
Embedding standard distributed object-oriented

middlewares in wireless sensor networks†

F. Moya, D. Villa, F. J. Villanueva, J. Barba, F. Rincón, J. C. López

28 August 2007

Abstract

This article provides an analysis of the design space available to mid-
dleware developers in the context of wireless sensor networks. We identify
the weaknesses of current communication abstraction layers and propose
alternative implementation techniques that preserve most of the useful
features but minimizes the implementation cost in resource constrained
wireless sensor nodes. Our proposal includes a whole WSN development
framework based on standard distributed objects and a set of specific ser-
vices designed to support highly dynamic and scalable WSN applications.

distributed objects; sensor middleware; device interoperability

1 Introduction

Wireless sensor networks constitute a specialized subfield of distributed hetero-
geneous computing where resource and power consumption are major issues.
Besides, the dynamic nature of WSN systems poses new challenges for the ap-
plication developers.

Since early 80s the research community produced a large quantity of ab-
stractions aimed at reducing the inherent complexity of distributed application
development. Today most distributed applications are built on top of an inter-
mediate layer of software, known as communications middleware, which defines
protocols, a set of basic services and a programming interface to be used by ap-
plication developers. One of the most successful programming models today is
the distributed object paradigm which tries to extend the semantics of standard
objects to allow remote method invocations. Examples of this type of platforms
are CORBA, ZeroC ICE, and Jini. Most of them also allow application devel-
opers to use an heterogeneous mixture of programming languages, development
tools, runtime environments and hardware platforms.

Some previous works devised strategies for embedding an ad-hoc middleware
into low-cost devices but little effort is made to guarantee interoperability with

2This work was supported by FEDER and JCCM under grant PBC-05-0009 and by the
Spanish Ministry of Education under grant TIN2005-08719.

1



standard platforms and compatibility with standard tools. The main motivation
of this work is providing an infrastructure that allows developing applications on
wireless sensor networks (WSN) using the same methodology that is currently
used with standard distributed OO middlewares.

Typical research platforms used in wireless sensor nodes use oversized re-
sources for many applications. For example, external memory ranges from
32kB for WesC platforms to 64 MB for the WINS3.0 platform [1, 14]. Simi-
larly, the ATmega128L microcontroller included in the most widespread plat-
form, the MICA family, is more than an order of magnitude more expensive
than the smallest microcontrollers in the market. An illustration of this point
can be found in almost any ambient intelligence applications which may require
deployment of hundreds of small devices such as switches, motion sensors, dim-
mers, proximity sensors, etc. Moreover, these platforms are insufficient when
applications demand high data rates such as video processing.

From the application developers point of view, a wireless sensor or actuator
node may behave as a standard distributed object although the internal im-
plementation may differ considerably. We prove the feasibility of our approach
with a set of prototypes which support basic interoperability with CORBA and
ICE. We will provide a detailed analysis of the tradeoffs involved in each target
platform stressing the conceptual improvement over current practice. More-
over, we describe a set of common services built on standard distributed objects
designed for wireless sensor/actuator networks, including a service discovery
framework and event propagation for high data rate applications such as mul-
timedia streaming or environment monitoring (e.g. telemetry).

This article is organized as follows. First, we briefly describe a broad range
of related research in order to identify the open issues which motivate our work.
Afterwards we discuss the tradeoffs involved and the overall application devel-
opment flow. Then we will describe how these tradeoffs translate into specific
design decissions in the prototypes. Finaly we will draw some conclusions and
outline future research work.

2 Related work

In this section we will describe previous research on communication middleware
platforms for wireless sensors and also some previous efforts aimed at the reduc-
tion of the memory footprint of standard distributed objects. Finally we will
identify open issues not currently addressed.

2.1 Middlewares on wireless sensor networks

From the point of view of the programming model most wireless sensor network
research platforms may be grouped into three categories [1, 19, 14]: TinyLIME [3],
TinyDB [6], or Cougar [15] provide a distributed database abstraction to ac-
cess the wireless sensor network; SensorWare [16, 17] or Impala [18] use agent-
based abstractions where small independent pieces of code are able to mi-

2



grate through the nodes which implement an interpreter for the agent code;
DSWare [20] or TinyDiffusion [4] use an event-based approach notifying asyn-
chronously changes in any magnitude to all interested parties. Unfortunately
all of these previous works define an ad-hoc infrastructure to develop WSN ap-
plications. Interaction with standard distributed objects must be implemented
as ad-hoc bridges or adapters.

