
Object-Based Communication Architecture for

System-on-Chip Design

Jesús Barba, Fernando Rincón, Francisco Moya, Juan Carlos López, Julio Dondo

Dept. of Technology and Information Systems

School of Computer Science, University of Castilla-La Mancha

Ciudad Real, Spain

Jesus.Barba@uclm.es

Abstract—In this work, we present an integrated approach to the

SoC design problem based on a mixed (HW and SW)

implementation of a system-level middleware specifically

designed for SoCs: the Object-Oriented Communication Engine

(OOCE). OOCE provides a high-level and homogeneous view of

the SoC components based on the Distributed Object paradigm.

The resulting communication infrastructure easies the

integration of the HW and SW parts, allows the automatic

generation of the HW/SW interfacing adapters and also enables

true concurrent design methodologies.

To prove the viability and efficiency of our proposal a

prototype implementation on the Xilinx-V2 Pro platform has

been developed.

Keywords-SoC design; automatic synthesis; object-oriented

design methodology; HW/SW interfacing

I. INTRODUCTION

Currently, the concept of SoC (System-on-a-Chip) is the
maximum exponent of the continuous improvement in the
manufacturing process of integrated circuits. However,
important shortcomings arise in traditional development
methodologies because of the complexity of such kind of
system. Hence, getting a set of hardware and software pieces
and making them work together almost without effort is a
utopia.

Heterogeneity in communication infrastructures, IPs
(Intellectual Property) cores coming from different providers
and the dependency of the hardware platform to start coding
the embedded software are some of the challenges a SoC
designer must face.

The magic recipe, which has been widely adopted by the
academia and CAD industry, to cope with the above mentioned
problems, consists in raising the abstraction level of the
specifications that will drive the design and implementation
processes of a SoC. The final objective is to shorten the time
invested in the development process by means of reusing
existing components and systems, automating the more tedious
and error-prone tasks and parallelizing the work of the
hardware and software teams [1].

Therefore, the election of the right system model that would
effectively enable the above mentioned design techniques must
be in the core of any successful proposal.

In this paper, we come up with a comprehensive solution to
recurrent problems in SoC design: the Object-Oriented
Communication Engine (OOCE from now on). OOCE makes
several contributions to the state-of-the-art in embedded system
design from different points of view:

• Hardware. OOCE easies component integration and
promotes the reuse of legacy IPs.

• Software. OOCE offers a unified and high-level
communication interface for both HW and SW
components which simplifies the programming task.

• Methodology. OOCE becomes as an enabler for
concurrent HW/SW design. OOCE also automates the
generation of the solution.

OOCE puts the focus on the definition of the interface
components and communication models of a SoC. It provides a
set of services on top of a component model that can be used to
implement several models of computation. Thus, designers
only have to use such facilities after modeling the application
to implement the system, avoiding an important amount of
work that they probably perform ad-hoc for every application.

The chosen component and communication model for SoCs
is based on the distributed object paradigm. The reasons for
such selection can be summarize in: (1) capability to unify
HW/SW communication interface, (2) suitability for
reconfigurable computing due to object built-in state
management and serialization mechanism, and (3) transparent
management of the communications.

A. Related work

Lately, the middleware concept has attracted the interest of
the embedded system community as a feasible solution to
many of the problems sketched in the previous section.

For example, Paulin et al. in [2][3] present Multiflex which
is a CORBA-inspired middleware infrastructure for embedded
systems, mainly targeted to multimedia and wireless
applications. Mutiflex also relies on the distributed object
paradigm to offer an homogeneous view of the interface
communication between HW and SW. However, there are no
clear references in Multiflex regarding how transparency (key
concept in any middleware) is managed in it.

This research was supported by the Spanish Ministry of Science and
Innovation under the project DAMA (TEC2008-06553/TEC), and by the

Regional Government of Castilla-La Mancha under project RGRID (PAI08-

0234-8083).

