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Abstract—In this work, we present an integrated approach to the 

SoC design problem based on a mixed (HW and SW) 

implementation of a system-level middleware specifically 

designed for SoCs: the Object-Oriented Communication Engine 

(OOCE). OOCE provides a high-level and homogeneous view of 

the SoC components based on the Distributed Object paradigm. 

The resulting communication infrastructure easies the 

integration of the HW and SW parts, allows the automatic 

generation of the HW/SW interfacing adapters and also enables 

true concurrent design methodologies. 

To prove the viability and efficiency of our proposal a 

prototype implementation on the Xilinx-V2 Pro platform has 

been developed. 
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I.  INTRODUCTION 

Currently, the concept of SoC (System-on-a-Chip) is the 
maximum exponent of the continuous improvement in the 
manufacturing process of integrated circuits. However, 
important shortcomings arise in traditional development 
methodologies because of the complexity of such kind of 
system. Hence, getting a set of hardware and software pieces 
and making them work together almost without effort is a 
utopia.  

Heterogeneity in communication infrastructures, IPs 
(Intellectual Property) cores coming from different providers 
and the dependency of the hardware platform to start coding 
the embedded software are some of the challenges a SoC 
designer must face.  

The magic recipe, which has been widely adopted by the 
academia and CAD industry, to cope with the above mentioned 
problems, consists in raising the abstraction level of the 
specifications that will drive the design and implementation 
processes of a SoC. The final objective is to shorten the time 
invested in the development process by means of reusing 
existing components and systems, automating the more tedious 
and error-prone tasks and parallelizing the work of the 
hardware and software teams  [1]. 

Therefore, the election of the right system model that would 
effectively enable the above mentioned design techniques must 
be in the core of any successful proposal. 

In this paper, we come up with a comprehensive solution to 
recurrent problems in SoC design: the Object-Oriented 
Communication Engine (OOCE from now on). OOCE makes 
several contributions to the state-of-the-art in embedded system 
design from different points of view: 

• Hardware. OOCE easies component integration and 
promotes the reuse of legacy IPs. 

• Software. OOCE offers a unified and high-level 
communication interface for both HW and SW 
components which simplifies the programming task.  

• Methodology. OOCE becomes as an enabler for 
concurrent HW/SW design. OOCE also automates the 
generation of the solution.  

OOCE puts the focus on the definition of the interface 
components and communication models of a SoC. It provides a 
set of services on top of a component model that can be used to 
implement several models of computation. Thus, designers 
only have to use such facilities after modeling the application 
to implement the system, avoiding an important amount of 
work that they probably perform ad-hoc for every application.  

The chosen component and communication model for SoCs 
is based on the distributed object paradigm. The reasons for 
such selection can be summarize in: (1) capability to unify 
HW/SW communication interface, (2) suitability for 
reconfigurable computing due to object built-in state 
management and serialization mechanism, and (3) transparent 
management of the communications. 

A. Related work 

Lately, the middleware concept has attracted the interest of 
the embedded system community as a feasible solution to 
many of the problems sketched in the previous section. 

For example, Paulin et al. in [2][3] present Multiflex which 
is a CORBA-inspired middleware infrastructure for embedded 
systems, mainly targeted to multimedia and wireless 
applications. Mutiflex also relies on the distributed object 
paradigm to offer an homogeneous view of the interface 
communication between HW and SW. However, there are no 
clear references in Multiflex regarding how transparency (key 
concept in any middleware) is managed in it.  
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Many other works borrow well known concepts from the 
middleware microcosm but not define a completely 
communication infrastructure such as Multiflex or OOCE. In 
this line, it is worth mentioning the work of Klingauf et al. It 
describes how the concept of Hardware Procedure Call (HPC) 
[4], on top of Transaction Level Modeling concepts, offers a 
truly high-level access mechanism to HW functions in a 
service oriented manner. There are no references to the 
architecture of the resulting hardware/software supporting 
platform for HPCs and its efficiency. HPC can be considered 
as an HW implementation of the Remote Procedure Call 
semantics, the basis of many non-object based middlewares. 

II. THE PROPOSAL 

OOCE is a system-level middleware for SoCs based on a 
distributed object model and the Remote Method Invocation 
(RMI) semantic (present in current state-of-the-art software 
middlewares) to seamless integrate the HW and the SW parts 
of a SoC. The middleware is an abstraction layer that provides 
advanced communication services independently of the 
underlying hardware platform, programming language or 
operating system used. 

