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Abstract: Heterogeneous system architectures are currently the main platform on which 
an ever increasing number of innovative applications (i.e. smart home or 
ambient intelligence applications) rely. When designing these complex 
systems, one of the most time-consuming tasks is the definition of the 
communication interfaces between the different components through a number 
of scattered heterogeneous processing nodes. That is not only a complex task, 
but also very specific for a particular implementation, which may limit the 
flexibility of the system, and makes the solutions difficult to reuse.  In this 
chapter, we describe how to provide a unified abstraction for both hardware 
and software components that have to cooperate with each other, 
independently of their implementation and their location. Based on this 
abstraction, we define a low-overhead system-wide communication 
architecture that offers total communication transparency between any kind of 
components. Since the architecture is highly compatible with standard object-
oriented distributed software systems, it also enables seamless interaction with 
any other kind of external network. 
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1. INTRODUCTION 

Latest consumer applications (e.g. multimedia processing or 3D games) 
demand complex designs to meet their real-time requirements while 
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respecting other design constraints, such as low-power or short time-to-
market. In this context, Systems-on-Chips (MPSoCs) have been proposed as 
a promising solution. Nevertheless, one major challenge in such systems is 
the integration in the platform of the multiple Application Programming 
Interfaces (API) that each component (e.g. memory, buses, cores, etc.) is 
designed for. Moreover, another important problem in SoC design is the 
knowledge of the position of each component in the final system to be able 
to efficiently communicate with it (e.g. local, remote), which makes the 
correct design of a SoC even more complex. Thus, new methods that allow 
designers to get unified inter-communication methods on SoCs architectures 
in the system integration flow are in great need. 

Some concepts taken from distributed object platforms such as CORBA 
or Java RMI have already been applied to SoC design in order to get a 
unified view of HW and SW modules. In  this  paper  we  present  an  
approach  which  inherits most of these previous achievements enriched with 
a strong focus on location transparency and network transparency. The 
resulting architecture provides a unified view of the whole system and also 
enables the designer to seamless develop multi-SoC systems with different 
network technologies. 

This paper is organized as follows. In Section 2 we present a 
motivational example that will serve to guide us through our proposed 
approach to homogeneous hardware and software modeling. In section 3 we 
present the overall hardware SoC architecture of a system level middleware. 
In section 4 we revisit the motivational example under the distributed object 
approach described in section 3. In section 5 we show some experimental 
results. In section 6 we overview some related work. Finally, section 7, 
summarizes the contributions of the paper and presents possible future 
research directions. 

2. MOTIVATIONAL EXAMPLE 

Let's consider the design of a System on Chip for applications with some 
cryptographic requirements. For such purpose, the system will include a 
third party DES IP core that is able to provide encryption an decryption of 
certain blocks of data. We consider three different usage scenarios of the 
DES core. In the following paragraphs we will first describe each of the 
situations and the problems found in typical approaches, while in the next 
section we will analyze an alternative solution. 

For the example we will use one of the DES cores provided by 
Opencores1, that will also be used to illustrate the experimental results in 
section 5. 
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2.1 HW-HW Integration 

The first scenario will be the use of the DES IP core from another 
hardware component. The DES core obtained from Opencores has a very 
simple interface with an encrypt and decrypt signal, a bus for providing the 
key, and the input and output data buffers.  

Let's suppose that the SoC uses an OCP2 bus for cores and processors 
interconnection. The first task would be to adapt it to that concrete bus. For 
such purpose we could use the CoreCreator tools from the OCP suite, and 
automatically generate the OCP wrapper out of a simple description of the 
DES interface. However, there is still some work to do, since we need to 
serialize the reception of the key and data input block, and the transmission 
of the data output block, since they do not fit in the bus word size. 

On the other side, for the core using the DES, we should follow a similar 
but inverse procedure. Once known the bus interface, and the transaction-
level protocol for providing the data and obtaining the results, we could 
write the functionality of the client core, next include some logic for the 
serialization of the transmission, and wrap it automatically to the OCP bus. 
This is a very normal procedure for IP integration, where both components 
are attached to the bus through some bus adapters (wrappers). 

One of the advantages of using bus standards such as OCP is that they 
ease reusability of previous designs. However, interoperability at the level of 
operations is not guaranteed by the standard. The definition of a certain order 
of the key and data arguments is hardcoded inside the wrapper. Also the way 
arguments are divided into bus-size words is completely implementation 
dependent. That is the reason why cores with the same interface may not be 
interoperable. 

