
Nintendo DS: A Pedagogical Approach to Teach Computer
Architecture

Maria J. Santofimia1, and Francisco Moya1

1Computer Architecture and Networks Group. School of Computer Science,
University of Castilla-La Mancha, Ciudad Real,Spain

Abstract— This work reveals the benefits obtained from an
innovative pedagogical experience based on the use of a
game console as the platform to teach Computer Architec-
ture. This paper shows how the selection of an appropriate
platform, not only motivates students, but also helps them
to acquire the theoretical concepts by means of real appli-
cations. The Nintendo DS console turns out to be a great
platform to explore the structure and organization of a fully
equipped computer. In this regard, a brief description of the
lab sessions is presented to highlight the great potentialities
of this platform.

Keywords: Computer Architecture education, Nintendo DS.

1. Introduction
Nowadays, the use of electronic devices is commonly

extended to almost all facets of human life. The increasing
capabilities along with their decreasing prices, provide an
appealing field to be exploited for educational purposes.

Educational games or applications for computers and con-
soles have succeeded in improving knowledge acquisition
and retention as well as motivation in short-age students.
Video-game companies have targeted the educational market
by means of devices that provide learning and teaching
facilities to both teachers and students. Although universities
are not unaware of the potentialities of such facilities, the
high level knowledge taught or the self-motivation supposed
to students do not provide the same appealing context for
educational games, as the primary or secondary education.
The pedagogical value of these new platforms and devices
is granted by the running applications and not so much by
the platform on which they run.

The majority of the first year students in Computer
Science suddenly find themselves dealing with new concepts
that require some level of abstraction. Courses such as Com-
puter Architecture, taught on the second semester of the first
year is aimed at providing students with the foundations to
understand the internal organization of a computer, analyze
the different functional units, as well as comprehend the role
they play in the execution of instructions.

Hands-on experience turns out to be essential in showing
how theory is applied. In this regard, the use of simple com-
puter architecture emulators is the most extensive approach

for this purpose. However, this approach fails on concreting
theoretical concepts into real ones.

On the one hand, it is desired to count on an architecture
simple enough to allow students to focus their attention
on the course objectives, and not on understanding the
complex aspects of a particular architecture. However, if
the architecture is too simple, it might truncate student
progress and motivation due to the limited possibilities to
experiment with it. Therefore, the architecture used needs
to be complex enough to allow students to experiment with
all the theoretical knowledge acquired during lectures, but
at the same time, simple enough to keep the focus on the
structure and organization and not in complex aspects.

A few years ago, the School of Computer Science, at
the University of Castilla-La Mancha, undertook the in-
novative teaching experience of using the PIC16F84 from
Microchip[1] microcontroller for the lab sessions of the
Computer Architecture course. Some of the most appealing
features supporting this innovative experience were its 8 bit
architecture, a simple RISC instruction set, Flash, EEPROM
and RAM memory, the variety of I/O peripherals, and its
low cost. However, when adopting the use of the PIC16F84
microcontroller, it soon becomes apparent that this approach
fails to address most of student expectations. Advanced stu-
dents found the platform insufficient to explore the advanced
concepts learnt in lectures. On the contrary, beginner stu-
dents tend to be overwhelmed by the requirements imposed
by the platform, missing the point of the lab sessions. The
use of a microcontrollers, such as the PIC16F84, might be
suitable to address those aspects related to the embedded
systems design, but it is not an optimal choice for the
Computer Architecture course.

This paper presents the shortages identified in the teaching
of the Computer Architecture course, as well as the proposed
solution to help students to acquire the concepts and over-
come the identified deficiencies.

The remainder of this paper is structured as follows. First
section presents the reasons why the PIC16F84 approach
failed in achieving the course objectives. The following sec-
tion exposes the foundations of the Nintendo DS (NDS from
now on) based proposal. Finally, the last section summarizes
the conclusions obtained from both approaches.