Many other works borrow well known concepts from the
middleware microcosm but not define a completely
communication infrastructure such as Multiflex or OOCE. In
this line, it is worth mentioning the work of Klingauf et al. It
describes how the concept of Hardware Procedure Call (HPC)
[4], on top of Transaction Level Modeling concepts, offers a
truly high-level access mechanism to HW functions in a
service oriented manner. There are no references to the
architecture of the resulting hardware/software supporting
platform for HPCs and its efficiency. HPC can be considered
as an HW implementation of the Remote Procedure Call
semantics, the basis of many non-object based middlewares.

II. THE PROPOSAL

OOCE is a system-level middleware for SoCs based on a
distributed object model and the Remote Method Invocation
(RMI) semantic (present in current state-of-the-art software
middlewares) to seamless integrate the HW and the SW parts
of a SoC. The middleware is an abstraction layer that provides
advanced communication services independently of the
underlying hardware platform, programming language or
operating system used.

OOCE presents a hybrid communication infrastructure
specifically tailored for SoCs where many of the entities that
conforms the platform are implemented in HW so that the
maximum efficiency with the minimum overhead can be
guaranteed. On top of this, a set of tools have been developed
to allow the automatic generation of most of the infrastructure
from a system high-level specification. OOCE provides a set of
basic services upon which new ones with a higher degree of
complexity can be built.

Throughout the rest of this paper we will give more details
of the OOCE architecture, the services that have been defined
and the tools that allow building OOCE-based implementations
using a semi-automatic design flow.

III. A DISTRIBUTED OBJECT MODEL FOR SOCS

The Distributed Object Model (DOM) provides the
components in a bus-based SoC with the necessary semantics
for intercommunication. By semantics we mean how such
components represent the data to be exchanged, and how
they use the bus interface signals to assure a correct
communication and data delivery.

The DOM defined by OOCE, which is specifically adapted
for SoCs, includes: (1) a recommendation of implementation of
objects as hardware modules, and (2) a specification of how
invocations between objects within a SoC are mapped to read
and write transactions over the interconnection infrastructure
(i.e. the RMI protocol for SoCs).

A. OOCE Hardware Objects

The concept of hardware object is used to reduce the gap

between system specification and the final implementation.

The aim of OOCE is not to constrain how an object in the

model must be implemented, but to recommend a common

way to interact with the cores to help to automate the

generation of OOCE communication adapters (proxies and

skeletons). Otherwise, the designer should write the

necessary glue logic to adapt the different interfaces as in

traditional design flows. A hardware object comprises: (1) a

standardized and simple interface to model point-to-point

connections with the IPs that implement the object

behaviour, (2) a local (point-to-point) method invocation

protocol, and (3) mechanisms to retrieve and set the state of

the object.

One of the main features of the hardware object model is

the flexibility to define how method parameters are

written/read to/from the IP (synchronous or asynchronous

local invocations) as well as the size of the data ports. This

makes it easier to fit the final implementation to particular

design constraints and also to adapt existing IPs.

B. OOCE RMI Protocol

The OOCE RMI protocol defines the number and type of
messages that the client object exchanges with the server object
to invoke a method in the second. The signature of a method
determines the type of invocation to be performed: one-way or
two-way. One-way invocations are only possible when there
are neither outputs nor return values in the method definition.
In this case, a sole request message flows from the client to the
server. When a two-way invocation takes place, the client
expects, after the execution of the method, a response message
from the server with the results. OOCE can manage the
invocation process both asynchronously or synchronously.

The OOCE RMI protocol also defines the format of the
message to be sent and the encoding rules for the message
payload. The format of the messages remains unchanged, no
matter the nature of the communicating objects. This means
that a target object is not able to distinguish whether the source
of the invocation is a SW or a HW object. This is essential to
offer access and location transparency.

Finally, message delivery consists in a sequence of write
operations on the destination until the message body, is
completely sent. The target address of a message is derived
from its header fields. Since write operations are basic services
offered by any bus technology, the complete process can be
easily targeted to any particular one. If available, advanced
communication mechanisms such as bursting or split
transactions may be used.

