
Chapter 14

TRANSPARENT IP CORES INTEGRATION
BASED ON THE DISTRIBUTED OBJECT
PARADIGM

Fernando Rincón, Jesús Barba, Francisco Moya, Félix J. Villanueva, David
Villa, Julio Dondo, Juan Carlos López
University of Castilla-La Mancha, Ciudad Real, Spain

Abstract: Heterogeneous system architectures are currently the main platform on which
an ever increasing number of innovative applications (i.e. smart home or
ambient intelligence applications) rely. When designing these complex
systems, one of the most time-consuming tasks is the definition of the
communication interfaces between the different components through a number
of scattered heterogeneous processing nodes. That is not only a complex task,
but also very specific for a particular implementation, which may limit the
flexibility of the system, and makes the solutions difficult to reuse. In this
chapter, we describe how to provide a unified abstraction for both hardware
and software components that have to cooperate with each other,
independently of their implementation and their location. Based on this
abstraction, we define a low-overhead system-wide communication
architecture that offers total communication transparency between any kind of
components. Since the architecture is highly compatible with standard object-
oriented distributed software systems, it also enables seamless interaction with
any other kind of external network.

Key words: System-on-Chip, IP CORE, Distribuited Object, HW/SW codesign

1. INTRODUCTION

Latest consumer applications (e.g. multimedia processing or 3D games)
demand complex designs to meet their real-time requirements while

2 Chapter 14

respecting other design constraints, such as low-power or short time-to-
market. In this context, Systems-on-Chips (MPSoCs) have been proposed as
a promising solution. Nevertheless, one major challenge in such systems is
the integration in the platform of the multiple Application Programming
Interfaces (API) that each component (e.g. memory, buses, cores, etc.) is
designed for. Moreover, another important problem in SoC design is the
knowledge of the position of each component in the final system to be able
to efficiently communicate with it (e.g. local, remote), which makes the
correct design of a SoC even more complex. Thus, new methods that allow
designers to get unified inter-communication methods on SoCs architectures
in the system integration flow are in great need.

Some concepts taken from distributed object platforms such as CORBA
or Java RMI have already been applied to SoC design in order to get a
unified view of HW and SW modules. In this paper we present an
approach which inherits most of these previous achievements enriched with
a strong focus on location transparency and network transparency. The
resulting architecture provides a unified view of the whole system and also
enables the designer to seamless develop multi-SoC systems with different
network technologies.

This paper is organized as follows. In Section 2 we present a
motivational example that will serve to guide us through our proposed
approach to homogeneous hardware and software modeling. In section 3 we
present the overall hardware SoC architecture of a system level middleware.
In section 4 we revisit the motivational example under the distributed object
approach described in section 3. In section 5 we show some experimental
results. In section 6 we overview some related work. Finally, section 7,
summarizes the contributions of the paper and presents possible future
research directions.

2. MOTIVATIONAL EXAMPLE

Let's consider the design of a System on Chip for applications with some
cryptographic requirements. For such purpose, the system will include a
third party DES IP core that is able to provide encryption an decryption of
certain blocks of data. We consider three different usage scenarios of the
DES core. In the following paragraphs we will first describe each of the
situations and the problems found in typical approaches, while in the next
section we will analyze an alternative solution.

For the example we will use one of the DES cores provided by
Opencores1, that will also be used to illustrate the experimental results in
section 5.

14. TRANSPARENT IP CORES INTEGRATION BASED ON THE 3
DISTRIBUTED OBJECT PARADIGM

2.1 HW-HW Integration

The first scenario will be the use of the DES IP core from another
hardware component. The DES core obtained from Opencores has a very
simple interface with an encrypt and decrypt signal, a bus for providing the
key, and the input and output data buffers.

Let's suppose that the SoC uses an OCP2 bus for cores and processors
interconnection. The first task would be to adapt it to that concrete bus. For
such purpose we could use the CoreCreator tools from the OCP suite, and
automatically generate the OCP wrapper out of a simple description of the
DES interface. However, there is still some work to do, since we need to
serialize the reception of the key and data input block, and the transmission
of the data output block, since they do not fit in the bus word size.

On the other side, for the core using the DES, we should follow a similar
but inverse procedure. Once known the bus interface, and the transaction-
level protocol for providing the data and obtaining the results, we could
write the functionality of the client core, next include some logic for the
serialization of the transmission, and wrap it automatically to the OCP bus.
This is a very normal procedure for IP integration, where both components
are attached to the bus through some bus adapters (wrappers).