The integration of heterogeneous WSN technologies has been addressed be-
fore in Sensation [2] by means of a sensor abstraction layer and a common XML
syntax to describe all sensors. Sensation aims at providing a high level API to
manage different WSN through request-response proxies and technology-specific
drivers embedded in the sensor abstraction layer. This approach manages het-
erogeneity of WSN but again it does not handle the interaction with components
outside the WSN environments.

2.2 Reducing the footprint of distributed objects

Many previous initiatives have been oriented towards the miniaturization of
existing distributed OO middlewares by removing costly features, and intense
modularization, but keeping genericity. This is used in dynamicTAO [24] and
its descendants LegORB [25] and UIC-CORBA [23]. It is also the approach of
MicroQoSCORBA [29], e*ORB [26] and nORB [27].

UORB [30], and the embedding strategy described in [28] and also one of
the integration alternatives proposed in SENDA [7] use a different approach
based on intermediate proxies running in a mediating host. This may lead to
large resource savings at the cost of requiring specialized device protocols and
a specific interoperability middleware.

All these previous works share the same basic techniques: dynamic invo-
cation and dynamic instantiation features are removed, the interface definition
language (OMG IDL in the case of CORBA) is simplified by removing complex
or variable length data types, optional fields in messages are ignored, optional
protocol features are either simplified or removed entirely (e.g. error reporting
messages), indirect references references are not supported, common services
are not supported, the communication engine follows a modular design and
applications instantiate only those components that are actually used.

Unfortunately all these previous works leave some open issues that should
be addressed by a middleware for wireless sensor networks: (1) traditional WSN
middlewares and previous implementations of small distributed objects require
relatively expensive platforms; (2) the integration of WSN usually requires com-
plex gateways which handle protocol conversion issues, type-system conversion,
API adaptation, etc; (3) existing solutions introduce a new design-flow which
requires learning new protocols, APIs and even new languages; (4) existing
middlewares for WSN lack industrial support for highly scalable services.

We need something much smaller, self-contained, and capable of being em-
bedded in cheaper platforms. But at the same time it should allow easy inte-
gration of sensors without complex gateways or interfaces and minimizing the

3



learning curve for application developers. Besides it should be able to take
advantage of existing well-known standard technologies.

3 Embedding distributed objects

Figure 1: Simplified sequence diagram for standard RMI interaction.

In figure 1 we show a simplified diagram for a remote method invocation
(RMI) using a middleware such as CORBA. In a conventional CORBA commu-
nications engine (object request broker in CORBA parlance), a remote invoca-
tion involves the cooperation of a large number of entities (one or more object
adapters, a set of servants which implement the objects behavior, and an active
object map which keeps track of object-servant pairs).

Each remote method invocation translates into a request including three
important components: (1) an object id, which uniquely identifies the target
object in the whole network, (2) the operation, that determines what member
function in the servant must be executed, and (3) the set of arguments required
by the operation.

Any interaction between a client and an object is achieved exclusively by
message passing using standardized protocolos such as the General Inter-ORB
Protocol (GIOP) in CORBA, or ICE protocol (IceP) in ZeroC ICE. Therefore
any implementation of an object remains compatible as long as it conforms to
the same message exchange pattern.

In this paper we propose a simplification of the standard RMI implementa-
tion suitable for very low cost embedded objects (picoObjects), which emulate
the server-side message parsing and reply message generation by means of an
automatically generated finite state machine. Between this approach and the

4



standard behavior of figure 1 there is a whole range of variants. What is nice
about all these implementations is that the development flow is almost un-
changed. They all start from the description of the remote interfaces exposed
by the objects. Then a stub compiler is used to automatically generate both
client-side and server-side skeleton code for each remote interface. By contrast
a picoObject compiler would merge all the remote interfaces exposed by a single
server into an ad-hoc finite state machine able to parse invocations of any of the
available remote methods. In section 4.4 we will describe in detail the imple-
mentation techniques used in our compiler prototype. In the following section
we will discuss the tradeoffs involved in the emulation of the remote method in-
vocation message interchange pattern. We will use ZeroC ICE as the reference
middleware for the sake of simplicity although most of the discussion may be
extended to other distributed object implementations.

3.1 Implementation tradeoffs

Implementations of embedded distributed objects must balance the resources
required for each wireless sensor node and the features available to the appli-
cation developer. For example, a reply-message replicates the same request
identifier included in the matching invocation message. This is useful for dupli-
cate filtering and out-of-order method dispatching but depending on the sensor
node resources we may keep these features to a bare minimum. Likewise most
middlewares provide a range of optional encodings including compression, en-
cryption and different data formats. Any of these features may be discarded in
order to save some implementation cost.