IV. OOCE IN DETAIL

The OOCE architecture is shown in Fig. 1, where the
supported communication scenarios are also depicted. Proxies
and skeletons (the middleware communication adapters) are
the most important components since they are on the basis of
the RMI semantics. Any method invocation takes place
between a proxy and a skeleton, which translate the OOCE
RMI protocol to the particularities of the in-chip
communication channel. OOCE provides the tools for the
automatic generation of such components, so developers do not
have to deal with the cumbersome task of designing and
implementing such adapters.

The Local Object Adapter (LOA) and the Local *etwork
Interface (LNI) manage the communications between HW and
SW components. The LOA is platform independent and it is
provided as part of the OOCE component library. On the other
hand, the LNI (conceived as a coprocessor) depends on the
interface with the processor, so some parts must be written ad-
hoc for every new target platform.

The Remote Object Adapter (ROA) provides connectivity
with external objects and/or systems. One side of the ROA
depends on the component that acts as the bridge with the
external network so it has to be hand made. However, on the
side interacting with the local on-chip network, the control
logic is fully customizable and generated in an automatic way.

Following, the different communication scenarios and
services are analyzed.

A. HW to HW invocation

HW proxies and skeletons isolate the physical components
that implement the client and the server HW objects from the
bus. They are also in charge of adapting the point-to-point
invocation protocol to the OOCE RMI semantics. Several
templates for HW proxies and skeletons have been defined,
which combine synchronous-asynchronous and direct-indirect
invocation styles. These templates are specialized (in an
automatic way, using an interface compiler) according to the
signature of the methods offered, so the resulting
implementation is optimal.

A layered approach for the architecture definition of these
elements has been followed. In the highest level, the adaptation
of the data according to the local method invocation
mechanism imposed by the HW object interface is done. In the
lowest one, bus specific signalling is carried out in order to
deliver the message built in upper layers according to the
remote protocol rules.

Skeletons and proxies are able to perform re-ordering of
requests and responses if required. This allow to implement a
concurrency transparency mechanism in an asynchronous
communication scenario as well as a quality of service

mechanism, delaying the processing or delivering of protocol
messages according to an encoded priority parameter.

B. HW/SW communication

HW/SW communication is also transparently handled in
OOCE. Therefore neither HW nor SW objects must change the
way they interface depending on which the target/source of a
method invocation is. The RMI protocol assures that any
method invocation involving HW and SW objects uses exactly
the same messages than the ones generated in a HW to HW
method call. Due to this, the HW templates for proxies and
skeletons need no modifications to support a HW-to-SW or
SW-to-HW communication. This keeps the OOCE HW/SW
interfacing infrastructure to a minimum.

The Local Network Interface is the bridge between the
system microprocessor, where the SW application runs, and the
HW cores. The main goal of the LNI is to keep the HW
interface and the activation protocol defined in OOCE
compatible with the SW invocation mechanisms. The LNI
routes the relevant bus traffic to a SW object, which is running
in the processor. To abstract the link with the system processor,
we have defined a layered software architecture that
progressively offers services that help the programmers to
transparently use this communication infrastructure.

C. Off-chip communication

OOCE provides transparent off-chip communication with
external components implementing the ICE protocol. ICE is an
object-oriented commercial middleware widely used in the
industry. The Remote Object Adapter (ROA) is the OOCE
component responsible for offering such functionality. Existing
on-chip objects can communicate with both, external SW
servers written using ICE and external HW servers
implemented as OOCE components. Also, on-chip OOCE
objects can be accessible from outside. It is worth to spot that
previously existing in-chip components do not have to suffer
changes in order to fit with the new communication scenario.

Figure 1. Main components of the OOCE architecture.

V. ADVANCED FEATURES

A set of advanced services and applications have been built
upon the basic communication facilities. These services can be
used to ease the development of end-user applications or more
complex services. Some of these services are an efficient HW
implementation of solutions that are usually handled by the OS,
leading to a considerable performance improvement:

• Location service (LS). The LS provides methods to
lookup and update a table of references. This table
relates a physical reference with a logical reference to
an object. The LS is mainly oriented to provide indirect
communication (IC) in a SoC.

