
A Framework for Advanced Home Service Design
and Management

Félix Jesús Villanueva, David Villa, María José Santofimia, Francisco Moya, and Juan Carlos López, Member, IEEE

Abstract — In this paper a distributed object-oriented
framework (DOBS, Distributed Object Based Services) for
home service design is presented. This framework eases the
development of advanced services able to run in a variety of
devices ranging from tiny wireless sensors to powerful
multimedia servers. Special emphasis will be made on DOBS
main features, its core components, the offered common
services and the supporting tools developed to allow users
and manufacturers to easily build advanced DOBS compliant
services1.

Index Terms — Service architecture, distributed services,
integration architecture, home services.

I. INTRODUCTION

The lack of a common framework for home service
development has been largely discussed in the last years. One
of the main problems identified is the heterogeneity and
diversity of devices and services found in those environments.

Our proposal is built on the well-known Distributed Object
Oriented (DOO) paradigm as the cornerstone for modeling, in
a more efficient way than existing solutions, any kind of
service one can find (or envision) in home networks. Special
care has been taken in the way required resources and network
bandwidth can be optimized. In DOBS, all services are
distributed objects that may run on devices with very little
resources as well as on personal computers. The manufacturers
may also provide efficient ad-hoc hardware implementations
of those objects. Additionally, a complete set of tools has been
created, that allows manufacturers and even users to create
advanced services hiding most middleware particularities.

The remaining of this paper is organized as follows. In the
next section, we will shortly introduce the related work that
deals with frameworks for home services. In section III, we
will analyze the key requirements which guide the design of
the framework. We then introduce the core of the DOBS
framework in section IV, and the DOBS common services in
section V. Section VI outlines the development process of
DOBS compliant services. Section VII describes our prototype
implementation. Finally we draw some conclusions and
highlight relevant future work.

II. PREVIOUS WORK

A quick analysis of the market of networked residential
services leads to the following types of end products:

1 This work has been partly funded by the Spanish Ministry of Industry
under project CENIT Hesperia.

All authors are with the Department of Information Technologies and
Systems, University of Castilla-La Mancha, Spain. School of Computer
Science, Paseo de la Universidad, nº 4. 13071, Ciudad Real, (Spain). e-mail:
{felix.villanueva, david.villa, mariajose.santofimia, francisco.moya,
juancarlos.lopez}@uclm.es.

 Services in a box: This type of solution include the
devices, software and all necessary elements for service
operation. They are closed solutions with dedicated
devices and software that may rarely be used for different
purposes. This is probably the simplest solution and also
the most widespread in the current market.

 Based on a residential gateway: A residential gateway is a
central device which interconnects the different devices
and data networks in the home and provides external
connectivity. Service providers, and specially telecom
operators, are mostly interested in this approach since it
allows a centralized control of the service distribution
points. Unfortunately the residential gateway constitutes a
single point of failure, which makes it inadequate for
many services. Besides, this solution scales badly when
the number of technologies involved increases.

 Customized installations: These are generally the most
expensive solutions and are typically represented by full
custom projects for large buildings (e.g. intelligent
buildings).

A common problem for all these solutions is that they link
users to a single provider or technology. This fact makes it
difficult to expand and reuse services and devices even in the
same environment. A proper solution resides in an
intermediate middleware that isolates services from devices
and technology.

Several research efforts have been made in order to
integrate services. One of the most used solutions is the OSGi
architecture [1] and related works [2][3]. OSGi is a Java based
platform for service management centered in the residential
gateway model. It follows a centralized model where the
bundles (OSGi components) may either use general purpose
services (e.g. log, configuration, etc.), share modules, or
manage security aspects, for example. Although OSGi
provides a solid ground for service management it does not
deal with the devices as part of a distributed environment.

Other approaches like [6] and [7] use CORBA (probably the
best-known large-scale object-oriented distributed
middleware) for service development. In [6] an IEEE 1394-
based home environment is presented, using CORBA to build
an IEEE 1394 driver that keeps real time properties, while [7]
shows a quite generic description of a client-server structure.
None of these approaches contribute with tools or establish
guidelines for service development and they do not allow
service management either.