One of the advantages of using bus standards such as OCP is that they
ease reusability of previous designs. However, interoperability at the level of
operations is not guaranteed by the standard. The definition of a certain order
of the key and data arguments is hardcoded inside the wrapper. Also the way
arguments are divided into bus-size words is completely implementation
dependent. That is the reason why cores with the same interface may not be
interoperable.

All those problems are due to the loose coupling between functionality
and communication. Therefore, any change in the component designed will
also affect all of its clients, and may also imply their redesign.

2.2 HW-SW Integration

As a second scenario, we will consider how the DES could be used from
a software client. To do so, in the classical approach we would need some
kind of driver or API interface. These APIs are very dependent on the
concrete core, and not easy to generate automatically. Even one minor
change such as the modification of the address of the target component, or
the order in which arguments are transmitted would require major
modifications in the code.

4 Chapter 14

Moreover, the APIs can be influenced by the specific transport
architecture. For example, we could consider to add to the DES core the
possibility to receive a set of words for batch processing with the same key.
Transmissions from the CPU are performed word by word, and therefore can
not take advantage of high-performance facilities such as bursting. Even,
since a hardware client will probably transfer the block as a burst, it may be
necessary to provide two different interfaces for both hardware and software
clients.

2.3 Remote Communication

The third scenario will correspond to the request of the cyphering from
outside the SoC. This may be the case for a pervasive computing application
that needs some cyphering, for example. This interaction may be carried out
though a wireless interface, for example.

This scenario is not very common, mainly due to the difficulty of
multiplexing the ethernet between several components plus the
microprocessors, which normally act as the masters of the device. Even, it is
not clear how to translate network packets into the required bus transactions
for the arguments and results of the operations. It would, however, be very
useful to have remote communication to and from external clients, to make
special computational resources accesible, for debugging purposes, for
remote configuration, or even for remote reconfiguration of the SoC.

3. THE SYSTEM-LEVEL MIDDLEWARE

Most of the problems that SoC designers face nowadays are recurrent,
and they have been tackled for decades in heterogeneous distributed
computer networks environments. Since the 90’s, the use of a system
middleware has been the satisfactory solution in this field. Although it can
be established a correlation between the existing problems in computer
networks and SoCs, the extension to the latter is not straightforward since
they have their own special requirements, such as low power consumption,
or low execution overhead, for example.

A middleware is an abstraction layer whose main objective is to provide
an homogeneous communication mechanism between the components of a
distributed system. Generally, a middleware bases its functionality on : (a) a
client-server model of communication, (b) a common data type system and a
set of data coding/encoding rules, and (c) a simple protocol defining the set
of messages client and server exchange. The objective is to provide
orthogonalization between behavior and communication.

14. TRANSPARENT IP CORES INTEGRATION BASED ON THE 5
DISTRIBUTED OBJECT PARADIGM

Applications using the middleware are usually based on the object-
oriented programming model. Objects also rely on a simple communication
model: method invocation. This same mechanism is used for remote
communication (Remote Method Invocation or RMI), where invocations are
translated into synchronous messages passed though a certain
communication infrastructure. The main advantage of RMI is that it provides
a neat separation between functionality and communication. That makes
Distributed Object Systems specially suited to deal with heterogeneity and
scalability of applications.

In RMI any method invocation must take place between certain adapters,
a Proxy (the client adapter) and a Skeleton (the server adapter). From the
client’s point of view, the proxy is the requested object itself, since it
provides exactly the same physical interface. On the other hand, server
objects do not need to care about the location of client objects. They just
provide an object interface which is exported through a skeleton. Thus,
proxies and skeletons completely hide the real communication process. Also,
in most standard software middlewares, the approach described above relies
on the automatic generation of the proper proxies and skeletons depending
on the kind of communication that must be established between objects.

We could consider the SoC just as another type of distributed system.
Like such systems, a SoC is composed of a set of heterogeneous computing
and storage resources linked through some interconnection infrastructure,
and suffers the same kind of problems: scalability, heterogeneity, different
communication technologies, etc. Hence, it seems reasonable to apply the
same kind of solutions, and concepts, although not necessarily the same
implementation.

