
Web Services for deeply embedded extra
low-cost devices?

D. Villa, F. J. Villanueva, F.Moya, F. Rincón, J. Barba, and J. C. López

Dept. of Technology and Information Systems
University of Castilla-La Mancha

School of Computer Science. 13071 - Ciudad Real. Spain
{David.Villa, Felix.Villanueva, Francisco.Moya, Fernando.Rincon,

Jesus.Barba, JuanCarlos.Lopez}@uclm.es

Abstract. This paper describes a new approach to implement Web Ser-
vices in embedded devices connected to Wireless Sensor Networks. The
sensor/actuator node is able to process standard requests (XML-RPC
and SOAP), perform an action and generate a valid response.
These stand-alone nodes show good interoperability with standard Web
Services using just a transport protocol gateway.

1 Introduction

While interoperability may be achieved by means of low cost TCP/IP imple-
mentations, interoperability at the application layer continues to be a key prob-
lem [4].

Web Services emerge as an interoperable, language and platform indepen-
dent solution to access sensor services thought Internet. Being able to introduce
Web Services directly in the WSN devices would allow deploying application
independent gateways. This implies a set of interesting advantages as we will
show below.

Obviously, the use of SOAP [5] in wireless sensor networks introduces con-
siderable overhead compared to most binary protocols. Therefore it may not
always be appropriate in some application domains where power consumption
or latency are critical. Our prototype implementation was focused on emergency
light control, which shows a number of characteristics compatible with this ap-
proach:

– Nodes do not have power supply problems because they are attached to the
power line.

– Nodes are static. There are no mobile nodes in the network.
– Interaction across the WSN is quite limited. In fact, the nodes will only

provide autochecking notifications on request so that delay and bandwidth
are not major bottlenecks.

? This work was supported by ERDF, the Regional Government of Castilla-La Man-
cha, and the Spanish Ministry of Science and Innovation under grants PAI08-0234-
8083 (RGrid), TEC2008-06553 (DAMA), and Hesperia CENIT.

2

– The configuration procedure should be as simple as possible in order to
reduce installation cost. We initially aim at per-node remote configuration.
Global configuration would be handled as an external system-wide service.

In this case, or any other field with similar properties, Web Services seem to
be a good approach to solve the problem of interoperability at the application
layer.

2 Related work

Most of the former approaches take the raw data from wireless sensor networks
using proprietary protocols and export them through Web Services residing in
a gateway [1, 3]. The web service is actually running in the gateway and not in
the WSN device. Each new application would require specific developments, and
each web service becomes a wrapper or a facade for the binary protocols used
in the WSN.

Our approach, as we will see later, uses generic gateways (independent of the
wireless sensor network devices deployed) and reduces configuration procedures
required to describe and publish the WSN nodes to a specific network. We aim at
removing the need of an intermediate application-level proxy such as the Sensor
Collection Service described in [1].

In [2] a framework has been developed to facilitate the use of SOAP in WSN
focusing on reducing the overhead (e.g reducing the number of messages) on the
network by means of data aggregation techniques. Their implementation is done
in the NS2 network simulator and we are not aware of any implementation for
actual devices.

Other approaches [8] try to embed the Web Services architecture in low-
cost devices reducing the size of the protocol stack (TCP/IP, XML and SOAP
processor, etc.). These low-cost devices exceed the average capacity of many
wireless sensor networks devices.

In this paper we propose a different way to embed a minimun web service
in a WSN device which follows the general principles described in [11]. Instead
of reducing existing implementations of the Web Services protocol stack, we are
going to define the smallest feature set that a web service needs to provide and
build it up from there.

3 Embedding web services, a bottom-up approach

Although it is important that each device looks like a web service, it is not
essential that they are real Web Services. If devices are able to generate coherent
replies when they receive predefined request messages then the system will work
as expected. For a given WSDL [7] specification these request and reply messages
are completely specified by the communication protocol (SOAP or XML-RPC).

