
A Distributed Architectural Strategy Towards
Ambient Intelligence ?

Maria J. Santofimia, Francisco Moya, Felix J. Villanueva,
David Villa, Juan C. Lopez

Computer Architecture and Networks Group. School of Computing Science
University of Castilla-La Mancha

{MariaJose.Santofimia,Francisco.Moya,Felix.Villanueva,David.Villa,

JuanCarlos.Lopez}@uclm.es

Abstract. This work reveals the benefits obtained from combining common-
sense reasoning and multi-agent systems on top of a fully equipped mid-
dleware platform. The architecture here proposed is founded on the ser-
vice composition paradigm, as the comprehensive solution to relieve users
from being involved in system decision making. In this regard, the en-
vironment and domain understanding is emulated by the common-sense
reasoning engine that supports the multi-agent system on the task of
effectively accomplishing the actions that fullil the new arisen require-
ments.

1 Introduction

The vast majority of the literature on the field of systems for ambient intelli-
gence concentrate their efforts on releasing mechanisms to gather information
about users, match behavioral patterns, or predict user actions, requirements
and needs. Nevertheless, not only users should be considered but also the envi-
ronment itself, so as to obtain a comprehensive solution that covers the domain
context objectives. This issue is not addressed in most solutions presented to
date. In this regard, extending the user-centered view, in order to encompass
the system services and intentions, arises as a key requirement to the ambient
intelligence systems. An appropriate design of a middleware architecture suffices
to support the achievement of this requirement. However, this is not enough for
assuring the autonomous and intelligent behavior of ambient systems demand.
This shortcoming motivates the need to endow the middleware with the capa-
bility to understand and reason about its context, as well as making decisions
in reaction to events.

This paper main intention is to address some the emerging challenges in
the seeking to develop self-managed systems for ambient intelligence. In these
endeavors, this approach advocates for mechanisms that support the dynamic
generation of behaviors on the basis of basic actions, which are the smallest
? This work has been funded by the Spanish Ministry of Industry under project CENIT

Hesperia



units compounding services. An appropriate design of the middleware services
reveals the great importance of having a framework supporting this task. This
proposal counts on a distributed object-oriented framework for service design
and modeling.

2 A combined strategy

The architecture here proposed, and depicted in Fig. 1 rests on a powerful mid-
dleware framework, that provides the upper layers with the structure, tools
and services required to successfully accomplish their tasks. In [1] a distributed
object-oriented framework (DOBS, Distributed Object Based Services) is pro-
posed, so as to overcome the problems appearing when the use of certain services
involve managing different protocols. Nonetheless, a detailed description of the
middleware framework is out of the scope of this article.

The motivation behind choosing a multi-agent approach is twofold. Firstly,
given the service oriented character of the middleware framework, the agent-
based approach can be easily fit in the framework, adopting the shape of yet
another middleware service. Secondly, autonomy and proactive features are in-
herent to agents. In addition to this, the BDI model of agency provides the
goal-oriented character, required by the architecture here proposed.

Drawing these points together, it can be concluded that adopting a BDI
agent infrastructure, such as Jadex [3] is the most promising solution to tackle
the automation of the service composition task. Although Jadex provides its
own middleware platform, it is modular enough to run on top of the DOBS
framework, making the most of the aforementioned features.

The proposed multi-agent system solution consists of four agents. The man-
ager agent supervises the events taking place in the application domain, by
monitoring the available services, the event channels and the state of the services
deployed on it. The DOBS framework provides a set of channels where services
might be bound to publish or subscribe events. When gathering information
about services, the manager agent simply sends a request to the appropriate
channel and waits to collect the responses generated by the services listening to
this channel. Services are univocally identified by means of the proxy concept
[4], inherited from the middleware framework.

The manager agent is committed to assure a minimum level of functionality,
overcoming service failures or disappearance. Furthermore, it is also committed
to ensure the completeness of the generated composite services. Whenever some
of these goals are dispatched, the other three agents are started by the manager,
which also supplies them with information about the available services and their
states.