Other former approaches focus on the integration of
different middlewares for home networking, enabling a
transparent interaction between them. In [4] a universal
middleware bridge is designed creating XML templates for
services and instantiating virtual services in each domain to be

integrated. This solution is also a centralized solution (based
on a home server) with problems of scalability and reliability.
A distributed agent-based approach is described in [5]. In this
work, and by means of a scripting language, the developer can
use services from different middlewares. The communication
between different agents is TCP/IP based.

Our approach, as we will see in next sections, takes a more
natural approach to network communications, and, using a
distributed object-oriented middleware, allows the developers
to create distributed applications and services in a transparent
way.

III. PROBLEM STATEMENT

Even though devices are increasing their performance and
interoperability capabilities (with several communications
interfaces), the development of new home services is taking
place much slower than we could expect.

The enormous efforts of the research community to avoid
the interoperability problem have not sufficiently favoured the
transfer from research centres to massive market.

Our framework design guidelines are derived from the
requirements identified by different actors involved in the
home services market. We can see these actors, their role in
the home services market and the middleware requirements in
Fig. 1.

 Service developers require supporting tools in order to
minimize the development time regarding aspects related with
the middleware; that is, they need to focus their attention on
service functionality instead of on how services interact with
each other. They also need flexibility regarding how (i.e.
which development language) and for which platform (i.e.
operating system) they can develop services. They finally
claim a set of common services with basic functionalities (e.g.
log service, configuration method, etc), as well as a well
defined set of interfaces to access to the rest of services.

Devices manufacturers tend to reduce the device resources
so as to decrease the device final cost. This means that fewer
resources are available to run the middleware and the
associated services. So, the more lightweight the middleware
is, the more competitive their devices can be.

Besides, service providers usually require remote
management capabilities, such as service deployment,
upgrades and remote control of services. This is why they are
mainly interested in a remotely accessible centralized service
container, the residential gateway.

Additionally, service integrators need to aggregate third
party services with minimal development and configuration
activity. They should select services according to their
functional and non-functional properties, without having into
consideration the technologies behind the service.

Finally, the users only care about service functionality, and
not about technologies, protocols, software, etc.

Together with the middleware requirements imposed by the
different actors we should also consider the future
infrastructure of home environments. Devices (and their
associated services) are going to experiment relevant changes
soon. In this sense, wireless communications are taking a
main role, as wireless sensor networks (WSN) seem to be a

good interface between the physical world and services, and
the number of mobile multimedia devices is increasing.
Besides, the home environment and the rest of the world are
now connected using more than one interface (not just through
a residential gateway).

Fig. 1. Middleware requirements from different actor’s point of view.

Taking into consideration all these aspects, we decided to
use a DOO middleware as a basic technology to create a
development framework for home service design and
management (DOBS). In general terms, a DOO middleware
defines APIs, a communication protocol, and an object/service
information model to enable heterogeneous distributed
applications (as in the case of home environments). Examples
of this type of platforms are CORBA, ZeroC Ice, Jini, etc. The
advantages of object-oriented programming are well-known
and DOO middlewares have a long history of successful
applications in many business domains.

IV. DOBS CORE COMPONENTS

DOBS core components have been designed having in mind
the requirements mentioned above. The main components are
built on top of a DOO middleware, however some of them
may need (to reach a better performance) to interact directly
with low level system layers, as the communication protocols
or the device drivers. DOBS architecture is shown in Fig. 2. In
next sections, a brief description of every component will be
given.

A. DOBS interfaces

To model basic monitoring (temperature, humidity,
presence, etc.) and control (lighting, door locks, etc.) services,
a set of interfaces enabling basic “read” and “write” operations
has been defined. They also implement a composition
mechanism which allows the modeling of arbitrarily complex
services.

For audio and video services the AVStreams interfaces from
the Object Management Group (OMG) have been adapted.
These interfaces, designed with the industry consensus,
provide a standard mechanism to configure and control
multimedia flows between sources and sinks.

B. Common services

Common services are aimed at:
 Providing common functionality used by the vast

majority of services (e.g. service discovery -see ASDF
later-, security mechanisms, etc.)

 Establishing a universal way to perform specific
operations such as integrating a new device (bootstrap
service) or managing services (stop, start, actualize,
etc.).

All common services are available to the remaining home
network services. DOBS common services will be considered
and explained in later sections.