All those problems are due to the loose coupling between functionality 
and communication. Therefore, any change in the component designed will 
also affect all of its clients, and may also imply their redesign. 

2.2 HW-SW Integration 

As a second scenario, we will consider how the DES could be used from 
a software client. To do so, in the classical approach we would need some 
kind of driver or API interface. These APIs are very dependent on the 
concrete core, and not easy to generate automatically. Even one minor 
change such as the modification of the address of the target component, or 
the order in which arguments are transmitted would require major 
modifications in the code. 
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Moreover, the APIs can be influenced by the specific transport 
architecture. For example, we could consider to add to the DES core the 
possibility to receive a set of words for batch processing with the same key. 
Transmissions from the CPU are performed word by word, and therefore can 
not take advantage of high-performance facilities such as bursting. Even, 
since a hardware client will probably transfer the block as a burst, it may be 
necessary to provide two different interfaces for both hardware and software 
clients. 

2.3 Remote Communication 

The third scenario will correspond to the request of the cyphering from 
outside the SoC. This may be the case for a pervasive computing application 
that needs some cyphering, for example. This interaction may be carried out 
though a wireless interface, for example. 

This scenario is not very common, mainly due to the difficulty of 
multiplexing the ethernet between several components plus the 
microprocessors, which normally act as the masters of the device. Even, it is 
not clear how to translate network packets into the required bus transactions 
for the arguments and results of the operations. It would, however, be very 
useful to have remote communication to and from external clients, to make 
special computational resources accesible, for debugging purposes, for 
remote configuration, or even for remote reconfiguration of the SoC. 

3. THE SYSTEM-LEVEL MIDDLEWARE 

Most of the problems that SoC designers face nowadays are recurrent, 
and they have been tackled for decades in heterogeneous distributed 
computer networks environments. Since the 90’s, the use of a system 
middleware has been the satisfactory solution in this field. Although it can 
be established a correlation between the existing problems in computer 
networks and SoCs, the extension to the latter is not straightforward since 
they have their own special requirements, such as low power consumption, 
or low execution overhead, for example. 

A middleware is an abstraction layer whose main objective is to provide 
an homogeneous communication mechanism between the components of a 
distributed system. Generally, a middleware bases its functionality on : (a) a 
client-server model of communication, (b) a common data type system and a 
set of data coding/encoding rules, and (c) a simple protocol defining the set 
of messages client and server exchange. The objective is to provide 
orthogonalization between behavior and communication. 
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Applications using the middleware are usually based on the object-
oriented programming model. Objects also rely on a simple communication 
model: method invocation. This same mechanism is used for remote 
communication (Remote Method Invocation or RMI), where invocations are 
translated into synchronous messages passed though a certain 
communication infrastructure. The main advantage of RMI is that it provides 
a neat separation between functionality and communication. That makes 
Distributed Object Systems specially suited to deal with heterogeneity and 
scalability of applications. 

In RMI any method invocation must take place between certain adapters, 
a Proxy (the client adapter) and a Skeleton (the server adapter). From the 
client’s point of view, the proxy is the requested object itself, since it 
provides exactly the same physical interface. On the other hand, server 
objects do not need to care about the location of client objects. They just 
provide an object interface which is exported through a skeleton. Thus, 
proxies and skeletons completely hide the real communication process. Also, 
in most standard software middlewares, the approach described above relies 
on the automatic generation of the proper proxies and skeletons depending 
on the kind of communication that must be established between objects. 

We could consider the SoC just as another type of distributed system. 
Like such systems, a SoC is composed of a set of heterogeneous computing 
and storage resources linked through some interconnection infrastructure, 
and suffers the same kind of problems: scalability, heterogeneity, different 
communication technologies, etc. Hence, it seems reasonable to apply the 
same kind of solutions, and concepts, although not necessarily the same 
implementation. 

In the following paragraphs we briefly describe the main components of 
the system middleware (Object Oriented Communication Engine - OOCE). 

3.1 The Communication broker 

This layer of the middleware distributes remote invocations from the 
clients to the servers. In software systems it is normally a layer built on top 
of the operating system.  

One of the main differences in OOCE with respect to the communication 
broker is that all components in the system share a physical communication 
infrastructure, which can be a bus or an on-chip network. The bus (or 
network) is already able to route the messages from one object to another, so 
there is no need of an extra layer for such purpose. Even for software 
objects, there is no extra layer, but remote invocation is a communication 
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primitive. Thus there is no need of an operating system to provide remote 
communication. 