OOCE presents a hybrid communication infrastructure 
specifically tailored for SoCs where many of the entities that 
conforms the platform are implemented in HW so that the 
maximum efficiency with the minimum overhead can be 
guaranteed. On top of this, a set of tools have been developed 
to allow the automatic generation of most of the infrastructure 
from a system high-level specification. OOCE provides a set of 
basic services upon which new ones with a higher degree of 
complexity can be built. 

Throughout the rest of this paper we will give more details 
of the OOCE architecture, the services that have been defined 
and the tools that allow building OOCE-based implementations 
using a semi-automatic design flow. 

III. A DISTRIBUTED OBJECT MODEL FOR SOCS 

The Distributed Object Model (DOM) provides the 
components in a bus-based SoC with the necessary semantics 
for intercommunication. By semantics we mean how such 
components represent the data to be exchanged, and how 
they use the bus interface signals to assure a correct 
communication and data delivery. 

The DOM defined by OOCE, which is specifically adapted 
for SoCs, includes: (1) a recommendation of implementation of 
objects as hardware modules, and (2) a specification of how 
invocations between objects within a SoC are mapped to read 
and write transactions over the interconnection infrastructure 
(i.e. the RMI protocol for SoCs). 

A.  OOCE Hardware Objects 

The concept of hardware object is used to reduce the gap 

between system specification and the final implementation. 

The aim of OOCE is not to constrain how an object in the 

model must be implemented, but to recommend a common 

way to interact with the cores to help to automate the 

generation of OOCE communication adapters (proxies and 

skeletons). Otherwise, the designer should write the 

necessary glue logic to adapt the different interfaces as in 

traditional design flows. A hardware object comprises: (1) a 

standardized and simple interface to model point-to-point 

connections with the IPs that implement the object 

behaviour, (2) a local (point-to-point) method invocation 

protocol, and (3) mechanisms to retrieve and set the state of 

the object. 

One of the main features of the hardware object model is 

the flexibility to define how method parameters are 

written/read to/from the IP (synchronous or asynchronous 

local invocations) as well as the size of the data ports. This 

makes it easier to fit the final implementation to particular 

design constraints and also to adapt existing IPs.  

B. OOCE RMI Protocol 

The OOCE RMI protocol defines the number and type of 
messages that the client object exchanges with the server object 
to invoke a method in the second. The signature of a method 
determines the type of invocation to be performed: one-way or 
two-way. One-way invocations are only possible when there 
are neither outputs nor return values in the method definition. 
In this case, a sole request message flows from the client to the 
server. When a two-way invocation takes place, the client 
expects, after the execution of the method, a response message 
from the server with the results. OOCE can manage the 
invocation process both asynchronously or synchronously.  

The OOCE RMI protocol also defines the format of the 
message to be sent and the encoding rules for the message 
payload. The format of the messages remains unchanged, no 
matter the nature of the communicating objects. This means 
that a target object is not able to distinguish whether the source 
of the invocation is a SW or a HW object. This is essential to 
offer access and location transparency. 

Finally, message delivery consists in a sequence of write 
operations on the destination until the message body, is 
completely sent. The target address of a message is derived 
from its header fields. Since write operations are basic services 
offered by any bus technology, the complete process can be 
easily targeted to any particular one. If available, advanced 
communication mechanisms such as bursting or split 
transactions may be used. 

IV. OOCE IN DETAIL 

The OOCE architecture is shown in Fig. 1, where the 
supported communication scenarios are also depicted. Proxies 
and skeletons (the middleware communication adapters) are 
the most important components since they are on the basis of 
the RMI semantics. Any method invocation takes place 
between a proxy and a skeleton, which translate the OOCE 
RMI protocol to the particularities of the in-chip 
communication channel. OOCE provides the tools for the 
automatic generation of such components, so developers do not 
have to deal with the cumbersome task of designing and 
implementing such adapters. 



The Local Object Adapter (LOA) and the Local *etwork 
Interface (LNI) manage the communications between HW and 
SW components. The LOA is platform independent and it is 
provided as part of the OOCE component library. On the other 
hand, the LNI (conceived as a coprocessor) depends on the 
interface with the processor, so some parts must be written ad-
hoc for every new target platform. 

The Remote Object Adapter (ROA) provides connectivity 
with external objects and/or systems. One side of the ROA 
depends on the component that acts as the bridge with the 
external network so it has to be hand made. However, on the 
side interacting with the local on-chip network, the control 
logic is fully customizable and generated in an automatic way.   

Following, the different communication scenarios and 
services are analyzed. 