• Group Communication (GC). The broadcast nature of
bus-based communications within a SoC can be
logically incorporated into the DOM to provide group
communication. A special set of logical references to
objects in the system are reserved and identified as
group identification references. The implementation of
a exception (errors) communication subsystem and a
service discovery protocol (applied to reconfigurable
objects) are the two GC main applications.

• Synchronization component library (SCL). We have
developed a HW version of mutexes, semaphores and
mailboxes to easily adapt pre-existing concurrent
applications.

• Reconfiguration Service (RS). Details of a RS for
adaptive, dynamic applications (using dynamic re-
configurable logic) based on OOCE can be seen in [5].

• Run-time failure management. The LS may have
several physical references to a set of objects that
implement the same functionality. If an error is

detected in one of them, IC mechanism will get a valid
reference from this pool of objects. The replacement
object can be indistinctly implemented in SW or in
HW.

VI. SOC DEVELOPMENT IN OOCE

To offer a complete support to SoC design based on OOCE,
we have developed a design methodology (see Fig. 2) based on
the model, micro-architecture and services previously
presented.

All the scripts and interface compilers are able to
automatically generate: (1) the OOCE adapters (both HW and
SW), (2) the platform, through the selection and specialization
of the communication engine elements required by the
application from a component template library, and (4) the
Xilinx EDK project files to start working with.

The entries to this final phase in the design framework are
two sets of UML diagrams. The target platform is specified
using the modeling capabilities of the OMG profile for
MARTE whereas the application is modeled by means of
standard UML object and collaboration diagrams. Such
diagrams are annotated by the stereotypes defined in an OOCE
UML profile in order to specify (among many other aspects):
(1) whether an object is going to be a SW or a HW object, (2)
the processor where the SW object is going to run, (3) a
concrete scheme of communication (synchronous or
asynchronous), or (4) the bus infrastructure and protocols used
to integrate the components by means of a association with the
corresponding platform component diagram.

We propose an iterative design framework that, starting
from a software-only object model of the system, progressively
reaches a heterogeneous implementation. This is possible
thanks to the access and location transparency principles
supported by OOCE.

The SystemC interface compiler generates the models for
the proxies and skeletons as well as all the SW/HW interfacing
OOCE components. Such model is intended to be used for a
rapid assessment of the overhead introduced by the chosen
configuration. The simulation gives data about the time spent
in each remote operation invocation (execution + RMI
protocol), the number of executions of a method, etc. Such
profiling information can be used to: (1) detect potential
communication bottlenecks, (2) calculate the required
bandwidth, and (3) help in the deployment of the components
and the election of a HW or SW implementation for each
one…; in brief, to help the designer in the exploration of the
design space.

A. HW/SW Interface compilers

In this section, we focus on HW/SW interfacing, key in the
synthesis process of Hardware-dependent Software (HdS)
which has become one of the principal matters of concern in
embedded systems due to the increasing amount of software
that such systems include [6].

Figure 2. Simplified design flow in OOCE.

In the case of HdS, objects provide a more stable
development scenario, and at the same time they set the basis
of good design for reuse practices. In other approaches, the
interfaces offered to the programmers are low-level and very
sensitive to variations in the hardware cores (i.e. the access
through a register bank interface). Software developers may
then invest most of their time and effort in rewriting small parts
of the software, leading to a more unproductive work.

In OOCE the automatic generation of the HW/SW
interfacing infrastructure, boost the productivity of the
embedded software developers because (1) they do not have to
wait for a physical platform prototype, and (2) unnecessary
iterations are avoided.