The same message exchange pattern may be implemented using a large vari-
ety of technologies depending on the specific needs. There is a multi-dimensional
design space defined by physical magnitudes such as power consumption, time
required to perform a remote invocation, bandwidth efficiency, required comput-
ing resources, etc. Besides there are some functional aspects of the middleware
that may also be analysed as a continuum.

For example, let us consider the dynamic nature of object creation and de-
struction. A conventional middleware relies on the constructor/destructor sup-
port from the underlying implementation language to provide dynamic creation
and destruction of distributed objects. But sometimes this is not needed at all
in a wireless sensor. A motion sensor, a temperature sensor or a proximity sen-
sor are all physical devices exposed to the network through a set of predefined
protocols. This is a completely static picture that could be implemented much
more efficiently with a finite state machine (FSM) able to parse the right request
messages. Note that this is not object-oriented at all since the FSM must be
able to handle requests for all the objects defined in a given node. There is a
lot of coupling but this may be handled automatically by a compiler.

Of course there are design choices between a fully static approach and a fully
dynamic approach. We may use a memory to store the FSM in order to allow
a complete reconfiguration. Or we may use hierarchical finite state machines in
order to allow partial reconfiguration. We are still using a non object-oriented

5



approach but it would be possible to simulate the construction/destruction of
objects from the point of view of the remote clients.

The efficiency of the communication protocol is another functional axis that
we should care of. Distributed object interaction is assumed to be slow. Two
orders of magnitude slower than standard method calls. This is mostly due
to argument serialization. Lots of extra instructions are required to read data
from memory and send them to the destination object while a standard method
call may just pass a memory reference. But this is not an issue for a hardware
implementation of the objects. Hardware modules already serialize data to
interact with other modules and a distributed object is anything that complies
with the message interchange pattern described above, even if it is a FPGA.

Besides, hardware objects and on-chip buses allow a broader range of im-
plementation strategies. For example, pipelining may be used to boost the
throughput. The generation of the reply message may start even before the
whole request message arrived.

This is not just an optimization but a fundamental conceptual change. All
current distributed object implementations assume that remote interfaces must
be kept to a minimum and designed with careful consideration of the incurred
overhead. But in hardware this is no longer true. Remote invocations are
essentially free and therefore the middleware may be used for module compo-
sition and also as a hardware modeling aid. Nonetheless we will focus on the
hardware implementation as the choice for highly demanding sensor nodes. A
detailed discussion of this implementation alternative is out of the scope of this
article.

A third functional axis to be considered in the middleware implementation
deals with the complexity of the required gateways for interconnection of dif-
ferent network technologies. When protocols are similar and the object models
match then the gateway implementation is reduced to simple header rewriting.
Unfortunately the long experience of these integration efforts show that when
the object models do not match then gateways face all sorts of shortcomings
(e.g. CORBA-DCOM bridge). When the middleware is being embedded in a
controlled environment there are even more options to consider. For example, a
hardware implementation would benefit from the adaptation of the addressing
mechanism to the internal bus protocols carefully keeping the same type-system
and serialization rules. Interaction between two hardware modules may be made
very efficient at the cost of an extra addressing scheme adaptation logic in the
gateways required for off-chip interaction.

3.2 WSN application design flow

As long as a well-established middleware is directly supported by a set of wireless
sensors and actuators there is nothing special in the design flow used by the WSN
application developer. Most services and end-user applications are developed
using a conventional flow and any of the commercially available tools.

However there are small differences in the design flow used in sensors and
actuators (see figure 2). A single sensor node may be able to implement different

6



standard invocation

Figure 2: PicoObject design-flow

remote objects but probably there is no need for dynamic object creation and
destruction. Therefore we may use an ad-hoc finite state machine (picoObject).
The FSM is automatically generated by a compiler from a specification of the
set of messages to be parsed. This is easily achieved by means of a standard
interface specification and an additional file declaring the whole set of objects
to be implemented.

Although we just need to specify the application-level interface many mid-
dlewares assume an implicit interface implemented by any distributed object.
For example, ICE assumes an implicit Object interface with support for mini-
mal introspection. The compiler must be able to generate code to parse those
implicit methods as well. In severely constrained environments we may instruct
the compiler to generate just the bare minimum.

Client-side stubs can be generated using an off-the-self Slice compiler from
the interface definition and the server-side skeleton is generated using the pi-
coObject compiler. The compiler generates a platform independent specification
of the finite state machine which is then translated into a specific implemen-
tation language. Standard C, Microchip PIC assembler, Java and VHDL are
currently supported.