3.2 Proxies and Skeletons 

Proxies and skeletons provide transparency, in 3 different aspects:  
1. In the location of the target, which is normally coded in the proxy, and 

not hardcoded in the object (the functionality) 
2. In the implementation technology of the objects. SW or HW proxies will 

generate exactly the same transactions in the bus. That makes it 
impossible to know if the invocation came from a HW or SW object, as it 
also happens with the response. 

3. In the communication technology employed. This relates to how 
addresses for bus transactions are built from the target object and the 
operation requested; how the arguments are ordered, so all requests for 
the same operation are always performed the same way, with 
independence of the source; and how data types are serialized for their 
transmission through the bus. 
Finally, we should highlight that proxies and skeletons can be generated 

automatically from the object interface description, so objects can be reused 
under any other different context (another bus protocol, for example) just 
regenerating the corresponding adapters. 

3.3 Hardware Cores 

A hardware core in the SoC will be the combination of three parts: 1) the 
hardware object, which contains pure functionality; 2) one skeleton, as an 
adapter for those operations that the object is able to serve; 3) as many 
proxies as the object uses as a client.  

From all three parts, only the object is meant to be reusable, while 
skeletons and proxies should be efficiently generated depending on each 
particular case. 

But even cores not been designed with this approach in mind may be 
used in the system middleware. For example, any RAM memory can be seen 
as an object providing read and write operation for bytes, words, double 
words, or even larger data blocks. The only thing required is a proxy that 
translates such operations into the proper transactions (DMA access for a 
block transfer, for example).   
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3.4 CPU Adapter 

The main difference between hardware and software objects (in the 
OOCE context) is that software objects share a common processing element, 
while hardware objects execute in their own. This makes it necessary some 
multiplexing mechanism for SW clients to have access to the bus. This 
multiplexer is called the Object Adapter, and consist in a set of SW routines 
with a standard API that must be linked with the object code of the SW 
clients. For every object to be able to have access to the bus, first it must be 
registered in an Object Adapter. 

Another problem with HW to SW invocations is that objects inside the 
CPU are not visible out of it. CPUs are usually just masters of the bus, and 
are not addressable. Here the solution adopted has been to insert a bus 
interface between the CPU and the bus. In SW to HW invocations, the 
interface simply buffers the invocation and translates it into a bus 
transaction. In HW to SW invocations, the interface holds a translation table 
with bus addresses and object identities. If any of these addresses is detected 
in the bus, the interface buffers the transaction and notifies the Object 
Adapter in the CPU through an interruption. The OA then routes the 
invocation to the proper object, and the response back to the interface, if 
there is one. The interface then provides the server capabilities to the objects 
inside the CPU. 

3.5 Remote Bridge 

The aim of the remote bridge is to translate internal (to the SoC) 
invocations to external ones through some kind of network interface. The 
information that must be transmitted on both sides of the communication has 
already been serialized, so the main task of the bridge is to pack it into the 
messages for a certain network transport protocol. 

On the SoC bus side the bridge listens for transactions addressed to 
external objects. Those are recognized through an internal translation table, 
where some internal addresses are mapped to the network addresses of the 
referred objects. 

On the network interface it performs the opposite task. In any case, 
messages coming in and out of the interface have always exactly the same 
format as internal interactions. 
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4. THE DES EXAMPLE REVISITED 

The distributed object paradigm establishes a clear separation between 
the programming model and the arquitecture supporting it. Also, the OOCE 
platform allows the transparent integration of either hardware or software 
components. Thus, we can distinguish three different roles during the 
implementation of the system. On one side the typical hardware and 
software engineer roles. On the other side an integration specialist is 
required for the design and integration of the communication platform, as the 
backbone of the subsystems. 

 

Figure 14-1. System Design Flow 

Figure 14-1 shows the relationship between the three roles, as well as the 
flow for the automatic generation of the architecture, that once integrated 
with the rest of hardware and software entities becomes the final system. 
This system is not limited to one chip, but can also include components 
deployed on other types of computation nodes linked through a 
communication network. 

module slice_example { 
    [“hw:bus:plb”, “hw:bus:args:64”] 
    interface DES { 
        long int encrypt(long int key, long int data_in); 
        long int decrypt(long int key, long int data_in); 
    }; 
};  

Figure 14-2. Slice definition file for the DES core 
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The starting point of the flow is the interface specification file. This file 
includes the description of  the interfaces for each object in the system. They 
are specified using an interface definition language (IDL) which is 
implementation neutral. Since OOCE is inspired in the ICE3 middleware, the 
IDL is expressed using the Slice language. Figure 14-2 shows the slice 
interface definition for the DES example. 