C.Integration subsystems

These are specific subsystems that allow seamless
integration of services from other platforms. As an example,
subsystems to integrate UPnP, X10 or Bluetooth services have
been developed. Each subsystem is specific for each platform
but they use common services in order to integrate them.

We may see a simple example in the X10 integration
subsystem in which each X10 device is represented by a
distributed object implemented by means of DOBS interfaces.

Additionally, the integration provides the X10 domain with
service discovery capabilities (using ASDF as we will see
later). Therefore we may use any X10 device as a distributed
object and enrich the X10 domain with characteristics that it
does not originally enjoy.

Fig. 2. DOBS framework overview.

Fig. 3. Partial view of the service (a) and the event (b) taxonomies.

D.Information model

A complete taxonomy of services (with their attributes) and
events has been developed so as manufacturers can have
access, using a common nomenclature, to the available
services, events and their corresponding features (Fig. 3). This
taxonomy was first derived from UPnP templates and
Bluetooth profiles and it has been completed with other
services and properties from most relevant standards (Mobile
Location Protocol from OMA, AVStreams from OMG, etc.).

Together with the service type, the taxonomy collects the
available attributes for each service. The idea behind this is to
create a basic set of home services that works as POSIX
interfaces do for operating systems. In fact, we already have
developed a compiler which takes this taxonomy and generates
a candidate interface for every service intended to be
integrated in DOBS. In this way, developers may know in
advance the interface offered by any DOBS service.

The event taxonomy enumerates a set of common events
that may occur in the home environment. Service developers
should consider the service behavior for each type of event (at
least for those which, due to their importance, require special
attention).

This taxonomy has been implemented by means of an
ontology in such a way that each service corresponds to a class
(with attributes). In order to integrate other domains, each
class has instances (similar to the class-object correspondence
in software engineering) which represent concrete services in
specific domains. This information is used by the service
discovery framework (ASDF, see later) to establish
correspondences between our framework and the remaining
domains (e.g. UPnP, Bluetooth, etc.).

The designed ontology is the core of the Model Information
Service (MIS) which is used by the rest of the infrastructure in
order to get information about services, attributes, etc. The
MIS interface is:

module MIS {
 dictionary<string, string> AttrDict;
 sequence<string> list;

 interface DomainTranslator{
 string translateSv(string serviceID,

string orgDomain,
string dstDomain);

 AttrDict attributesOf(string serviceID,
 string domain);

AttrDict translateAttr(string serviceID,
AttrDict orgAttr,
string orgDomain,
string dstDomain);

 };

interface Metamodel{
PropertyService::PropertySetDef*

getProperties(string service);
 };
};

The interface DomainTranslator is used by the integration
subsystem in order to get the correspondence between the
DOBS model and any other domain introduced in the
ontology. With the translateSv method we may get the identity
of any service in any domain. For example, in UPnP there is a
template for a service with the name “DigitalSecurityCamera:
1” which corresponds with an entity of class “Camera” in
DOBS terminology. When the UPnP integration subsystem
receives an announcement in the UPnP domain, it will ask the
MIS (using the translateSv method) about the corresponding
service in DOBS. Similar procedure is done for attributes with
the attributesOf method, which provides a list of attributes of a
given service, and the translateAttr method, which translates
attributes between domains.

Finally, the Metamodel interface is used to get the
properties of a given service, so as to provide with
introspection capabilities.

V. DOBS COMMON SERVICES

DOBS common services reduce the required configuration
procedures and provide frequently used facilities to service
developers.

A. Abstract Service Discovery Framework (ASDF)

The ASDF allows easy integration in a DOBS environment
of almost any existing model of service discovery. It has been
specially designed for easy interoperability with many other
well-known service discovery protocols (SDP) such as UPnP
SSDP, Bluetooth SDP, SLP, etc. Table I shows the ASDF
primitives and their corresponding primitives in other SDP
platforms.