The final step of the development flow should fill the generated skeletons with
functional code. The developer must write by hand the specific functionality of
each method as in any traditional object oriented middleware.

7



4 Interoperability of embedded objects

The tradeoffs identified above must be carefully considered on a case-by-case
basis when embedding any commercial middleware. In this section we will show
how specific constraints of two particular distributed middlewares translate into
efficient embedded implementations for wireless sensor networks.

4.1 picoCORBA

CORBA is now a mature distributed object architecture and a lot of effort has
been devoted to embedded CORBA implementations (see section 2.2). Most of
this previous work is influenced by MinimumCORBA [21], a reduced footprint
specification from OMG. MinimumCORBA objects are completely standard
compliant and they may also be built on full CORBA engines.

CORBA picoObjects (picoCORBA) goes much further with respect to re-
moving features. PicoCORBA objects are not portable at all since they are
usually implemented using a specific assembler language. Even if we use C
or any other low level programming language there is no enforcement of any
standard mapping since there is no need to link against a common library.

The picoCORBA prototype is able to parse a byte stream coming from the
network and generate a response. The transport protocol may range from TCP
over Ethernet, through SLIP, SNAP, LonTalk, or any other reliable transport
protocol.

Instead of a byte-by-byte message parser the FSM generated by the pic-
oCORBA compiler will just compare the request message signature against the
possible set of valid signatures. Some parts of the incoming message must be
skipped from the signature calculation because they may be different on each
invocation (arguments, request identifier, etc.) but all these details may be
handled automatically by the picoCORBA compiler.

In order to simplify this procedure even further, we assume that the object
identity string (object key field) of every CORBA picoObject are exactly the
same length. This assumption does not introduce interoperability problems at
all. Object identities will appear in the generated object references and clients
are required to use it without modifications when sending requests.

We only implement messages for GIOP 1.0 even when clients may support
later versions of the protocol. The mandated CORBA backwards compatibility
ensures that this decission does not introduce interoperability problems.

GIOP dictates that peers which initiate a connection determine the byte
order used. With GIOP 1.0 the client is always the initiator and therefore the
server is required to adapt to the requested byte order. The FSM generator may
thus generate a message parser for both byte orders automatically (two valid
signatures for each method implemented). The compiler may be instructed to
assume a single byte order although this may introduce interoperability prob-
lems.

Any CORBA object should implement a set of common methods (the CORBA::Object
interface). The compiler will just include the minimum set of messages needed

8



not to compromise interoperability with standard tools. We identified the bare
minimum set of common methods to non existent and is a. The former al-
lows the client to know whether the object is willing to answer requests. The
latter offers minimal introspection capabilities. Both of them are implicitly
implemented in every generated CORBA picoObject even when no explicitly
stated.

4.1.1 GIOP Messages

In this subsection we will discuss the design decisions of current picoCORBA
implementation related to GIOP support. GIOP (General Inter-ORB Proto-
col [11]) is the only required protocol for all CORBA-compliant implementa-
tions.

GIOP 1.0 defines three types of client to server messages (Request, Lo-
cateRequest and CancelRequest) and three types of server-to-client messages
(Reply, LocateReply and CloseConnection). In addition a MessageError mes-
sage may signal error conditions.

Location messages are used to implement full location transparency. This
feature is not needed on wireless sensors where physical location is almost as
important as the functionality provided. Therefore we do not support that
feature.

The GIOP specification explicitly allows servers to ignore CancelRequest
messages. Therefore, picoCORBA ignores them without any interoperability
concern. Likewise CloseConnection messages will never be generated because
picoCORBA objects are considered “always on”. Therefore picoCORBA ob-
jects may just implement version 1.0 Request and Reply messages without a
significative loss of interoperability.

Request messages are also simplified as much as possible. For example,
the service context field and the response expected fields are ignored. The
CORBA picoObjects always generate replies even if they are not required. This
is a standard compliant behaviour because the clients must ignore not requested
replies. Besides the object key field identifying the target object is assumed
to be of fixed length. This is transparent to clients and it does not affect
interoperability.

Reply messages are always generated when a correct request is received.
Obviously, the reply message payload depends on the corresponding request
message and also on the user procedure. The fields service context and
request id are directly copied from the request message, and the reply status

field always contains the value NO EXCEPTION since in picoCORBA neither ex-
ceptions nor location forward are supported.