In the following paragraphs we briefly describe the main components of
the system middleware (Object Oriented Communication Engine - OOCE).

3.1 The Communication broker

This layer of the middleware distributes remote invocations from the
clients to the servers. In software systems it is normally a layer built on top
of the operating system.

One of the main differences in OOCE with respect to the communication
broker is that all components in the system share a physical communication
infrastructure, which can be a bus or an on-chip network. The bus (or
network) is already able to route the messages from one object to another, so
there is no need of an extra layer for such purpose. Even for software
objects, there is no extra layer, but remote invocation is a communication

6 Chapter 14

primitive. Thus there is no need of an operating system to provide remote
communication.

3.2 Proxies and Skeletons

Proxies and skeletons provide transparency, in 3 different aspects:
1. In the location of the target, which is normally coded in the proxy, and

not hardcoded in the object (the functionality)
2. In the implementation technology of the objects. SW or HW proxies will

generate exactly the same transactions in the bus. That makes it
impossible to know if the invocation came from a HW or SW object, as it
also happens with the response.

3. In the communication technology employed. This relates to how
addresses for bus transactions are built from the target object and the
operation requested; how the arguments are ordered, so all requests for
the same operation are always performed the same way, with
independence of the source; and how data types are serialized for their
transmission through the bus.
Finally, we should highlight that proxies and skeletons can be generated

automatically from the object interface description, so objects can be reused
under any other different context (another bus protocol, for example) just
regenerating the corresponding adapters.

3.3 Hardware Cores

A hardware core in the SoC will be the combination of three parts: 1) the
hardware object, which contains pure functionality; 2) one skeleton, as an
adapter for those operations that the object is able to serve; 3) as many
proxies as the object uses as a client.

From all three parts, only the object is meant to be reusable, while
skeletons and proxies should be efficiently generated depending on each
particular case.

But even cores not been designed with this approach in mind may be
used in the system middleware. For example, any RAM memory can be seen
as an object providing read and write operation for bytes, words, double
words, or even larger data blocks. The only thing required is a proxy that
translates such operations into the proper transactions (DMA access for a
block transfer, for example).

14. TRANSPARENT IP CORES INTEGRATION BASED ON THE 7
DISTRIBUTED OBJECT PARADIGM

3.4 CPU Adapter

The main difference between hardware and software objects (in the
OOCE context) is that software objects share a common processing element,
while hardware objects execute in their own. This makes it necessary some
multiplexing mechanism for SW clients to have access to the bus. This
multiplexer is called the Object Adapter, and consist in a set of SW routines
with a standard API that must be linked with the object code of the SW
clients. For every object to be able to have access to the bus, first it must be
registered in an Object Adapter.

Another problem with HW to SW invocations is that objects inside the
CPU are not visible out of it. CPUs are usually just masters of the bus, and
are not addressable. Here the solution adopted has been to insert a bus
interface between the CPU and the bus. In SW to HW invocations, the
interface simply buffers the invocation and translates it into a bus
transaction. In HW to SW invocations, the interface holds a translation table
with bus addresses and object identities. If any of these addresses is detected
in the bus, the interface buffers the transaction and notifies the Object
Adapter in the CPU through an interruption. The OA then routes the
invocation to the proper object, and the response back to the interface, if
there is one. The interface then provides the server capabilities to the objects
inside the CPU.

3.5 Remote Bridge

The aim of the remote bridge is to translate internal (to the SoC)
invocations to external ones through some kind of network interface. The
information that must be transmitted on both sides of the communication has
already been serialized, so the main task of the bridge is to pack it into the
messages for a certain network transport protocol.

On the SoC bus side the bridge listens for transactions addressed to
external objects. Those are recognized through an internal translation table,
where some internal addresses are mapped to the network addresses of the
referred objects.

On the network interface it performs the opposite task. In any case,
messages coming in and out of the interface have always exactly the same
format as internal interactions.

8 Chapter 14

4. THE DES EXAMPLE REVISITED

The distributed object paradigm establishes a clear separation between
the programming model and the arquitecture supporting it. Also, the OOCE
platform allows the transparent integration of either hardware or software
components. Thus, we can distinguish three different roles during the
implementation of the system. On one side the typical hardware and
software engineer roles. On the other side an integration specialist is
required for the design and integration of the communication platform, as the
backbone of the subsystems.