Let us analyze an HTTP embedded SOAP request and the corresponding
reply for a very simple interaction (e.g. get the status of an emergency light).

3

We will show the full SOAP messages to make it easier to follow the behavior
of the automaton of figure 1.

POST / HTTP/1.0
Host: localhost:8080
User-agent: SOAPpy 0.12.0 (pywebsvcs.sf.net)
Content-type: text/xml; charset="UTF-8"
Content-length: 336
SOAPAction: "get"

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Body>
<get SOAP-ENC:root="1">
</get>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

It seems clear that SOAP is a verbose protocol where most of the information
is in the Body part of the message. This message can be obtained from the WSDL
specification:

[...]
<message name="getRequest">
</message>

<message name="getResponse">
<part name="retval" type="xs:boolean" />

</message>
[...]
<operation name="get">

<input message="getRequest" />
<output message="getResponse" />

</operation>
[...]

We implement an ad-hoc parser from the WSDL specification which recog-
nizes the request and builds, in a dynamic way, an appropriate answer to such
a request:

HTTP/1.0 200 OK
Server: SOAPpy 0.12.0 (Python 2.5.2)
Date: Fri, 21 Nov 2008 10:52:17 GMT
Content-type: text/xml; charset="UTF-8"
Content-length: 501

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<SOAP-ENV:Body>
<getResponse SOAP-ENC:root="1">
<Result xsi:type="xsd:boolean">False</Result>
</getResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

4

Typical sensors usually expose a very simple interaction model. Therefore
we propose a set of very simple WSDL interfaces to access the data provided
by the nodes. We define a get/set interface that may be used by the clients to
obtain the current value of a sensor (get) or manipulate and actuator (set). Of
course, the approach is not limited to this interface, but it illustrates perfectly
the proposed solution.

We focus on minimizing the amount of memory required to parse the mes-
sages in order to be able use WSAN devices with limited resources. To achieve
this, we use several techniques:

– We implement an ad-hoc finite state machine in order to recognize a request
and build up the answer. The parser removes redundant whitespace, and
XML comments in order to feed a canonical XML stream into the automaton.

– Instead of saving and comparing all possible tags that a request message can
have, we calculate a CRC using the CCITT-CRC 16 bit algorithm [10]. In the
parser, we only compare CRC values of the XML tags with the precalculated
CRC for each request available in the WSDL specification.

– We do not store whole messages. Each message is parsed incrementally as
it is being received, much like a SAX parser, but using an ad-hoc parser to
reduce overall resource consumption.

For example, for the request message shown above, we implement the finite
state machine shown in figure 1. Basically, we calculate the CRC for each XML
tag (delimited by ’<>’). From the Init state, we start to parse the input data
ignoring the HTML header. This header does not include relevant information
from the point of view of the WSAN devices.

The parser ignores all incoming data until the tag <?xml version="1.0"
encoding="UTF-8"?> is recognized (the calculated CRC matches the expected
CRC for this tag). This event triggers the transition to the Start state, which
will discriminate among the available operations. Input data will include some
encoding tags inmediately followed by the operation being invoked, which helps
us to recognize whether the request is a valid verb (set or get in our example).
Depending on the CRC calculated at the expected positions of the incoming
data stream there will be a transition to the state where the corresponding
arguments are read. Operations without arguments will lead to a transition to
the Tail state which validates the remaining of the request message.

Operations with parameters will go through intermediate parameter parsing
states. In our example, in the Req Set state, the automaton will parse the pa-
rameter attached to the set operation and then it will trigger a transition to the
Tail state. Finally, after a completely validated request is received we build up
the response message specifically for each request. Note that there is no need to
store which method is being invoked since the tail of each request is different
and may be used to discriminate among the response generators.

In each of the response generation states (Resp Set and Resp Get in our
example), the user needs to provide an appropriate routine which executes the
validated request and builds the appropriate response.