As shown Table I, we provide primitives to implement
almost any model of SDP (directory based, multicast, hybrid,
etc.). Nonetheless, the required interfaces are quite simple,
which makes it easier to embed ASDF in extremely small
devices:

module ASD {
 interface Listener {

idempotent void adv(Object* prx);
idempotent void bye(Ice::Identity oid);

 };
 interface Search {

idempotent
void lookup(Object* cb, string tid,
 PropertyService::Properties query);
idempotent void discover();

 };
 interface PropHldr {

idempotent
PropertyService::PropertySetDef* getp();

 };
};

The Listener interface is used to announce/disconnect a
service to/from the environment. With the adv operation the
service announces itself publishing its reference (prx). The bye
operation requires only the identity of the service (an URI like
description) in order to notify its disconnection from the
environment.

The Search interface is used to look up services or to
discover the whole environment. The lookup operation

TABLE I
ASDF CORRESPONDENCE WITH OTHER SERVICE DISCOVERY PROTOCOLS

ASDF UPnP SSDP JINI SDP (Bluetooth)
Search Directory No directory based. Search Lookup Service:

Multicast Request
ServiceSearchRequest
ServiceSearchResponse

Find Service in a Directory No directory based.
≈ Multicast SSDP messages

Lookup in a lookup service ~ ServiceSearchRequest/Response
~
ServiceAttributeRequest/Response

Find Service without Directory Multicast SSDP messages Not supported ServiceSearchRequest/Response
ServiceAttributeRequest/Response

Advertisement Multicast SSDP messages(URL
with device Description)

Announce protocol (lookup
Service)

~Register service in the local
sdp server

Registration ~ Advertisements Registration in a lookup Service Register service in the sdp server
Subscription ~Subscription to GENA events Not supported Not supported
Renew Lease Application policies not

Supported.
Lease Renewal Manager Not supported

Disconnect Bye bye SSDP message Remove/Cancel Leasing in lookup
service

Not supported

searches for any service of a given type (tid), which meets a set
of constraints given as key-value pairs (query). Any service
that meets the requirements should send an announcement
(adv) to the callback object (cb). The discover operation
forces every service in the environment to send an
announcement.

Finally the PropHldr interface (and invoking the getp
operation) is used to get all the properties of a given service.

The ASDF implementation follows the event oriented
paradigm. In any environment, there are, at least, four event
channels named ASDA, ASDL, ASDB and ASDD for
announcements, lookups, byes and discoveries, respectively.

Depending on the intended semantics, all services must
connect to one or more of these channels in order to receive or
send events. For example, in the case of a directory based
environment, the directory service must implement a yellow
pages service in the lookup (ASDL) and discovery (ASDD)
channels.

Additionally, each integration subsystem may either easily
translate different service discovery protocols to ASDF
semantics, or even add service discovery capabilities to
subsystems which do not usually support them (e.g. X10
subsystem).

B. Bootstrap

While ASDF reduces configuration procedures for services,
the bootstrap service enables a Place & Play philosophy for
devices.

When a device is attached to the network, it requires several
parameters in order to be integrated in the environment.
Besides, its services need some initial information such as, for
example, the location of the ASDF event channels, the QoS
environment profiles, etc.

The bootstrap service is a multicast service which selects,
among the available devices, a coordinator that will be the
responsible for starting basic services for the remaining
environment (e.g. the event channel manager). The interface of
this service is also extremely simple to allow easy embedding
in small micro-controllers:

 interface bootstrap{
void coordinator(int i, object *prx);
void lookup();

}

When a device is switched on, its bootstrap service sends a
multicast lookup invocation to find the coordinator (or
coordinators). If there is already a device or computing
element which became a coordinator, it invokes the
coordinator operation in the newly attached device with its
identifier (there could be more than one) and a reference to the
environment manager (prx) implemented by the coordinator.
If there is no answer after a timeout, the device itself may
request to become a coordinator (it is also a multicast
invocation) and start the environment manager.

C. Security

Our security infrastructure combines transport-level
mechanisms such as secure socket layer (SSL)
communications with the ability to inspect and manipulate

directly digital certificates. It is also possible to attach a per-
invocation user context that may be used for sending
credentials or one-time passwords to a remote service. This
enables DOBS to be used in more complex environments that
require a high degree of security such as public spaces
(airports, railway stations…) or critical facilities (industrial
plants, power stations…), being adequate in general, for
homeland security applications.