2. Hands-on experience with the
PIC16F84
Computer Architecture is considered as one of those ground-
ing courses, for the Computer Science degree, where foun-
dations for upper courses must be acquired. Therefore,
a correct understanding of the contents reveals essential
for a thriving degree achievement and the training future
professionals.

In this regard, the first step to justify the use of the NDS
console in the labs is to analyze the main shortages identified
not only on first year students, but also in the following
years.

One of the main objectives of providing hands-on ex-
perience as a complementary part of teaching is showing
students real applications of the explained concepts, as well
as reinforcing the comprehension of the same concepts.
However, at some point, student tend to miss the connection
that links the theory and the practise, what makes them fail
on mapping the acquired concepts to real computers.

Something similar occurs with the concept of memory
and how it is organized. The majority of the students do
not find difficulties to understand the contents explained
in lectures. Nevertheless, there are many evidences of a
weak understanding. For instance, it is easy to find last
year students struggling with debugging tasks, mainly due
to the poor comprehension of concepts such as the stack
frame, the stack pointer or the frame pointer. Probably, the
meaning of these concepts was clear in the specific context
where they were taught, but in a different context, they seem
meaningless for many students.

Given these observations, it seems that the main problem
lays on a deficient transfer of theory contents to practice. In
other words, it is expected that by using the right platform,
students will be able to apply the acquired knowledge to
real world computers leading to a better understanding of
the concepts presented in the lectures.

The underneath subsection presents the approach followed
in the School of Computer Science at the University of
Castilla-La Mancha, in finding the right platform to over-
come the aforementioned shortages. This experience lead
to the adoption of the current platform, the NDS, as an
optimal solution to provide hands-on experience with real
architectures.

2.1 The PIC16F84 approach, strenghts and
weaknesses
One of the main arguments supporting the use of simulation
tools for hands-on experience finds its roots at the little
resource requirements, since simply a computer suffices to
run the application. Moreover, using software instead of
hardware brings to students the opportunity to practise at
home. Some reference books[2][3] for Computer Architec-
ture and architecture provide their own virtual architecture

for pedagogical purposes, along with the simulation tool.
This approach normally consists of a simple architecture
that focuses on the elements composing a computer and
their functionality rather than on how to generate specific
applications.

Despite the strengths of an approach based on simulation
tools, the experimental results reveal that the experiences
carried out with simulation tools seem futile for approaching
the Computer Architecture foundations to the real com-
puters. The vision gathered by the students when working
with a software tool is not much different than the one
perceived from the lectures. In this sense, many students still
remain unaware of the multiple applications of their acquired
concepts, not only for debugging purposes, as mentioned
before, but for writing efficient code that optimizes the
architecture where the application will be running on, for
accomplishing an effective memory management, or even
for making decisions about what architecture is the more
suitable for a specific needs.

Drawing these points together, the need for a real plat-
form to provide hands-on experience is more than evident.
However, the wide range of available architectures, with
very different features and targeted to a very heterogeneous
audience, makes hard to decide what processor is the more
convenient for pedagogical purposes.

Microcontrollers turns out to be a proper solution since
they are complete computers but at the same time of a
limited complexity. Among the wide spectrum of micro-
controllers, the PIC16F84 has great acceptance, mainly due
to its low cost in comparison to its potential. It is a small
integrated circuit, of just eighteen, powerful enough to run
microcontroller-like applications.

Providing hands-on experience with a microcontroller
such as the PIC16F84 provides students with the opportunity
to get familiar with a complete ISA by learning its assembler
language. The arising question is to what extent does this
knowledge contribute on the education of Computer Science
students? However, in spite of the strengths that supported
this choice, the obtained results bring into light their multiple
weaknesses.

The stack concept and the role it plays is emphasized dur-
ing the lectures, although hard to explain with the PIC16F84,
since it simply counts on a hardware stack and a limited
RAM memory, made of registers, that do not support a
feasible way for implementing it. Furthermore, the RAM
memory is divided in two banks of 128 bytes, although
just the 80 first of each bank are physically implemented.
A direct consequence of such memory organization is that
students do not have the opportunity to meet the differences
between register and the external RAM.