5

Init

Start

Req Set

Tail

Resp Set Resp Get

<?xml version="1.0" encoding="UTF−8"?>

<SOAP−ENV: Envelope

SOAP−ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:SOAP−ENC="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:SOAP−ENV="http://schemas.xmlsoap.org/soap/envelope/">

<SOAP−ENV:Body>

<get SOAP−ENC:root="1">

<SOAP−ENV: Envelope

SOAP−ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:SOAP−ENC="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:xsi="http://www.w3.org/1999/XMLSchema−instance"

xmlns:SOAP−ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<SOAP−ENV:Body>

<set SOAP−ENC:root="1">

<v1 xsi:type="xsd:boolean">True</v1>

</set>

</SOAP−ENV:Body>

</SOAP−ENV:Envelope>

</get>

</SOAP−ENV:Body>

</SOAP−ENV:Envelope>

Fig. 1. Finite state machine for get() and set() SOAP messages

Although not explicitly stated in figure 1 (for the sake of clarity) whenever
the incoming tags do not match any of the expected CRCs the state machine
is reset to the initial state Init and the connection is closed. This provides a
reasonable protection against faulty clients.

3.1 Compiler

The design and implementation of the finite state machine is a tedious and error
prone task. Therefore we are building a compiler that takes a WSDL specification
and a service definition and automatically generates the appropriate finite state
machine for the corresponding messages from the interfaces defined in the WSDL
file.

The compiler (see figure 2) takes four files as inputs:

– The WSDL interface declaration. The services provided by the WSN node
must adhere to the interfaces specified in this file.

– The servant (method implementation). This file contains the application
specific code. Usually this includes code to access to the underlying hardware
and read or write a physical transducer.

– Service definition. The programmer defines in this file which concrete ser-
vices the node holds and the interface (portType) exposed by each sensor
or actuator in the node. We use a very simple syntax defining services and
basic interaction events. The following listing shows a little example.

uses "DUORW.wsdl";

local myLocalEP("xbow -h 0x0001") {
DUOIBoolRW_Service svc1;

}

6

ipk
source

WSDL
parser

ipk
parser

SymbolTable

WSDL
interface

platform
constraints

Automaton
(C source)C compiler

ELF
binary
(PC)

MICA2
binary

(TinyOS)

binary
(other)

parsing
templates

provided by user

generated by compiler

manifest

manifest
parser

servant

Fig. 2. Compiler block diagram.

remote myRemoteEP("xbow -h 0x0002") {
DUOIBoolRW_Service svc2;

}

repeat(5) {
svc2.set(svc1.status(), svc1.endpoint);

}

This example defines both a local and a remote web service endpoint. It also
states that a periodic request must be done in the remote service sending
the status and the endpoint of the local service.

– A manifest file which contains the interfaces for user-provided procedures,
such as the procedures to read hardware sensors. The status procedure of
the listing above is one such example:
private DUOIBoolRW status(11) {

output = bool;
};

The compiler is able to generate generic parsers that may be compiled on sev-
eral platforms. This include support for the MICA2 (Crossbow) on the TinyOS [13]
operating system, and also for OS-less implementations for general purpose mi-
crocontrolers such as ATMega128, 8051 or even mid-range Microchip devices.

4 Network Architecture

In our application field (emergency lighting), a control center usually manages
and monitors several buildings distributed in a large geographical area. Build-
ings with hundreds or even thousands of emergency lights are quite common

7

(airports, museums, etc.). Each installation is connected to an external network
(e.g. Internet) by means of one or more gateways (figure 3).

Gateway

WDSL repository

NAT/PAT

Load balancing

wireless sensor network

Internet

Control and Maintenance

center

Fig. 3. Physical network topology

Each gateway performs three main tasks:

– It encapsulates SOAP messages from Internet transport protocol (typically
TCP protocol) in the WSN transport protocol. The reverse process is also
needed for outgoing messages (encapsulation of SOAP messages from WSN
transport protocol to Internet). This task is shown in figure 4.

