenario, the LNI link is implemented 
using the OCM (On Chip Memory) interface. In both cases, 
one of the reasons of the small overhead is the optimized 
version of the LNI and LOA software layers (only about 80 
lines of C code).  

 Finally, Table 1 shows the synthesis results of the 
OOCE HW skeleton and the IPIF wrapper in order to 
evaluate the overhead in terms of hardware resources. Three 
legacy cores have been considered from OpenCores [20]. 
They have been modified to operate with blocks of data up to 
1K words. Our skeleton architecture offers a significant 
reduction in the logic used by the core wrappers compared 
with the IPIF-based solution. It is worth mentioning that the 
synthesized LNI component represents less than 1% of the 
FPGA resources (in this case a XC2VP30 Xilinx-V2Pro), a 
small overhead that is shared by all the hardware objects in 
the system. This means that the percentages in the reduction 
of logic can be better when the design contains two or more 
hardware objects. 

The adaptation work performed on the considered cores 
has consisted in the creation of the hardware wrappers needed 
to adapt the cores interface to the IPIF and the OOCE HW 
object interface. The complexity of such adapters and the 
time spent in the writing process is comparable (about 1 hour, 
senior engineer). However, the time spent in the writing 
process of a software application implementing a use case 
was double in the case of IPIF. In addition, in the case of 
OOCE, this application is fully reusable and portable to other 
platforms (i.e. the Power PC version). 

7 Conclusions and future work 
From our point of view, the concept of object satisfies 

the need for a common view of the whole system shared by 
both, software and hardware engineers when facing the 
design task. This fact, along with the automatic generation of 
the HW/SW interfacing infrastructure, boost the productivity 
of the embedded software developers because (1) they do not 
have to wait for a physical platform prototype and (2) 
unnecessary iterations are avoided. 

Current work is focused on the definition of a complete 
design methodology to exploit the potential of the distributed 
object approach stated in OOCE. This methodology will 
integrate the automatic HW/SW interface generation here 
proposed into an Electronic-System Level workflow. Our aim 
is to offer an incremental development cycle for SoC design 
making use of the concept of location transparency [17]. 
Rapid design space exploration, verification and synthesis 

Table 1. Synthesis results and comparison 

Hardware overhead 
FFs LUTs  

IPIF HWS+LNI IPIF HWS+LNI 
DES 1432 842 (-41%) 2312 1635 (-29%) 
CORDI 404 229 (-43%) 630 370 (-41%) 
MDCT 734 603 (-18%) 1093 1198 (+9 %) 
LNI 123 376 
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Figure 6. Performance of on-chip read/write transactions using 

Xilinx IPIF and OOCE.  



from TLM models of the communication engine are also in 
the agenda. 
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