D. QoS

By means of profiles, the network resources are assigned
according to the state of the environment (day/night, normal,
intrusion alarm, etc.). Most of the former approaches to
quality of service (QoS) in home environments were focused
on user preferences or service requirements. In DOBS we add
a new point of view: the environment resources (mainly the
network bandwidth) are subordinated to the environment state.
For example, if a fire is detected and a FireE (see Fig. 3) event
is generated by a service, a QoS component in every device
will modify the network stack configuration in order to give
more resources to the traffic associated to security services
(doors and windows control, security cameras to track the
evolution of fire, etc.).

In order to achieve this, we follow a differentiated service
approach (DiffServ) as defined by the IETF [8] where the
traffic generated by each service is classified in a set of traffic
classes. Each type of traffic has a set of resources assigned that
can be modified in a dynamic way. The following entities have
been defined:

Environment profile: It is a pre-established bandwidth
assignment. It is composed of three main parts: a list of events
which would trigger the profile, the percentage of bandwidth
associated to each type of traffic and a service specification
which characterizes the traffic generated by each service and
its classification.

QoS Service: It takes environment profiles and configures
the network interface according to such specification. It must
also mark the outgoing traffic for each service (using the IP
TOS field) according with the traffic types that have been
defined in the environment.

E. Service management

DOBS includes a mechanism for service deployment,
configuration, upgrade, etc. enabling both centralized and
distributed management.

Using a grid-computing point of view, each device has a
service manager which enables remote service management.
In the master device (the coordinator selected by the bootstrap
service), there is an environment manager running. There is at
least an environment manager for each environment which can
be used to start, stop or upgrade all the services that are
registered in the service manager of each device. The
bootstrap service sends to each service manager the location
of the environment manager so that each service manager is
able to notify its services and register them in the environment
manager. Although there is a single logical instance of the
environment manager there may be a replicated service to
improve overall fault tolerance. The bootstrap service may use
multiple coordinators to instantiate a replicated environment

manager.

VI. DOBS DEVELOPMENT PROCESS

The information model depicted in Section IV constitutes
the starting point to help developers in the design of DOBS
compliant services. It includes the different relationships
between services as well as other important semantic
information (e.g. correspondences with other domains, such as
UPnP or HAVi, for interoperability purposes). It goes beyond
the possibilities of other approaches such as, for example,
those using templates VIII.

Fig. 4 shows the DOBS development toolchain. It is mainly
focused on hiding most of the complexity of the networking
infrastructure so that developers may spend most of their time
and resources implementing service functionality and not
communication procedures.

 From the described ontology, and using the DOBS OWL
compiler, a candidate interface for the selected service can be
obtained. It is expressed by composition of basic DOBS
interfaces in an interface definition language (IDL). This
specification constitutes the contract between the service and
the client that wants to use it.

 Fig. 4. DOBS toolchain diagram

From this specification and using the IDL compiler,
developers get the stubs and skeletons for both, client and
server, in the desired programming language. We have also
developed tools that allow the generation of stubs and
skeletons for services and clients that are intended to run on
small microcontrollers (e.g. WSN devices). It is also possible
to automatically obtain a hardware implementation (VHDL).
More information on these two possibilities can be found in
VIII and VIII.

The DOBS tools (DOBS OWL compiler, DOBS VHDL
compiler and DOBS WSN compiler), together with the native
compiler of the object-oriented middleware selected for the
implementation, compose a complete toolchain (Fig. 4) able to
generate in an automatic way service implementations
(servers) for a variety of scenarios (medium size computers
such as set-top-boxes or residential gateways, small processors
such as WSN nodes, or even ad-hoc hardware versions). These
tools allow the developers to get rid of annoying service
communication details (a very error-prone development task)
while better focusing on the service functionality itself.

On the other hand, from the client-side developer’s point of
view, the access to a specific service is transparent and can be
dealt with in the same way, no matter whether it is
implemented in a residential gateway, in a WSN device or in
hardware.

VII. PROTOTYPE

We have selected the Internet Communications Engine
(Ice) VIII from ZeroC for the DOBS implementation. Ice is a
CORBA-like middleware that uses a specific protocol (ICEP)
and a specific interface description language (Slice).

Regarding the use of the DOBS common services, templates
and examples of use are available, so the developer can focus
on the service functionality. Using these common services, the
final service implementation can be improved in some general
(but important) aspects, such as security, management, and so
on.