– It must implement a bidirectional correspondence between TCP ports and
node IDs. This is a crucial aspect for avoiding hand-made configuration
procedures. When we install a WSN node, the gateway must assign a TCP
port to its node ID.

The association established between the TCP port and the node ID must
be represented in the WSDL. A WSDL file represents the interface for users of
the service and also some properties of that service, for example, its location
(endpoint).

We embed both the WSN location and the TCP port assigned in the WSDL
tag soap:address, as shown below. The gateway needs to know the WSN node
ID of each WSN device available in the network and it generates the correspond-
ing WSDL file. This task may be accomplished without human intervention using
a modification of ASDF [12] (our service discovery protocol for WSN).

8

TCP port Node ID

12300 12FA

12305 163B

PAT TABLE

TCP PORT

GATEWAY

NODE ID

WSN HeaderSOAP Request

WSN Header SOAP Reply

SOAP Request TCP Header

TCP Header SOAP Reply

WSNInternet

Fig. 4. Simplified gateway process

When a WSN node is attached to the network it sends an advertisement with
the name of the interfaces that it implements and its node ID. The gateway builds
a WSDL file from a template which contains the service interface and the service
implementation. In the service implementation section we may include some
common information about the environment such as human readable location,
node ID, etc.

Here is an example:

[...]
<!-- Service to export -->

<service name="ExitDoor_Service">
<port name="IBoolRW_Port" binding="IBoolRW_Binding">

<soap:address location="http://example.com:7890"/>
</port>

</service>
[...]

With this WSDL file, the services may also be located by means of UDDI
protocol. The process of publishing any Web Service associated to a WSN device
in a UDDI registry is similar to any other Web Service, namely, the web service
interface like UDDI t-model structure and the Web Service implementation like
a UDDI business Service.

Additionally, it is possible to install more advanced services in the gateway
to provide additional features such as logging, authorization, etc.

The gateway may be able to generate the associated WSDL file from a set of
templates for each of the interfaces implemented by nodes in the network. There
are two possible solutions:

– Templates for each interfaces are stored in the gateways. Whenever new
nodes are installed in the WSN their interfaces must be added to the template
repository of the gateways (if they where not already there). This situation
introduces coupling between gateways and applications deployed in the SAN,
but do not affect nodes themselves.

– When a node is advertised through the network, the gateway may request the
template of the interfaces implemented in the node. This is easily achieved
with a small modification of ASDF storing the WSDL template in the node

9

and implementing an operation to retrieve the template. This is more ex-
pensive for the nodes in terms of the amount of required FLASH/ROM, but
it allows simpler gateways, fully independent of the application.

5 Prototypes

Using the strategies and policies described so far we developed a set of prototypes
on widespread WSN hardware.

Probably one of the most used microcontrollers in WSN platforms is the
Atmel ATMega128 with the TinyOS operating system. OS-less devices are also
quite common.

We compare here the size of different Web Services implementations. In a first
step, we implement a basic get/set service (see section 3), using two lightweight
general-purpose libraries: csoap [14] and libxml-rpc [15]. Then we implement
the same service using our approach on three platforms: a PC, a MICA2 running
TinyOS and on an OS-less AVR microcontroller. The size of the resulting binaries
are shown in the table 1. Notice that:

– All the x86 prototypes are statically linked and they run on a conventional
PC with Debian GNU/Linux. All of them require an operating system whose
size is not taken into account.

– The x86 Embedded WS prototypes are pure C programs with standard
socket support.

– The TinyOS and AVR prototypes include all the required components. The
data refers to the binary file we install in the device. The AVR prototype
does not use an operating system but just a simple cyclic executive runtime,
much smaller than TinyOS although it lacks most of TinyOS features.