An ErrorMessage should be sent by a receiver of an incorrect message. Since
picoCORBA ignores any non-supported message, it also ignores malformed or
incorrect messages and will never produce an ErrorMessage. For most cases this
is not a severe limitation since CORBA assumes a reliable transport anyway.

9



4.2 PicoICE

ZeroC, Inc. developed a high quality distributed object framework called ICE
(Internet Communication Engine) built upon the experience of CORBA. It im-
plements a feature set unparalleled in any other free distributed object platform
(object persistence, object migration, authentication, security, replication, de-
ployment services, firewall gateways, etc.). Despite the current lack of support
for deeply embedded platforms, ICE offers a few advantages over CORBA to
reduce resource comsumption such as a simpler protocol.

Any ICE object must implement the ICE::Object interface by default. This
interface provides minimal introspection capabilities (ice isA, ice id, ice ids)
and reachability test (ice ping). All these methods are automatically generated
by the picoICE compiler although we may optionally skip the introspection
messages. Introspection is not used when objects are contacted using one-way
transports (such as UDP).

4.2.1 IceP Messages

IceP is the protocol used for ICE object interaction. It defines two types of client
to server messages (Request, BatchRequest) and two types of server-to-client
messages (Reply, ValidateConnetion). In addition a CloseConnection message
may be used by both peers to shut down a connection.

ValidateConnetion and CloseConnection messages are used only with con-
nection oriented transport protocols. They may be ignored when sensors are
using unreliable protocols (such as UDP).

PicoICE supports all IceP messages but one, BatchRequest. This does not
introduce interoperability problems since batching is an optional optimization
feature. It uses standard IceP headers but the compressionStatus field is
always 0 (not allowed). Compression is also an optional feature which is not
even applied to small messages (less than 100 bytes).

Request messages are similar to CORBA requests. There is a request identi-
fier (requestId) used to match requests and replies which needs to be copied to
the reply message. There is also an object identity similar to GIOP object key

field which is assumed to be constant length.
Reply messages contain results for two-way invocations, i.e. the output

parameters and return value. Besides these messages carry a replyStatus field
which picoICE sets always to 0 for correct invocations and to 7 (unknown excep-
tion) for unhandled requests. A more sophisticated error handling mechanism
with more specific error reporting and exception raising may be implemented
but it would require extra resources.

When an object (server-side) accepts a new incoming connection (when using
a connection oriented protocol) it must first send a special message to acknowl-
edge it. Likewise when a client stops sending requests to a server it sends a
CloseConnection message. Server must then reply with another CloseConnec-
tion message. An ICE server may also send this message to tell the client that
it will not accept new requests. ICE picoObjects reply to this message, however

10



they do not emit them.

4.3 Basic interface for actors

In our discussion so far we described a completely general approach to the de-
velopment of small distributed objects but we may simplify the implementation
even further by specifying the set of allowed interfaces.

All actors (sensors or actuators) implement a very simple interface exposing
an internal state. The state of a sensor is the value of the last measure of a
physical magnitude. There are different interfaces depending on the data type
they manage.

Depending on how actors interact with application objects we may identify
four categories: passive actors must be queried synchronously using the get

method, active actors are able to invoke a set message on another object
(usually an event channel) passing the current state of the actor, proactive
sensors are active sensors able to invoke set whenever a state change occurs, and
reactive sensors are active sensors that will invoke set on-demand whenever
a client invokes its standard ice ping method. The semantics of ice ping is
therefore extended.

Passive actors require a two-way communication model while the active ac-
tors may also be used with a one-way communication model. Active actors
implement an additional interface in order to comfigure remotely the destina-
tion of the set events.

4.4 Implementation results

Using the strategies and policies described so far we developed a set of pro-
totypes for both picoCORBA and picoICE objects. Table 1 shows the size of
several implementations of a picoObject for different platforms. It also shows
the size of a server implemented on some other architectures.

Probably one of the most used microcontrollers in WSN platforms is the
Atmel128. The size of a picoObject (ICE version) implemented on a Chipcon
CC2420DB Zigbee node (platform based on an Atmel 128L microcontroller) is
1923 bytes. The Zigbee communications library (RF) accounts for 69% of the
code.

5 Wireless sensor network services

Using standard middleware interfaces is a way to leverage the existing devel-
opment tools and expertise, but the distinctive characteristics of WSN call for
specific services. In this section we describe a set of services designed to ease
the development of WSN applications.