A. HW to HW invocation 

HW proxies and skeletons isolate the physical components 
that implement the client and the server HW objects from the 
bus. They are also in charge of adapting the point-to-point 
invocation protocol to the OOCE RMI semantics. Several 
templates for HW proxies and skeletons have been defined, 
which combine synchronous-asynchronous and direct-indirect 
invocation styles. These templates are specialized (in an 
automatic way, using an interface compiler) according to the 
signature of the methods offered, so the resulting 
implementation is optimal.  

A layered approach for the architecture definition of these 
elements has been followed. In the highest level, the adaptation 
of the data according to the local method invocation 
mechanism imposed by the HW object interface is done. In the 
lowest one, bus specific signalling is carried out in order to 
deliver the message built in upper layers according to the 
remote protocol rules.  

Skeletons and proxies are able to perform re-ordering of 
requests and responses if required. This allow to implement a 
concurrency transparency mechanism in an asynchronous 
communication scenario as well as a quality of service 

mechanism, delaying the processing or delivering of protocol 
messages according to an encoded priority parameter. 

B. HW/SW communication 

HW/SW communication is also transparently handled in 
OOCE. Therefore neither HW nor SW objects must change the 
way they interface depending on which the target/source of a 
method invocation is. The RMI protocol assures that any 
method invocation involving HW and SW objects uses exactly 
the same messages than the ones generated in a HW to HW 
method call. Due to this, the HW templates for proxies and 
skeletons need no modifications to support a HW-to-SW or 
SW-to-HW communication. This keeps the OOCE HW/SW 
interfacing infrastructure to a minimum. 

The Local Network Interface is the bridge between the 
system microprocessor, where the SW application runs, and the 
HW cores. The main goal of the LNI is to keep the HW 
interface and the activation protocol defined in OOCE 
compatible with the SW invocation mechanisms. The LNI 
routes the relevant bus traffic to a SW object, which is running 
in the processor. To abstract the link with the system processor, 
we have defined a layered software architecture that 
progressively offers services that help the programmers to 
transparently use this communication infrastructure.  

C. Off-chip communication 

OOCE provides transparent off-chip communication with 
external components implementing the ICE protocol. ICE is an 
object-oriented commercial middleware widely used in the 
industry. The Remote Object Adapter (ROA) is the OOCE 
component responsible for offering such functionality. Existing 
on-chip objects can communicate with both, external SW 
servers written using ICE and external HW servers 
implemented as OOCE components. Also, on-chip OOCE 
objects can be accessible from outside. It is worth to spot that 
previously existing in-chip components do not have to suffer 
changes in order to fit with the new communication scenario. 

 
Figure 1.  Main components of the OOCE architecture. 



V. ADVANCED FEATURES 

A set of advanced services and applications have been built 
upon the basic communication facilities. These services can be 
used to ease the development of end-user applications or more 
complex services. Some of these services are an efficient HW 
implementation of solutions that are usually handled by the OS, 
leading to a considerable performance improvement: 

• Location service (LS). The LS provides methods to 
lookup and update a table of references. This table 
relates a physical reference with a logical reference to 
an object. The LS is mainly oriented to provide indirect 
communication (IC) in a SoC. 

• Group Communication (GC). The broadcast nature of 
bus-based communications within a SoC can be 
logically incorporated into the DOM to provide group 
communication. A special set of logical references to 
objects in the system are reserved and identified as 
group identification references. The implementation of 
a exception (errors) communication subsystem and a 
service discovery protocol (applied to reconfigurable 
objects) are the two GC main applications. 

• Synchronization component library (SCL). We have 
developed a HW version of mutexes, semaphores and 
mailboxes to easily adapt pre-existing concurrent 
applications. 

• Reconfiguration Service (RS). Details of a RS for 
adaptive, dynamic applications (using dynamic re-
configurable logic) based on OOCE can be seen in [5]. 

• Run-time failure management. The LS may have 
several physical references to a set of objects that 
implement the same functionality. If an error is 

detected in one of them, IC mechanism will get a valid 
reference from this pool of objects. The replacement 
object can be indistinctly implemented in SW or in 
HW. 

VI. SOC DEVELOPMENT IN OOCE 

To offer a complete support to SoC design based on OOCE, 
we have developed a design methodology (see Fig. 2) based on 
the model, micro-architecture and services previously 
presented. 

All the scripts and interface compilers are able to 
automatically generate: (1) the OOCE adapters (both HW and 
SW), (2) the platform, through the selection and specialization 
of the communication engine elements required by the 
application from a component template library, and (4) the 
Xilinx EDK project files to start working with. 