In order to show the features of the proposed middleware, a
set of user services, integrating different types of devices, has
been developed. Some working scenarios developed are:

 A generic server for RTSP cameras (VCC4 and AXIS).
 A presence detection platform with mica2 WSN

devices.
 Integration of X10 devices adding SDP capabilities.
 Integration of the UPnP SSDP protocol (used by AXIS

cameras).
For monitoring, controlling and debugging purposes, an

Inspector software has been developed. With this software we
may see any service in a DOBS environment. Debugging and
monitoring task can be done in a generic way as we can see in
Fig. 5.

Fig. 5. Inspector showing properties of a camera service using
introspection capabilities.

On the left-hand side of Fig. 6, a list of services announced
by ASDF is shown. Most of the services are AXIS cameras
using UPnP to announce their activation. Therefore, the UPnP
integration subsystem has to instantiate a server of type
“camera” (according with the information model) and send
adv operations to the ASDA event channel (as described in
section V). The inspector only has to listen to the adv
operations in this event channel and access the services in
order to check out whether they are active. The two services
labeled with PIR1 and PIR2 are WSN devices with a
movement sensor attached. The red button indicates that PIR2
service is not active at this moment.

From the inspector point of view (also from any client point
of view) there is no difference between a service embedded in
a WSN device or running in a conventional PC.

On the right-hand side of Fig. 6 a plugin for a camera
service is showed. From the plugin point of view all cameras
have the same interface and the same properties, and they can

be accessed with location, language, operating system, etc.
transparency.

VIII. CONCLUSION

While OSGi provides a Java-based platform for service
management without any consideration about user services,
and UPnP offers templates for services without management
service procedures, DOBS incorporates both aspects and also
provides a common set of services to help in the development
of advanced services.

Fig. 6. Screenshot of inspector with the camera plugin activated.

Besides, DOBS avoids the use of virtual machines, XML
parsers and web servers, what has a clear impact on the final
resource requirements. This is a key feature regarding the final
implementation cost, especially considering the type of devices
that have to support home services (white goods, cook
machines, sensors, actuators, etc.). Finally DOBS provides a
toolchain that eases the implementation of both, the service
itself (in a variety of alternatives) and the client that is
supposed to use it.

DOBS also uses a service discovery mechanism (ASDF)
and a bootstrap service that enable Place & Play environments
in which minimum configuration procedures are required.

As a future work we will extend the set of DOBS compliant
available services and work in automatic service composition
in order to infer and compose services according to the user
needs or even the environment requirements.

The DOBS architecture is the middleware selected for the
HESPERIA project. HESPERIA gathers seven companies and
eleven universities and research centers working together on
the development of integrated services to provide security and
operation control in public spaces (homeland security). In this
application field, the DOBS architecture is proving its
efficiency and flexibility integrating software from third
parties.

DOBS architecture represents a solid ground for advanced
home services development and management including all
requirements identified by the different actors involved in this
market.

REFERENCES

[1] OSGi Alliance, “OSGi Service Platform Core Specification”, Release 4,
version 4.1, April 2007.

[2] X. Li, and W. Zhang, “The design and implementation of home
networks systems using OSGi compliant middleware” IEEE Trans. on
Consumer Electron., vol. 50, no. 2, pp. 528-534, May 2004..

[3] R. D. Redondo, A. F. Villas, M. Ramos, J. J. Pazos Arias, and M. Rey
López, “Enhancing residential gateways: OSGi service composition”
IEEE Trans. on Consumer Electron., vol. 53, no. 1, pp. 87-95, Feb.
2007.

[4] K. Moon, Y. Lee, C. Lee, and Y. Son, “Design of a universal
middleware bridge for device interoperability in heterogeneous home
network middleware” IEEE Trans. on Consumer Electron., vol. 51, no.
1, pp. 314-318, Feb. 2005.

[5] H. Lee, and S. J. Kim, “A standard method-based user-oriented
integrated architecture for supporting interoperability among
heterogeneous home network middleware”, International journal of
smart home, vol. 1, no. 1, Jan. 2007.