11



Embedded middleware Minimal server

TAO 1738KB+OS
nORB 567KB+OS
UIC/CORBA 35KB+OS
JacORB (Java) 243KB
ZEN (Java) 53KB+OS
MicroQoSCORBA (TINI) 21 KB
TinyLime (TinyOS mica2 platform) 16KB
TinyDB 58KB
picoCORBA (C) 5.2KB+OS
picoCORBA (Java) 5 KB+OS
picoCORBA (TINI) 4 KB
picoCORBA (PIC12C509) 415 words
picoICE (C) 5.4KB+OS
picoICE (PIC12C509) 503 words
picoICE (Atmel128) 1923 bytes
picoICE (Atmel128 + Zigbee library) 6184 bytes
picoICE (tinyOS mica2 platform) 11KB

Table 1: Size of a small server on embedded middlewares

5.1 Event channels

We use extensively the event generation and propagation service provided by the
underlying middleware. For example, IceStorm, the ZeroC ICE event channel
service, is able to use several transport protocols at same time in a transparent
way. Each publisher or subscriber may select its own protocol individually.

However, it is not convenient to connect too many nodes to the same event
channel due to scalability reasons. Therefore, several event channels (topics in
ICE parlance) are used. Event channels impose minimal overhead and they may
be federated by means of “links” to propagate events hierarchically. These links
may be customized to filter-out events with a priority below a certain threshold.

Event channels and reactive sensors (see section 4.3) may be combined to
generate powerful interaction models. For example, as a way to estimate the
average temperature of a room we may use an event channel to propagate the
standard ice ping method to all the available temperature sensors. Then we
may use another event channel to collect the set method invocations for all of
them. The whole procedure is shown in figure 3.

5.2 Announcements

When a node is switched on (and also periodically), it invokes the adv method
of a specific event channel named ASD.announce. The adv method publishes
the remote object reference and an associated property service (see section 5.3).
The whole invocation may be fully static and therefore it may reside in the
device ROM. A node which is not even be able to invoke adv may delegate in
an external agent.

Whenever a client or a service is interested in node advertisements it just
needs to implement the iListener interface and subscribe to the ASD.announce

12



ice_ping()

<<create>>

link(channel 1)

link(channel n)
...

subscribe(self)

<<create>>

subscribe(actor 1)

subscribe(actor n)

...

ice_ping()
set(value)

set(value)

set(value)

application

cb : Topic

actor

actor

channel

<<create>>

Figure 3: Sequence diagram for multi-requests.

channel. On each adv subscribers will get the object reference and then they
may use the middleware standard introspection mechanisms to find out the
interfaces implemented by the object. In spite of the high abstraction level of
this announcement procedure it may be implemented on very simple devices
with an identical behaviour respect to a conventional object.

5.3 Properties

As seen above, the prop argument in the adv method is an object proxy (the
property server). This is a conventional object which keeps a list of property
values for the announced object. Properties are specified by means of a textual
key and a values that may range from a scalar types such as an integer or a
string to binary drivers or Java applets. They are always optional information,
useful for initial deployment and system configuration applications, but system
functionality is never affected by the lack of a property server.

There are several deployment alternatives available: (1) the property server
may refer to an external dedicated property service which manages properties
for many nodes; (2) or it may be implemented by the node itself; (3) or there
may even be no property server for a given node.

13



lookup(cb, query)

<<create>>

subscribe(self)

lookup(cb, query)

adv(actor, prop)

adv(actor, prop)

Figure 4: Sequence diagram for service lookup.

5.4 Service Lookup

When an application needs to find an object providing a particular service it
needs a callback object (it may even be an event channel to share the results).
Then the application invokes the lookup method on the ASD.search event chan-
nel passing the requested property values and the callback proxy.

The actors (subscribed to the ASD.search channel) matching the criteria will
invoke adv method of the callback proxy. A sequence diagram of this procedure
is shown in figure 4. Note that the figure shows a callback object implemented
as an event channel. Therefore other applications interested in the results may
subscribe to it.

5.5 Network deployment

Deployment of WSN has been traditionally approached by means of an appli-
cation level gateway. Multi-hop routing algorithms coexist with gateway nodes
which store data collected from the WSN and provides such information to the
remaining infrastructure. They behave as a bridge between different technolo-
gies used in WSN (i.e. Zigbee) with technologies used in the remaining of the
system (i.e. Ethernet or 802.11 based networks).

Meanwhile most previously proposed architectures assume some application
level components runing in the gateways just for integration purposes (i.e sensor
abstraction layer in Sensation project or the base station host in TinyLIME).
Our approach reduces the role of the gateway to a simple bridge between dif-
ferent technologies which usually implements just header rewriting.