To illustrate this affirmation let us think in a simple
application that may need the cryptographic services of a
component which implements the DES algorithm. Fig. 4 shows
a simple version of how the main program looks like before
and after making the required changes to the code in order to
use the OOCE middleware. As it can be seen, the
implementation details of the communication with the DES
core are hidden behind the OOCE HW/SW interfacing
infrastructure. The most important changes are related to the
instantiation of the OOCE runtime support object where the
proxy to the DES core must be registered in. The DES object
constructor suffers only a slight modification since it is
mandatory to provide the physical base address of the IP core
that implements such functionality. Nonetheless, the
middleware also defines a method to obtain such address at
runtime which is useful in dynamic environments.

A new version of the DES class, which is interface-
compatible with the former one, is generated by the interface
compilers. This class is in charge of interacting with the
middleware. Fig. 3 shows some parts of the constructor and
proxy to the des method.

The resulting code for the main application is clean and
easy to understand which promotes reuse and maintainability.
Also, the application is more robust to unforeseen changes in
the hardware platform and almost the entire software stack can
be used ‘as is’ in future designs. Therefore, the writing of the
embedded software can start as soon as desired, even in parallel
with the design of the hardware design. No matter the physical

interface of the hardware core, it can be modified or replaced
by a different core from another manufacturer; the logical
interface remains invariable.

VII. EXPERIMENTAL EVIDENCE

In order to evaluate the viability and efficiency of our
proposal, we have compared a non-OOCE-based
implementation of a simple image processing application with
the OOCE-based one. Such application consists of a video
capture, a space color converter and a video sink components
which are connected to the system bus. The goal is to compare
the resource consumption as well as the communication
overhead by means of measuring the frame rate achieved. In
both versions we have used the same hardware cores for the
three main application components enumerated above, and the
target platform is a Xilinx Virtex2Pro prototyping board.

For the first version (non-OOCE) of this application we
used the tool chain provided by Xilinx in order to generate the
IPIF core adapters for the PLB bus. The MicroBlaze executes a
software routine which is in charge of configuring and
controlling the movement of data using the DMA engine. The
software uses the provided Xilinx drivers to interface with the
IPs.

In version two (OOCE-based), we have generated the core
bus wrappers making it use of our interface compilers. As
mentioned before, the interfacing software routines were also
obtained. Contrary to the non-OOCE version, the control
software routine running in the processor has little
responsibility regarding data movement between blocks. Such
duty is now delegated to the component wrappers. Proxies and
skeletons are able to synchronize and exchange data buffers on
their own, without the intervention of the software. This is
possible because the HW to HW asynchronous invocation
semantic introduced by OOCE. The interface to software is
limited to the initial configuration (setup of the producer and
consumer logical links – SW to HW invocations) and the error
control flow (exception notification – HW to SW invocations).

In both versions, after the core wrapper generation, it was
needed some manual work in order to adapt the wrapper logic
to the core interface.

Figure 3. Original main program and modifications (boxed sentences).

long des::crypt(long key, long data) {
 tOOCE_msg msg;
 void *ptr = NULL;
 msg.src = 0
 msg.dst = this�objid;
 msg.rid = this�rqid++;
 msg.op = this�CRYPT_OPID
 msg.type = OOCE::OOCE_MSG_REQUEST;
 msg.size = 4; //known at design-compile time
 //marshalling
 ptr = &msg.data
 *(long *) ptr = key;
 ptr += sizeof(long);
 *(long *) ptr = data
 this�_loa�send(&msg); //blocking call,
//response is passed back within the same structure
 return *(long *)msg.data;
}

Figure 4. Generated C++ code of a DES crypto SW proxy

TABLE I. RESOURCE AND TIMING COMPARISON

System Version

�on-OOCE OOCE-based

LUTs 12105 11258 (-7%)

FFs 7710 7324 (-5%)

Measured Frame

Rate (fps)
13 15 (+15%)

Table I shows all the results regarding implementation

efficiency and communication overhead. Our system proves to
be more efficient since it does not suppose an increment in the
required resources mainly due to a significant reduction in the
logic for the bus adapters (up to 40% less).