 

Figure 14-3. DES Hardware Component. a) DES legacy IP core. b) DES object + adapter 

Although the interface description is implementation neutral, and since 
the platform must be generated from this file, it may include some metadata 
to guide the synthesis tools. It may provide extra information such as the 
implementation technology (hw or sw), the bus protocol (OPB, PLB, OCP, 
...), the communication type (asynchronous or synchronous, blocking or non-
blocking, ...), etc. This is in fact one of the tasks of the system integrator, to 
annotate the interface definition file, generally through iterative refinement 
to provide the platform that best suits a certain system. 

The Slice file is parsed by different code generators. Each of them, 
depending on the metadata, will generate specialized adapters for every 
object and context. The VHDL code generator (slice2vhdl), for example, will 
write synthesizable vhdl  models for the adapters that will be appended to the 
clients or servers developed by the hardware engineers, obtaining the 
different cores of the system. 

In case reusing cores are not designed with the distributed object 
approach, some extra logic is required to adapt their legacy interface to the 
one derived from the slice method signatures (figure 14-3b). The overhead 
for the DES core is almost negligible due to the simplicity of the normalized 
interface proposed. However, writing the hardware object from scratch will 
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not incur in such overhead. The object will only include the functional code 
for implementing the operations, and will leave the communication 
responsibilities to the generated adapters. 

From the same slice definition, the slice2cpp generator will produce the 
equivalent adapters (proxies and skeletons). Those adapters are based on a 
function library which implements the link between the CPU and the 
coprocessor for the communication. A device driver is no longer a collection 
of low-level reads and writes to a register bank interface. Now, the 
programmers deal with software objects that are instances of the proxies to 
the hardware models. 

 class DES { 
    public: 
         long int encrypt(long int key, long int data_in) { 
            // the object identity and operation identity are mapped onto an address 
            putfsl(OBJ_ID<<16 + ENC_ID); 
            // the bus interface needs to know the number of arguments 
            putfsl(NON_VOID|ENC_ARGS); 
            // arguments and return values are serialized as two 32 bit words 
            putfsl(key & 0xFFFFFFFF); 
            putfsl(key >> 32); 
            putfsl(data_in & 0xFFFFFFFF); 
            putfsl(data_in >> 32); 
           getfsl(data_out_low); 
           getfsl(data_out_high); 
            return data_out_high << 32 + data_out_low; 
      } 
} 

 

Figure 14-4. C++ code for the DES SW client 

Figure 14-4 shows how the distributed object model eases the task of the 
software developer. Here the use of the DES core is concerned with the 
invocation of the methods provided in the proxy, which completely hides all 
the implementation details of the communication. The proxy behavior with 
respect to the blocking or not of the executing thread may be configured in 
the slice definition file, providing a high degree of control to the 
programmer. This is completely orthogonal to the way communication is 
implemented through the bus. 

The final task for the system integrator is the combination of the different 
adapters with hardware and software objects to build the hardware cores and 
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software components, and the inclusion of the rest of components of the 
OOCE engine. 

To illustrate the robustness of the approach, let’s suppose that the target 
platform is modified and the bus protocol and the bus size are now different. 
Those changes will not affect either the program using the DES component, 
or the adaptation of the DES core to the normalized interface. No 
modification will also be required to any of the other hardware clients 
(hardware components using the DES). It will only be a question of 
automatically regenerating the corresponding adapters. 

In the proposed approach, remote communication does not imply nothing 
but a special bridge connected to the ethernet adapter. As it happens with 
SW to HW communication, interoperation is guaranteed by the use of the 
same bus transactions for the same operation requests. Thus, once a network 
packet coming from the outside reaches the bridge, it is injected in the SoC 
bus just if it was generated locally. The target core will recognize the address 
and perform the required operation putting back the results in the bus. These 
results are translated in the bridge back into network packages, and sent back 
to the remote client.  

It is also possible to execute operations from remote servers from both 
hardware and software clients. They simply need the corresponding adapter 
(with the target server interface) that will translate operation requests into 
bus transactions. However, this transactions will not correspond to any 
address in the SoC address space, but will be mapped to the bridge. So the 
bridge will pack them into network packets, after a translation of the local 
SoC address to a network address (protocol and port), and will route them 
through the ethernet device. 