[6] J. Oh, J. Park, G. Jung, and S. Kang. “CORBA based core middleware
architecture supporting seamless interoperability between standard
home network middleware”, IEEE Trans. on Consumer Electron., vol.
49, no. 3, pp. 581-586, Aug. 2003.

[7] E. H. Binugroho, J. W. Choi, and Y. B. Seo. “Home network
development based on CORBA middleware” International conference
on Instrumentation, Control and Information Technology , pp. 186-191,
Sept. 2007.

[8] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. “An
architecture for differentiated services”, The Internet Engineering Task
Force documents, RFC 2475, Dec. 1998.

[9] UPnP Forum, “UPnP Device Architecture 1.0”, Microsoft, June 2000.
[10] F. Moya, J. C. López. “SENDA: An alternative to OSGi for Large Scale

Domotics”, In proc. of the joint international conference on wireless
LANs and home networks and networking, pp. 165-176, Aug. 2002.

[11] F. Moya, D. Villa, F. J. Villanueva, F. Rincón, J. Barba, and J. C.
López. “Embedding Standard Distributed Object-Oriented Middlewares
in Wireless Sensor Networks”, Journal on Wireless Communications
and Mobile Computing, vol. 9, Issue 3, pp. 335-345, John Wiley , 2009.

[12] J. Barba, F. Rincón, F. Moya, F. J. Villanueva, D. Villa, J. Dondo, and
J. C. López. “OOCE: Object-Oriented Communication Engine for SoC
Design.” In proc. of X EUROMICRO Conf. on Digital System Design
(DSD). 2007.

[13] M Henning and M. Spruiell. “Distributed Programming with ICE”,
ZeroC company, May 2008.

F. J. Villanueva received the Computer Eng. Diploma
from the University of Castilla-La Mancha (UCLM) in
2001. In 2009 he obtained the PhD degree from the
UCLM, where he is now working as Teaching Assistant.
His research interests include wireless sensor networks,
ambient intelligence and embedded systems.

D. Villa received the Computer Eng. Diploma from the
University of Castilla-La Mancha (UCLM) in 2002.
Since then he works as a Teaching Assistant at the
UCLM. He is currently pursuing the PhD degree in
Computer Science from UCLM. His current research
interests include heterogeneous distributed systems, and
distributed embedded system design.

F. Moya received his MS and PhD degrees in
Telecommunication Engineering from the Technical
University of Madrid (UPM), in 1996 and 2003
respectively. From 1999 he works as an Assistant
Professor at UCLM. His current research interests
include heterogeneous distributed systems, electronic
design automation, and its applications to large-scale
domotics and system-on-chip.

M. J. Santofimia received the degree of Technical
Engineer in Computer Science in 2001 from the
University of Córdoba (Spain); the Master's degree on
Computer Security from the University of Glamorgan
(Wales, UK) in 2003; and the degree of Engineer in
Computer Science in 2006 from the University of
Castilla-La Mancha (Spain). She is currently working
towards her PhD as a member of the Computer

Architecture and Networks Research Group (ARCO) at the University of
Castilla-La Mancha. She is an assistant professor in the School of Computer
Science in Ciudad Real (Spain)..

J. C. López (M’ 94) received the MS and PhD degrees
in Telecommunication (Electrical) Engineering from the

Technical University of Madrid (UPM) in 1985 and 1989, respectively. From
Sep 1990 to Aug 1992, he was a Visiting Scientist in the Department of
Electrical and Computer Engineering at Carnegie Mellon University,
Pittsburgh, PA (USA). His research activities center on computer-aided
design of integrated circuits and systems. His work is focused on algorithms
for automatic synthesis, co-design and embedded computing. From 1989 to
1999, he has been an Associate Professor of the Department of Electrical
Engineering at UPM. Currently, Dr. López is a Professor of Computer
Architecture in the School of Computer Science at the University of Castilla-
La Mancha.

	I. Introduction
	II. Previous Work
	III. Problem Statement
	IV. DOBS Core Components
	A. DOBS interfaces
	B. Common services
	C. Integration subsystems
	D. Information model

	V. DOBS Common Services
	A. Abstract Service Discovery Framework (ASDF)
	B. Bootstrap
	C. Security
	D. QoS
	E. Service management

	VI. DOBS Development Process
	VII. Prototype
	VIII. Conclusion