The indirect addressing is also hard to explain on the
PIC16F84 since it is achieved by means of the FSR register,
that instead of helping students on the understanding of the
addressing mode, make it more complex. However, the direct



addressing does not seem to be easier. Memory is organized
as pages of just 1K of addressing memory that involve a page
swapping whenever further positions need to be acceded.

However, this is not to say that the use of the PIC16F84
brings no benefits. On the contrary, the acquired contents
were improved in comparison to the use of simulation
tools, although there was still some place for improvements,
what motivated the searching for a new platform capable
of overcoming the handicaps identified in the PIC16F84
approach.

3. The Nintendo DS approach
Apart from being a very successful game console, the
Nintendo DS provides an excellent platform for hands-on
experience, as well as being a great element to motivate the
student enthusiasm, and attract their interest and attention.
The access to a well documented architecture as well as the
active homebrew forums, provide the perfect grounding for
helping students on applying learnt contents.

The following subsections go through the motivations and
the technical details that turns a game console into a very
attractive and efficient learning platform.

3.1 The Nintendo DS hardware, its greatest
asset
On the contrary to the expected complexity, the program-
ming interface with the console is simple enough to prevent
first year students from finding themselves overloaded by
aspects that are extrinsic to the course. In this regard, the labs
are guided to explore those aspects of the console capable of
helping them to understand the contents already presented.

The NDS contains two processors integrated in one, an
ARM946E-S and ARM7TDMI, 4MB of main RAM, and a
long list of peripheral devices such as a pair of 2D and one
3D graphic engines, touch screen, speakers and microphone
among some of the most relevant.

From a pedagogical perspective, the use of the two ARM
processors provides the foundation for introducing certain
concepts such as the Application Binary Interface (ABI) and
the role it plays, how it is connected with the ISA, as well
as its influence in the compiler, making the most of the
opportunity to point out some aspects of the compilation
stages, and giving special emphasis to the cross-compiling
character of the process. The use of CPU registers is also
well addressed by these processors. Furthermore, by means
of the debugging tool it is possible to present to the students
the tasks performed by registers in a program execution.

The ARM memory resources lay the foundations for
accomplishing an exploration of several aspects presented
in lectures. It serves to present to students different sort of
memory technologies. Furthermore, students are prompted
to work with these memories, emphasizing all along the
process, the different memory technologies that are being
used and their particularities.

The two screens and the printing process poses students
with an appealing context for exploring the interruption
concept, understanding the importance role they play, and
how to manage them.

Yet another issue is the use of graphic modes due to
the many theory concepts that are involved in its use.
A comprehensive view of the platform is required when
dealing with tiled and frame-buffer graphics, where not only
memories but also processors, and interruptions are involved.

To summarize, it can be concluded that the combination of
the aforementioned elements makes feasible to get students
involved in the application of theory contents to something
as real and exciting as developing an applications for a game
console. The hands-on experience is enhanced by the added
value of working with motivated students.

3.2 The programming language
Traditionally, the students of Computer Architecture are
prompted to get familiar with the most common assembler
instructions as well as to understand the meaning of the in-
structions given by the ISA. However, the overload imposed
by the programming in assembler often distracts students
from accomplishing the learning outcomes of this course.

Nevertheless, this brings the opportunity to introduce
students into the use of the C programming language, from
a low level perspective. Although programming theory is out
of the scope of the Computer Architecture course, students
simply need basic notions of those language aspects that help
them on exploring the architecture, with a low algorithmic
complexity. Moreover, C is the most employed language
for embedded applications. Special attention is paid to the
concept of pointers, since these are to be the tools to manage
and explore memory.

Some debuggers, such as kdbg[4], list the assembler code
instructions generated for each of the C statements in the
source file. In this regard, students can explore the assembler
code generated for a procedure call, loops, or assignments,
for instance, and get a clear notion of how assembler code
is related to the C code.