5. EXPERIMENTAL RESULTS 

As a proof of concept, the OOCE has been fully prototyped on the Xilinx 
XUP-V2Pro platform. We have performed a set of experiments, where we 
have considered all the different communication mechanisms, and tested all 
possible interactions between components. We have also characterized the 
results in terms of latency (table 14-1) and area (table 14-2). The types of 
interfaces refer to: I) simple synchronous and blocking read and write 
operations (without bursts), II) simple asynchronous and non-blocking read 
and write operations, and III) same as II using bursts. 
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Table 14-1. Communication latency for all types of OOCE interations 

Iface Invocation type Latency (cycles) 
write/read 

Type I Hw −> Hw 3 / 2 
 Sw −> Hw N.A. / 10 
 Hw −> Sw N.A. / 11 
 Sw −> Sw 50 / 21 
Type II Hw −> Hw 4 / 2 
 Sw −> Hw 21 / 10 
 Hw −> Sw 21 / 11 
 Sw −> Sw 42 / 21 
Type III Hw −> Hw 19 / 17 
 Sw −> Hw 56 / 27 
 Hw −> Sw 56 / 29 
 Sw −> Sw 108 / 56 
 

Table 14-2. Area cost for the hardware adapters 
Interface type Resource Area 
Simple R/W Hw proxy 4 FFs 

7 LUTs 
Simple R/W Hw skeleton 2FFs 

153 LUTs 
Async R/W + burst support Hw proxy 102 FFs 

208 LUTs 
Async R/W + burst support Hw skeleton 102 FFs 

208 LUTs 
 
Also a completely SW version of the DES algorithm was implemented 

on the Microblaze 32 bit processor, to use it as the software reference model. 
Next, all the middleware infrastructure was generated for a SoC with HW, 
SW and remote clients for the DES model from Opencores.  
 

Results measured for the DES encryption of a 2KB data block with a 55-
bit key where the following: 102 microseconds for the fully SW version, 7 
microseconds for the encryption using the DES core and a software client, 
and 5 for the completely hardware solution. 

Also communication times for an off-chip invocation through an ethernet 
interface were measured. The reception of the packet took 218 cycles. The 
remote bridge translated the message into a bus transaction in 76 cycles. The 
execution of the invocation took 16 cycles. Finally, the result was packed 
into an Ethernet frame in 72 cycles and transmited back in 218 additional 
cycles. 
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6. RELATED WORK 

The ideas presented in this paper complement previous work on system-
level abstractions. Orthogonalization of concerns in system-level design as 
proposed by Keutzer4, and more recently by Cesario5 and Gertslauer6, 
provide an object model similar to what this paper assumes, but most actual 
implementations focus on a structural view of the system and do not care 
about location transparency. In Mignolet7 a uniform communication 
mechanism for HW and SW resources is proposed, based on a central HW-
SW Operating System and a HW abstraction layer to provide task 
abstractions for HW components. Previous works by Paulin et al.8 already 
apply concepts from distributed object middlewares to SoCs but they do not 
even consider one of the key features, location transparency. Some early 
ideas on how reconfigurable computing may benefit from these concepts are 
found in Hetch9. Previous results on automated generation of communication 
infrastructure for SoC design10,11 are also applicable to adapters generation.  

Object-based and object-oriented approaches12,13 have also been used 
extensively to reduce the effort of translating some software components 
into hardware components or to improve the co-simulation of the system. 
Our hardware objects require a subset of what is provided by these 
extensions. Therefore we remain compatible with their approaches and we 
also keep full compatibility with standard IP based methodologies. 

7. CONCLUSIONS 

The communication architecture presented in this paper extends the 
distributed object paradigm to SoC platforms. The proxy and skeleton 
abstractions plus RMI semantics, provide a simple way to decouple 
component functionality from communication implementation. From the 
designer perspective, this provides an homogeneous view of the system as a 
collection of communicating objects. From the implementation point of 
view, the model presented provides communication and location 
transparency for any kind of local interaction between hardware and 
software components, blurring the hardware and software interface barrier. 
But it also provides the possibility of remote (may be off-chip) interaction 
with other objects.  

Moreover, all the services and components that are part of the 
middleware can automatically be generated based on a few descriptions on 
the interfaces of the objects. This enhances the possibility of future reuse and 
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eases design space exploration tasks. And, as the experimental results show, 
the communication architecture does not incur in high overheads. 
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