Once started, the selector agent is basically intended to identify the ser-
vices involved in the composition, performing this selection according to the
set of properties that the manager agent has provided it with. It has to be re-
marked that these properties have been extracted from the model information
system that came along with the middleware framework. Based on the UPnP



templates, services are characterized with property dictionaries. Therefore, the
selector agent, borne on the common-sense knowledge provided by the OpenCyc
[2] system, infers the set of services, out of the available ones, capable of fulfill-
ing the compendium of stated properties. Once these services are selected, the
composer agent receives from the selector agent the list of basic services involved
in the composition. This agent is in charge of linking those services, so that the
composite service behaves as an unique service. By means of a workflow, it is
specified the order in which services are executed, along with the information
flow. It might also be required to adapt data input or output in order to meet the
required format. At the moment, this agent is constrained to basic workflows,
although current efforts are aimed at implementing some artificial intelligent
planning technique to support the workflow generation process. In any case, the
generated workflow is used by the provider agent to instantiate those services
and providing them with the required input, and forwarding outputs to services,
as specified on the workflow. Finally, the provider agent deploys the service on
the system in a transparent way. Apparently, the ambient environment remains
unaware of the composition process that has been accomplished on the back-
ground.

Fig. 1. System Overview

When describing the selector agent, we slightly pointed out the role played
by common-sense knowledge provided by the OpenCyc system, on supporting
the selection of services involved on the composition task. However, there are a
number of issues, regarding this choice, that have to be exposed in arguing for
a common-sense knowledge and reasoning system.

OpenCyc is the open source version of the Cyc Knowledge Base, which un-
derlying philosophy advocates for applications capable of flexibly reacting to a
variety of challenges. Modeling the domain specific knowledge might be suffi-
cient for static systems, but it definitely fails to address the flexibility required
on systems for ambient intelligence environments.

However, the domain specific knowledge plays an important role on the ar-
chitecture here described. In this sense, the ontology and the model information



system inject semantic meaning to the messages exchange among agents, and
set the vocabulary used. Nonetheless, the reasoning and inference capabilities
of multi-agent system are scarce and mainly constrained to reason about their
plans and goals, having to resort to an external reasoner tool to achieve broader
reasoning capabilities. It can be concluded that domain specific knowledge yields
poor and deficient when applied to dynamic contexts.

Although the need for counting on common sense knowledge to support the
reasoning and inference appear to be evident, the arduous task of mapping this
knowledge into a knowledge base reveals the suitability of disposing of more
that twenty years of gathered knowledge. Furthermore, OpenCyc provides a wide
range of tools that dramatically eases the process of integration and combination
with multi-agent systems. The well documented Java API supports the FIPA-
OS agent integration, by providing a set of methods that make effective the
communication between the OpenCyc server and the multi-agent system.

3 Conclusions

The main drawback encountered when trying to develop systems for ambient in-
telligent lies on the vast amount of knowledge required when supporting systems
with intelligent behaviors. Despite the availability of reasoning tools capable of
dealing with domain knowledge, they reveal futile without the common sense
knowledge support.

This article has sought to justify the importance of automatic service com-
position on supporting systems for ambient intelligence. In seeking to accom-
plish the automation of the service composition task, this approach draws on a
combined multidisciplinary approach of multi-agent systems and common sense
knowledge. As constituent components of a broader architecture, these are in-
tegrated in a distributed middleware architecture that provides them with the
groundings to support their endeavors towards intelligent environments. Nev-
ertheless, this does not represent a silver bullet to achieving more intelligent
ambient.

References

1. F.J. Villanueva, D. Villa, F. Moya, M.J. Santofimia, J.C. Lpez, A framework for
advanced home service design and management http://arco.esi.uclm.es/es/

node/418, IEEE International Conference on Consumer Electronics , Las vegas,
EEUU, January 26, 2009.

2. Inc Cycorp. The opencyc project home page, 2008. Available online at http://

www.opencyc.org. Retrieved on December 10th, 2008.
3. Alexander Pokahr, Lars Braubach, and Winfried Lamersdorf. Jadex: A bdi reason-

ing engine. In J. Dix R. Bordini, M. Dastani and A. El Fallah Seghrouchni, editors,
Multi-Agent Programming, pages 149174. Springer Science+Business Media Inc.,
USA, 9 2005. Book chapter.

4. Inc. ZeroC. Ice home page, 2008. Available online at: http://www.zeroc.com/.
Retrieved December 20th, 2008.