Software Platform Middleware Binary size Other

C-SOAP x86 SOAP 1,731,508 OS
libXML-RPC XML-RPC 768,536 OS

Embedded WS x86 SOAP 507,676 OS
XML-RPC 504,772 OS

TinyOS SOAP 35,150
XML-RPC 11,216

AVR SOAP 1,068 ZigBee (4.261)
XML-RPC 1,182 ZigBee (4.261)

Table 1. Size of the implementation (in bytes) of a simple emergency light controller
as described in section 3.

The source code for all these tests is available in our EWS webpage [16]. The
current reference implementations and other useful data may be found there.

10

6 Conclusions

In this paper we presented a very low-footprint implementation of web services
for wireless sensor actuator networks. As far as the authors know this is the most
reduced implementation of this type of architecture in WSAN.

Introducing web services directly in the WSAN devices allows building generic
and application independent gateways. In this way, we enable the deployment
on WSAN devices with minimun configuration procedures.

Some prototypes for SOAP and XML-RPC have been implemented showing
the feasibility of our approach. Our current efforts are focused on improving
and testing the compiler to allow the generation of complete ready-to-use sensor
nodes.

References

1. T. Kobialka, R. Buyya and C. Leckie. Open Sensor Web Architecture: Stateful
Web Services In Proceedings of the Third International Conference on Intelligent
Sensors, Sensor Networks and Information Processing (ISSNIP) 2007

2. A. Al-Yasiri and A. Sunley. Data aggregation and middleware in wireless sensor
networks In Sensor and theory applicatios XIV (SENSOR07), Journal of Physics:
Conference Series 76, 2007.

3. Arch Rock Corporation. Arch Rock Primer Pack product gateway datasheet. Prod-
uct Catalog, 2007.

4. B. Priyantha, A. Kansal, M. Goraczko and F. Zhao. Tiny Web Services for Sensor
Device Interoperability At International Conference on Information Processing in
Sensor Networks (IPSN), 2008.

5. M. Gudgin, M. Hadley, N. Mendelsohn, J. Moreau and H. F. Nielsen. SOAP
Version 1.2 Part 1: Messaging Framework.W3C Recommendation, Available at
www.w3.org, 2003.

6. D. Winer. XML-RPC Specification. UserLand Software, Inc, Available at
http://www.xmlrpc.com/, 2003.

7. D. Winer. WSDL Specification. World Wide Web Consortium. Available at
http://www.w3.org/TR/wsdl, 2001.

8. J. Helander and Y. Xiong. Secure Web services for low-cost devices, Eighth IEEE
International Symposium on Object-Oriented Real-Time Distributed Computing,
2005.

9. J. Helander. Deeply Embedded XML Communication, Towards an Interoperable
and Seamless World, EMSOFT, 2005.

10. P. Koopman and T. Chakravarty, Cyclic Redundancy Code (CRC) Polynomial
Selection For Embedded Networks Dependable Systems and Networks, 2004.

11. D. Villa, F.J. Villanueva, F. Moya, F. Rincón, J. Barba, J.C. López. Embedding
a general purpose middleware for seamless interoperability of networked hardware
and software components Grid and Pervasive Computing, GPC 2006, Taiwan May
2006. Lecture Notes in Computer Science 3947.

12. D. Villa, F.J. Villanueva, F. Moya, F. Rincón and J. Barba J.C. López Min-
imalist Object Oriented Service Discovery Protocol for Wireless Sensor Net-
works,International Conference on Grid and Pervasive Computing, 2007.

11

13. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pister. System Architecture
Directions for Networked Sensors. Proceedings of Ninth International Conference
on Architectural Support for Programming Languages and Operating Systems (AS-
PLOS), 2000.

14. csoap client/server SOAP library in pure C, available online at
http://csoap.sourceforge.net/.

15. XML-RPC for C and C++, A lightweight RPC library based on XML and HTTP,
available online at http://xmlrpc-c.sourceforge.net/.

16. EWS Webpage. Available online at http://arco.esi.uclm.es/en/ews.