Moreover, a better frame rate is also achieved by the
OOCE-based implementation since most of the control
operations avoid the use of software routines. This represents a
reduction of the processor load since most of the control data
flow traffic does not necessary pass through the processor.

Regarding implementation details of each OOCE platform
components, following we present a brief summary. All of them
have been prototyped on the Xilinx XUP-V2Pro board.

The OOCE component library comprises two versions of
the LNI coprocessor (one for the Microblaze using the FSL
interface and one for the Power PC using the DCR bus) and a
customizable core for the ROA (OPB and PLB versions) that
works with the Ethernet MAC core from Xilinx. Regarding the
SW side, the LNI_link layer had to be tailored to the FSL and
the DCR interfaces aforementioned. On the contrary, only one
implementation of the LOA layer was done since it is platform
independent. The total size of the software stack (excluding the
generated SW proxies and skeletons) is 90 lines of C code
which has a positive impact in the overhead introduced in
HW/SW communication. The interface compilers are written in
C++ and, currently, they only support the generation of VHDL
for HW and C++ or C for SW. They both are thought to be
easily extended to other implementation languages such as
Verilog or Java if required.

The evaluation of the extra HW resources needed by the
OOCE infrastructure is quite satisfactory. In average, each HW
wrapper only represents about 1% of the total logic used by a
single core. When we compare the HW proxies and skeletons
with the equivalent Xilinx IPIF solution, OOCE demands much
less resources (this reduction ranges from 20% to 40%).
Moreover, HW proxies and skeletons together with the LNI
provide exactly the same communication services to SW

resources than IPIF and increment the HW/SW communication
bandwidth up to 40%. This important increment in performance
is due to the efficiency of the software layer and the small delay
introduced by the LNI component in HW/SW invocations (just
6 cycles for incoming traffic and 3 cycles for an outgoing
invocation). The LNI core represents an increment of about 5%
and 3% regarding the logic used by the Microblaze and the
PowerPC respectively.

The ROA core is able to process ICEP messages two orders
of magnitude faster than its counterpart in SW. The ROA is
able to parse a complete frame (Ethernet, TCP and ICE
headers), check and validate the packet and translate the object
and method identification strings to internal bus addresses in
less than 90 microseconds.

VIII. CONCLUSIONS

In this paper, a complete approach for SoC design based on
a distributed object model is presented. OOCE defines a light-
weight, efficient communication architecture for systems that
are modeled as communicating objects. The principal features
of OOCE are: (1) flexibility since it is extremely easy to adapt
it to new target technologies, (2) it provides the same
programming interface for HW and SW elements (which boost
the productivity of the embedded software developers), (3) it
adds the necessary semantics to directly translate invocations to
an implementation level using elemental communication
services, (4) it supports advanced services to ease the
management of complex tasks such as synchronization,
migration, replication, etc., and (5) most of its components are
generated in and automatic way.

REFERENCES

[1] Jerraya, A.A., “HW/SW Implementation from Abstract Architecture
Models,” Proc. DATE’07, 2007, pp. 1-2.

[2] P.G. Paulin et al. Parallel Programming Models for a Multiprocessor
SoC Platform Applied to *etworking and Multimedia, IEEE
Transactions on VLSI systems, vol. 14, 17, July 2006.

[3] P.G. Paulin et al. Distributed Object Models for Multi-Processor SoC's,
with Application to Low-Power Multimedia Wireless Systems. In Proc.
of Design Automation Conference, Mar 2006.

[4] Klingauf, W. et al.., “Embedded software development on top of
transaction-level models”. CODES+ISSS '07, 2007.

[5] Dondo, J. , Rincon, F., Barba, J., et al. ,“Dynamic reconfiguration
management based on a distributed object model,” Proc FPL’07, 2007,
pp.684-687

[6] A.A. Jerraya, A. Bouchhima, F. Pétrot, “Programming models and Hw-
Sw interfaces abstraction for Multi-Processor SoC”, In Proc. of the 43th
Design Automation Conference, San Francisco, California, 2006.