6 Conclusions

Standard distributed object platforms offer an attractive development model
for WSN applications. Traditional implementations focus on flexibility and
features but there is a broad range of design tradeoffs to be explored on specific
environments. The picoObjects and the hardware middleware proposed in this

14



article meet the needs of powerful wireless sensor nodes without compromising
the interoperability with standard services.

Besides WSN applications deal with extremely dynamic environments that
need specific support services. We described a set of services ranging from event
propagation to discovery services that cooperate to build a robust infrastructure
for highly scalable WSN applications. Built on top of a traditional RMI concept,
these services may be defined at a very high level of abstraction.

Our prototypes show that the proposed implementation strategies lead to
very low footprint, two orders of magnitude lower than some previous ap-
proaches to middleware embedding and also lower than other WSN middlewares.
Our approach vastly reduces the complexity of network gateways. Besides the
hardware object implementation extends the range of WSN applications to more
demanding needs by means of a low-cost FPGA device.

The proposed design flow achieves better orthogonalization of concerns by
separating the WSN application development, the embedded code development,
and the application deployment. WSN application developers may use standard
distributed development tools and design flows. Embedded code developers
use a very similar design flow starting from the same interface specification.
Deployment is orthogonal to the application development and may be changed
interactively using a flexible distributed property service.

Future developments will focus on higher level services for improved scala-
bility, object migration, fault tolerance, real-time characterization, and quality
of service guarantees.

References

[1] Mauri k., Marko H. and Timo D. A Survey of Application Distribution
in Wireless Sensor Networks, EURASIP Journal on Wireless Communi-
cations and Networking, 2005, Vol 5, pp. 774-788.

[2] Tilemahos H., George A., Vassileios T., Odysseas S. and Stathes H. Sen-
sation: A Middleware Integration Platform for Pervasive Applications in
Wireless Sensor Networks , Proc. of the 2nd European Workshop on Wire-
less Sensor Networks, 2005, pp. 366-377.

[3] Curino, C. and Giani, M. and Giorgetta, M. and Giusti, A. and Murphy,
A. L. and Picco, G. P. TinyLIME: bridging mobile and sensor networks
through middleware, Third IEEE International Conference on Pervasive
Computing and Communications 2005; pp. 61-72.

[4] C. Intanagonwiwat, R. Govindan, D. Estrin. Directed diffusion: A scalable
and robust communication paradigm for sensor networks, in Proceedings
of the Sixth Annual International Conference on Mobile Computing and
Networking 2000; pp. 56-67.

[5] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pister. System Ar-
chitecture Directions for Networked Sensors. Proceedings of Ninth Interna-

15



tional Conference on Archi- tectural Support for Programming Languages
and Operat- ing Systems (ASPLOS), 2000; pp 93-104.

[6] Sam M., Michael J.F., Joseph M.H, Wei H. TinyDB: An Acqusitional
Query Processing System for Sensor Networks, ACM Transactions on
Database Systems 2005; 30(1), pp.122-173.

[7] F. Moya, J.C. López. SENDA: an alternative to OSGi for large-scale do-
motics networks, The Proceedings of the Joint International Conference on
Wireless LANs and Home Networks (ICWLHN) and Networking (ICN),
World Scientific Publishing 2002; pp 165-176.

[8] J.H. Park, M.J. Lee, S.j. Kang. CORBA-based distributed and replicated
resource repository architecture for hierarchically configurable home net-
work, Journal of Systems Architecture 2004; Vol 51 pp. 125-142.

[9] J. Oh, J. Park, G. Jung, S. Kang. CORBA based Core Middleware Ar-
chitecture Supporting Seamless Interoperability between Standard Home
Network Middlewares, IEEE Transactions on Consumer Electronics 2003;
Vol 49, No 3, pp 581-586.

[10] M. Henning, M. Spruiell. Distributed Programming with Ice, 2006, avail-
able online at http://www.zeroc.com/ (Last visited 26-2-2007).

[11] Object Management Group, The Common Object Request Broker:
Architecture and Specification, ed. 2.3, June 1999. Available in
http://www.omg.org/ (Last visited 26-2-2007), document id: 98-12-01.

[12] Sun Microsystems, Jini Architecture Specification, ed. 1.2, available online
at http://www.sun.com/ (Last visited 26-2-2007).

[13] R. Gupta, D.P. Agrawal. Jini Home Networking: A Step toward Pervasive
Computing, Computer 2002; pp. 34-40.

[14] D. Puccinelli, M. Haenggi, Wireless Sensor Networks: Applications and
Challenges of Ubiquitous Sensing, IEEE circuits and systems magazine
2005; Vol 5, No 3, pp 19-31.