4. The session planning
The following subsections describe the lab session planning
according to the targeted outcomes. These sessions propose
real applications of the contents covered in the lectures.
As described underneath, each of the proposed sessions
intends to provide students with the appropriate context to
test their understanding of the basic concepts. One of the key
aspects to keep student attention is the fact that each session
introduce them to new aspects of the NDS programming. In
this sense, from the student perspective, they are learning
the foundations of the homebrew for the NDS, while at the
same time, from the teaching perspective, each session is
intentionally designed to explore theoretical contents.



4.1 Introduction to the required tools
The proposed lab sessions involve, at different levels, the
use of a small set of tools, that help students to focus their
attention on new concepts rather than in small technicalities
that remain out of the scope of the course.

During the first session, students are introduced to the
different tools composing the devkitPro[8] toolchain, that
supports the code generation for the NDS. Among some
of the toolchain resources, there is a set of templates that
prevent students from having to start coding from scratch.
These templates include a Makefile that automates the gen-
eration of the executable files. Therefore, students are just
prompted to get familiar with the content of the Makefile,
and how to use the make tool.

Debugging tools are also introduced in this first session. In
its simplest case, by means of the executable files generated
from the example templates and the debugger, students are
able to explore some basic aspects of the architecture. The
debugging tool that comes along with the devkitPro is the
arm-eabi-gdb. This is a command-line tool, that can be used
on its own or endowed with one of the available front-ends,
such as kdbg[4], ddd[5], and emacs[6].

Among these front-ends, kdbg stands out for bearing a
twofold aim: from the one side, students can explore memory
and CPU register contents during the program execution,
while at the same time it is possible to explore the associated
assembler code for each of the C statements.

Finally, emulator tools are of a great help for testing and
debugging purposes, such as the case of DeSmuME that
support both task, in contrast to others that do not provide
support for debugging.

The use of real NDS consoles is highly encouraged, as
a mean to make students aware of the real applications of
the contents exposed in lectures. However, the emulator tools
provides a decent substitute to undergo basic experiences, in
a straightforward manner. Nevertheless, complex capabilities
are not yet well addressed by emulator tools, for instance the
wireless support.

4.2 Application Binary Interface
Advocating for real experiences following theoretical ses-
sions find its roots in the benefits reported to the student
comprehension of concepts such as the Application Binary
Interface (ABI).

The ABI can be considered as a collection of standard
documents intended to specify the interface among binary or
object files. Hence, one of the hands-on experience sessions
shows students the important role played by the ABI in
specifying many aspects, that involve different issues such
as the data size and alignment, procedure calls, or argument
passing, just to name a few.

During this session, students are challenged to validate
that the code generated by the ARM compiler, effectively
meets the restrictions imposed by the ABI. In this sense,

students write some programs that help them on exploring
those features specified by the ABI, and by means of
the debugging tool, explore aspects such as the generated
assembler code, he values stored in registers and memory,
and their evolution.

The procedure call is easily explained by means of a
sample code, run step by step, by using a debugger. In
addition to the rules stated by the ABI specifying how to
perform a procedure call, it is also detailed the policy of
argument passing, as well as the retrieval of return values.
By means of code, it is showed to students how, as far as
possible, arguments are stored in registers. Memory accesses
are minimized, which in turn improves performance.

4.3 Framebuffer and tiled graphics
From a pedagogical point of view, one of the greatest assets
of the NDS approach lays on the explicit memory man-
agement expected from students when displaying graphics
on the console screens. Deep understanding of the memory
organization is revealed essential, since it involves storage
and retrieval of the data to be displayed, directly from the
video memory.

Among the different ways of displaying graphics on
the NDS screens, these lab sessions simply focus on the
framebuffer and the tiled graphics. The understanding of
these two methods involve knowing two different forms of
dealing with the memory for displaying purposes.