Figure 14-1. System Design Flow

Figure 14-1 shows the relationship between the three roles, as well as the
flow for the automatic generation of the architecture, that once integrated
with the rest of hardware and software entities becomes the final system.
This system is not limited to one chip, but can also include components
deployed on other types of computation nodes linked through a
communication network.

module slice_example {
 [“hw:bus:plb”, “hw:bus:args:64”]
 interface DES {
 long int encrypt(long int key, long int data_in);
 long int decrypt(long int key, long int data_in);
 };
};

Figure 14-2. Slice definition file for the DES core

14. TRANSPARENT IP CORES INTEGRATION BASED ON THE 9
DISTRIBUTED OBJECT PARADIGM

The starting point of the flow is the interface specification file. This file
includes the description of the interfaces for each object in the system. They
are specified using an interface definition language (IDL) which is
implementation neutral. Since OOCE is inspired in the ICE3 middleware, the
IDL is expressed using the Slice language. Figure 14-2 shows the slice
interface definition for the DES example.

Figure 14-3. DES Hardware Component. a) DES legacy IP core. b) DES object + adapter

Although the interface description is implementation neutral, and since
the platform must be generated from this file, it may include some metadata
to guide the synthesis tools. It may provide extra information such as the
implementation technology (hw or sw), the bus protocol (OPB, PLB, OCP,
...), the communication type (asynchronous or synchronous, blocking or non-
blocking, ...), etc. This is in fact one of the tasks of the system integrator, to
annotate the interface definition file, generally through iterative refinement
to provide the platform that best suits a certain system.

The Slice file is parsed by different code generators. Each of them,
depending on the metadata, will generate specialized adapters for every
object and context. The VHDL code generator (slice2vhdl), for example, will
write synthesizable vhdl models for the adapters that will be appended to the
clients or servers developed by the hardware engineers, obtaining the
different cores of the system.

In case reusing cores are not designed with the distributed object
approach, some extra logic is required to adapt their legacy interface to the
one derived from the slice method signatures (figure 14-3b). The overhead
for the DES core is almost negligible due to the simplicity of the normalized
interface proposed. However, writing the hardware object from scratch will

10 Chapter 14

not incur in such overhead. The object will only include the functional code
for implementing the operations, and will leave the communication
responsibilities to the generated adapters.

From the same slice definition, the slice2cpp generator will produce the
equivalent adapters (proxies and skeletons). Those adapters are based on a
function library which implements the link between the CPU and the
coprocessor for the communication. A device driver is no longer a collection
of low-level reads and writes to a register bank interface. Now, the
programmers deal with software objects that are instances of the proxies to
the hardware models.

 class DES {
 public:
 long int encrypt(long int key, long int data_in) {
 // the object identity and operation identity are mapped onto an address
 putfsl(OBJ_ID<<16 + ENC_ID);
 // the bus interface needs to know the number of arguments
 putfsl(NON_VOID|ENC_ARGS);
 // arguments and return values are serialized as two 32 bit words
 putfsl(key & 0xFFFFFFFF);
 putfsl(key >> 32);
 putfsl(data_in & 0xFFFFFFFF);
 putfsl(data_in >> 32);
 getfsl(data_out_low);
 getfsl(data_out_high);
 return data_out_high << 32 + data_out_low;
 }
}

Figure 14-4. C++ code for the DES SW client

Figure 14-4 shows how the distributed object model eases the task of the
software developer. Here the use of the DES core is concerned with the
invocation of the methods provided in the proxy, which completely hides all
the implementation details of the communication. The proxy behavior with
respect to the blocking or not of the executing thread may be configured in
the slice definition file, providing a high degree of control to the
programmer. This is completely orthogonal to the way communication is
implemented through the bus.

The final task for the system integrator is the combination of the different
adapters with hardware and software objects to build the hardware cores and

14. TRANSPARENT IP CORES INTEGRATION BASED ON THE 11
DISTRIBUTED OBJECT PARADIGM

software components, and the inclusion of the rest of components of the
OOCE engine.

To illustrate the robustness of the approach, let’s suppose that the target
platform is modified and the bus protocol and the bus size are now different.
Those changes will not affect either the program using the DES component,
or the adaptation of the DES core to the normalized interface. No
modification will also be required to any of the other hardware clients
(hardware components using the DES). It will only be a question of
automatically regenerating the corresponding adapters.