[15] P. Bonnet, J. E. Gehrke, and P. Seshadri. Querying the Physical World,
IEEE Personal Communications 2000; vol. 7, no. 5, pp 10-15.

[16] A. Boulis SensorWare Users & Programmers Guide Available at
http://sensorware.sourceforge.net/ (Last visited 26-2-2007). March 2004.

[17] A. Boulis, C.-C. Han, M. Srivastava. Design and implementation of a
framework for efficient and programmable sensor networks, In Proceedings
of MobiSys 2003; pp. 187-200.

[18] T. Liu and M. Martonosi. Impala: A Middleware System for Managing
Autonomic, Parallel Sensor Systems, Proc. ACM SIGPLAN Symp. Prin-
ciples and Practice of Parallel Programming 2003; pp. 107-118.

16



[19] K. Romer , Programming Paradigms and Middleware for Sensor Networks,
GI/ITG Workshop on Sensor Networks Avalaible 2004; pp 49-54

[20] S. Li, S.H. Son, and J. A. Stankovic. Event Detection Services Using Data
Service Middleware in Distributed Sensor Networks, Information Pro-
cessing in Sensor Networks: Second International Workshop 2003; LNCS
Vol. 2634, pp. 502-517.

[21] Object Management Group, Minimum CORBA Specification, ed.
2.3, August 2002, available online at (Last visited 26-2-2007)
http://www.omg.org/, document id: 02-08-01

[22] M. Roman, A. Singhai, Integrating PDAs into Distributed Systems: 2K
and PalmORB, In Proceedings of International Symposium on Handheld
and Ubiquitous Computing 1999; pp. 137-149.

[23] M. Román, Fabio Kon, Roy H. Campbell, Reflective Middleware: From
Your Desk to Your Hand, IEEE Distributed Systems Online 2001; 2(5).

[24] Fabio Kon, F. Costa, G. Blair, Roy Campbell. The Case for Reflective
Middleware, Communications of the ACM: special issue in adaptive mid-
dleware 2002; Volume 45, Issue 6, pp 33-38.

[25] M. Roman, M. Dennis, Mickunas, Fabio Kon and Roy Campell. LegORB
and Ubiquitous CORBA, In Proceedings of IFIP/ACM Middleware’2000
Workshop on Reflective Middleware 2000; pp. 1-2.

[26] PrismTech, OpenFusion e*ORB Real-time Embedded
Whitepaper, available online at (Last visited 26-2-2007)
http://www.prismtechnologies.com/.

[27] V. Subramonian, G. Xiang. Middleware Specification for Memory-
Constrained Networked Embedded Systems, In 10th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS) 2004; pp 306-
313.

[28] W. Nagel, N. Anderson. A Protocol for Representing Individual Hard-
ware Devices as Objects in a CORBA Network, Real-time and Embedded
Distributed Object Computing Workshop 2002.

[29] Haugan, Olav. Configuration and Code Generation Tools for Middleware
Targeting Small Embedded Devices, M.S. Thesis, Dec 2001, Washington
State University.

[30] Rodrigues, G., Ferraz, C. A CORBA-Based Surrogate Model on IP Net-
works, In Proceedings of the 21st Brazilian Symposium on Computer Net-
works 2003.

[31] D.C. Schmidt and C. Cleeland. Applying Patterns to Develop Extensible
ORB Middleware, IEEE Communications Magazine 1999; vol. 37, no. 47,
pp. 54-63.

17



[32] A. Dunkels, Full TCP/IP for 8-Bit Architectures, In Proceedings of the
first international conference on mobile applications, systems and services
2003; pp 85-98.

[33] A. Dunkels, Juan Alonso, and Thiemo Voigt. Making TCP/IP Viable for
Wireless Sensor Networks, In Proceedings of the First European Workshop
on Wireless Sensor Networks (EWSN) 2004.

18


	1 Introduction
	2 Related work
	2.1 Middlewares on wireless sensor networks
	2.2 Reducing the footprint of distributed objects

	3 Embedding distributed objects
	3.1 Implementation tradeoffs
	3.2 WSN application design flow

	4 Interoperability of embedded objects
	4.1 picoCORBA
	4.1.1 GIOP Messages

	4.2 PicoICE
	4.2.1 IceP Messages

	4.3 Basic interface for actors
	4.4 Implementation results

	5 Wireless sensor network services
	5.1 Event channels
	5.2 Announcements
	5.3 Properties
	5.4 Service Lookup
	5.5 Network deployment

	6 Conclusions