The framebuffer mode map screens to a specific region of
memory. Hence, modifications performed over this memory
region has an effect over the screen appearance. On the other
side, tiled graphics, count on a matrix of tiles, where each tile
represent a bitmap of 8x8 pixels size. The use of this graphic
mode is interesting because tiled backgrounds are composed
of a set of tiles and a tile map. Both parts of the background
are stored in the video memory, in blocks known as map
base and tile base, where each tile base share the memory
region with eight map bases. This is a great challenge for
students that need an overall view of the video memory for
displaying graphics.

4.4 Timers and scrolls
Timers and scrolls are two features of the NDS platform that
provide an appropriate context for introducing students to the
interrupt concept. Both, timers and scrolls, are employing
interrupts, managed by the processor.

This lab session pursues the student familiarization with
the basis of interrupt handling. To this end, the use of
timers and scrolls presents two effective ways to get students
engage in handling interrupts. Therefore, implementation of
counters can be accomplished by using timers. Moreover,
scrolling graphics along the screens require a full under-
standing of how interrupts work.

Screens are redrawn in a line by line sequence. The period
of time spent in between drawing the end of one line and



the beginning of the next one is known as horizontal blank.
Furthermore, the vertical blank is the period of time that
takes place between drawing the bottom line of the screen
and the first one at the top. These two periods of time,
vertical and horizontal blank, represent the right time to
modify the data being display, since in any other case,
displayed data might be a mix of old and new data.

These periods of time that can be used to redraw the
screen can configured to generate interrupts, informing of
their occurrence. Therefore, effective handling of these in-
terrupts reveals as the proper way to display new data in the
screens.

Graphic scrolling depend on the handling of such inter-
rupts in order to generate the effect of a graphic moving
along the screen. Students are asked to show a moving
background by means of interrupts.

5. Conclusions
Lab sessions plays an essential role in the education of
Computer Science students, mainly due to its eminently
practical character. However, it is neither a straightforward
nor simple the task of selecting the platform for supporting
a hands-on experience.

This article compile the most relevant conclusions ob-
tained from the two different experiences carried out for the
Computer Architecture course.

Several handicaps arose when the PIC16F84 was selected
as the preferred platform for the labs, give rise to a need for a
new architecture capable of filling all the identified gaps. In
this endeavors an innovative idea came around, why not use
a well known platform, such as the Nintendo DS console,
as the tool for the labs?

The idea was proposed to students as a pedagogical exper-
iment, and they were given the chance to decide the platform
they preferred. Over thirty percent of the students chose
the NDS platform, what provided an acceptable feedback
for comparing results regarding the acquired knowledge.
Currently undertaking the second year of the experience,
it cannot be said that adopting NDS represents a silver
bullet for supporting students on its education. However, the
gathered results prove an important improvement in terms
of the contents understood and retained by students.

References
[1] Microchip Technology Inc. Microchip home page [online].

http://www.microchip.com. Retrieved on February 25th, 2009.
[2] David A. Patterson, John L. Hennessy, Peter J. Ashenden, James R.

Larus, Computer Organization and Design: The Hardware/software
Interface. Morgan Kaufmann, 2004, ISBN 1558606041.

[3] Javier Garcia, Jose M. Angulo, and Ignacio Angulo, Fundamentos Y
Estructura De Los Computadores. Paraninfo, 2003, ISBN 8497321804

[4] Johannes Sixt. KDBG. A Graphical Debugger Interface [online].
http://www.kdbg.org/. Retrieved on February 25th, 2009.

[5] Free Software Foundation, Inc., DDD. Data Display Debugger [online].
http://www.gnu.org/software/ddd. Retrieved on February 25th, 2009.

[6] Free Software Foundation, Inc., GNU. Emacs [online].
http://www.gnu.org/software/emacs/. Retrieved on February 25th,
2009.

[7] Free Software Foundation, Inc., GDB: The GNU Project Debugger [on-
line]. http://www.gnu.org/software/gdb/. Retrieved on February 25th,
2009.

[8] DevkitPro, DevkitPro home page [online]. http://www.devkitpro.org/.
Retrieved on February 25th, 2009.