In the proposed approach, remote communication does not imply nothing
but a special bridge connected to the ethernet adapter. As it happens with
SW to HW communication, interoperation is guaranteed by the use of the
same bus transactions for the same operation requests. Thus, once a network
packet coming from the outside reaches the bridge, it is injected in the SoC
bus just if it was generated locally. The target core will recognize the address
and perform the required operation putting back the results in the bus. These
results are translated in the bridge back into network packages, and sent back
to the remote client.

It is also possible to execute operations from remote servers from both
hardware and software clients. They simply need the corresponding adapter
(with the target server interface) that will translate operation requests into
bus transactions. However, this transactions will not correspond to any
address in the SoC address space, but will be mapped to the bridge. So the
bridge will pack them into network packets, after a translation of the local
SoC address to a network address (protocol and port), and will route them
through the ethernet device.

5. EXPERIMENTAL RESULTS

As a proof of concept, the OOCE has been fully prototyped on the Xilinx
XUP-V2Pro platform. We have performed a set of experiments, where we
have considered all the different communication mechanisms, and tested all
possible interactions between components. We have also characterized the
results in terms of latency (table 14-1) and area (table 14-2). The types of
interfaces refer to: I) simple synchronous and blocking read and write
operations (without bursts), II) simple asynchronous and non-blocking read
and write operations, and III) same as II using bursts.

12 Chapter 14

Table 14-1. Communication latency for all types of OOCE interations

Iface Invocation type Latency (cycles)
write/read

Type I Hw −> Hw 3 / 2
 Sw −> Hw N.A. / 10
 Hw −> Sw N.A. / 11
 Sw −> Sw 50 / 21
Type II Hw −> Hw 4 / 2
 Sw −> Hw 21 / 10
 Hw −> Sw 21 / 11
 Sw −> Sw 42 / 21
Type III Hw −> Hw 19 / 17
 Sw −> Hw 56 / 27
 Hw −> Sw 56 / 29
 Sw −> Sw 108 / 56

Table 14-2. Area cost for the hardware adapters
Interface type Resource Area
Simple R/W Hw proxy 4 FFs

7 LUTs
Simple R/W Hw skeleton 2FFs

153 LUTs
Async R/W + burst support Hw proxy 102 FFs

208 LUTs
Async R/W + burst support Hw skeleton 102 FFs

208 LUTs

Also a completely SW version of the DES algorithm was implemented

on the Microblaze 32 bit processor, to use it as the software reference model.
Next, all the middleware infrastructure was generated for a SoC with HW,
SW and remote clients for the DES model from Opencores.

Results measured for the DES encryption of a 2KB data block with a 55-
bit key where the following: 102 microseconds for the fully SW version, 7
microseconds for the encryption using the DES core and a software client,
and 5 for the completely hardware solution.

Also communication times for an off-chip invocation through an ethernet
interface were measured. The reception of the packet took 218 cycles. The
remote bridge translated the message into a bus transaction in 76 cycles. The
execution of the invocation took 16 cycles. Finally, the result was packed
into an Ethernet frame in 72 cycles and transmited back in 218 additional
cycles.

14. TRANSPARENT IP CORES INTEGRATION BASED ON THE 13
DISTRIBUTED OBJECT PARADIGM

6. RELATED WORK

The ideas presented in this paper complement previous work on system-
level abstractions. Orthogonalization of concerns in system-level design as
proposed by Keutzer4, and more recently by Cesario5 and Gertslauer6,
provide an object model similar to what this paper assumes, but most actual
implementations focus on a structural view of the system and do not care
about location transparency. In Mignolet7 a uniform communication
mechanism for HW and SW resources is proposed, based on a central HW-
SW Operating System and a HW abstraction layer to provide task
abstractions for HW components. Previous works by Paulin et al.8 already
apply concepts from distributed object middlewares to SoCs but they do not
even consider one of the key features, location transparency. Some early
ideas on how reconfigurable computing may benefit from these concepts are
found in Hetch9. Previous results on automated generation of communication
infrastructure for SoC design10,11 are also applicable to adapters generation.

Object-based and object-oriented approaches12,13 have also been used
extensively to reduce the effort of translating some software components
into hardware components or to improve the co-simulation of the system.
Our hardware objects require a subset of what is provided by these
extensions. Therefore we remain compatible with their approaches and we
also keep full compatibility with standard IP based methodologies.

7. CONCLUSIONS

The communication architecture presented in this paper extends the
distributed object paradigm to SoC platforms. The proxy and skeleton
abstractions plus RMI semantics, provide a simple way to decouple
component functionality from communication implementation. From the
designer perspective, this provides an homogeneous view of the system as a
collection of communicating objects. From the implementation point of
view, the model presented provides communication and location
transparency for any kind of local interaction between hardware and
software components, blurring the hardware and software interface barrier.
But it also provides the possibility of remote (may be off-chip) interaction
with other objects.

Moreover, all the services and components that are part of the
middleware can automatically be generated based on a few descriptions on
the interfaces of the objects. This enhances the possibility of future reuse and

14 Chapter 14

eases design space exploration tasks. And, as the experimental results show,
the communication architecture does not incur in high overheads.

8. REFERENCES

1. Opencores; http://www.opencores.org; last visited June, 27, 2008.
2. Open Core Protocol (OCP); http://www.ocpip.org, last visited June, 27, 2008.
3. Internet Communication Engine (ICE); http://zeroc.com, las t visited June, 27, 2008.
4. Keutzer, K., Newton, A.R., Rabaey, J.M., Sangiovanni-Vincentelli, A. System-level

design: orthogonalization of concerns and platform-based design. IEEE Trans. Computer-
Aided Design of Integrated Circuits and Systems, 19, 12 (Dec. 2000).

5. W. Cesario, L. Gauthier, D. Lyonnard, G. Nicolescu, and A.A. Jerraya. Object-based
hardware/software component interconnection model for interface design in system-on-a-
chip circuits. The Journal of Systems and Software, (70), 2004.

6. A. Gerstlauer, D. Shin, R. Dmer, and D. D. Gajski. System-level communication modeling
for network-on-chip synthesis. In Proceedings of theASP-DAC, 2004.

7. J-Y. Mignolet, V. Nollet, P. Coene, D. Verkest, S. Vernalde, and R. Lauwereins.
Infrastructure for design and management of relocatable tasks in a heterogeneous
reconfigurable system-on-chip. In Proceedings of the DATE ’03 Conference, 2003.

8. P.G. Paulin, C. Pilkington, M. Langevin, E. Bensoudane, O. Benny, D. Lyonnard, B.
Lavigueur, and D. Lo. Distributed object models for multi-processor SoC’s, with
application to low-power multimedia wireless systems. In Proceedings of the DATE ’06
Conference, Munich, Germany, 2006.

9. Ronald Hecht, Stepah Kubish, Harald Michelsen, Elmar Zeeb, and Dirk Timmermann. A
distributed object system approach for dynamic reconfiguration. In Reconfigurable
Architectures Workshop (RAW 06), Rhodos, Greece, April 2006.

10. V. D’silva, S. Ramesh, and A Sowmya. Bridge over troubled wrappers: Automated
interface synthesis. In Proceedings of the Intl. Conf. on VLSI Design, 2004.

11. A. Gerstlauer. Communication abstractions for system-level design and synthesis.
Technical Report CECS-TR-03-30, UC Irvine, 2003.

12. Grimpe, E., Oppenheimer, F., Extending the SystemC Synthesis Subset by Object-
Oriented Features. In Proceedings of CODES+ISSS, Oct. 2003.

13. Schulz-Key, C., Winterholer, M., Schweizer, T., Kuhn, T., Rosenstiel, W. Object-
Oriented Modeling and Synthesis of SystemC Specifications. In Proceedings of theASP-
DAC, 2004.

ACKNOWLEDGMENTS

This work has been funded by the Spanish National and the Castilla-La
Mancha Regional Goverments under grants TIN2005-08719 and PAI 08-
0234-8083, respectively.

	1. INTRODUCTION
	2. MOTIVATIONAL EXAMPLE
	2.1 HW-HW Integration
	2.2 HW-SW Integration
	2.3 Remote Communication
	3. THE SYSTEM-LEVEL MIDDLEWARE
	3.1 The Communication broker
	3.2 Proxies and Skeletons
	3.3 Hardware Cores
	3.4 CPU Adapter
	3.5 Remote Bridge

	4. THE DES EXAMPLE REVISITED
	5. EXPERIMENTAL RESULTS
	6. RELATED WORK
	7. CONCLUSIONS
	8. REFERENCES