The entries to this final phase in the design framework are 
two sets of UML diagrams. The target platform is specified 
using the modeling capabilities of the OMG profile for 
MARTE whereas the application is modeled by means of 
standard UML object and collaboration diagrams. Such 
diagrams are annotated by the stereotypes defined in an OOCE 
UML profile in order to specify (among many other aspects): 
(1) whether an object is going to be a SW or a HW object, (2) 
the processor where the SW object is going to run, (3) a 
concrete scheme of communication (synchronous or 
asynchronous), or (4) the bus infrastructure and protocols used 
to integrate the components by means of a association with the 
corresponding platform component diagram. 

We propose an iterative design framework that, starting 
from a software-only object model of the system, progressively 
reaches a heterogeneous implementation. This is possible 
thanks to the access and location transparency principles 
supported by OOCE. 

The SystemC interface compiler generates the models for 
the proxies and skeletons as well as all the SW/HW interfacing 
OOCE components. Such model is intended to be used for a 
rapid assessment of the overhead introduced by the chosen 
configuration. The simulation gives data about the time spent 
in each remote operation invocation (execution + RMI 
protocol), the number of executions of a method, etc. Such 
profiling information can be used to: (1) detect potential 
communication bottlenecks, (2) calculate the required 
bandwidth, and (3) help in the deployment of the components 
and the election of a HW or SW implementation for each 
one…; in brief, to help the designer in the exploration of the 
design space. 

A. HW/SW Interface compilers 

In this section, we focus on HW/SW interfacing, key in the 
synthesis process of Hardware-dependent Software (HdS) 
which has become one of the principal matters of concern in 
embedded systems due to the increasing amount of software 
that such systems include [6]. 

 

Figure 2.  Simplified design flow in OOCE. 



In the case of HdS, objects provide a more stable 
development scenario, and at the same time they set the basis 
of good design for reuse practices. In other approaches, the 
interfaces offered to the programmers are low-level and very 
sensitive to variations in the hardware cores (i.e. the access 
through a register bank interface). Software developers may 
then invest most of their time and effort in rewriting small parts 
of the software, leading to a more unproductive work. 

In OOCE the automatic generation of the HW/SW 
interfacing infrastructure, boost the productivity of the 
embedded software developers because (1) they do not have to 
wait for a physical platform prototype, and (2) unnecessary 
iterations are avoided. 

To illustrate this affirmation let us think in a simple 
application that may need the cryptographic services of a 
component which implements the DES algorithm. Fig. 4 shows 
a simple version of how the main program looks like before 
and after making the required changes to the code in order to 
use the OOCE middleware. As it can be seen, the 
implementation details of the communication with the DES 
core are hidden behind the OOCE HW/SW interfacing 
infrastructure. The most important changes are related to the 
instantiation of the OOCE runtime support object where the 
proxy to the DES core must be registered in. The DES object 
constructor suffers only a slight modification since it is 
mandatory to provide the physical base address of the IP core 
that implements such functionality. Nonetheless, the 
middleware also defines a method to obtain such address at 
runtime which is useful in dynamic environments. 

A new version of the DES class, which is interface-
compatible with the former one, is generated by the interface 
compilers. This class is in charge of interacting with the 
middleware. Fig. 3 shows some parts of the constructor and 
proxy to the des method. 

The resulting code for the main application is clean and 
easy to understand which promotes reuse and maintainability. 
Also, the application is more robust to unforeseen changes in 
the hardware platform and almost the entire software stack can 
be used ‘as is’ in future designs. Therefore, the writing of the 
embedded software can start as soon as desired, even in parallel 
with the design of the hardware design. No matter the physical 

interface of the hardware core, it can be modified or replaced 
by a different core from another manufacturer; the logical 
interface remains invariable. 

VII. EXPERIMENTAL EVIDENCE 

In order to evaluate the viability and efficiency of our 
proposal, we have compared a non-OOCE-based 
implementation of a simple image processing application with 
the OOCE-based one. Such application consists of a video 
capture, a space color converter and a video sink components 
which are connected to the system bus. The goal is to compare 
the resource consumption as well as the communication 
overhead by means of measuring the frame rate achieved. In 
both versions we have used the same hardware cores for the 
three main application components enumerated above, and the 
target platform is a Xilinx Virtex2Pro prototyping board.    

For the first version (non-OOCE) of this application we 
used the tool chain provided by Xilinx in order to generate the 
IPIF core adapters for the PLB bus. The MicroBlaze executes a 
software routine which is in charge of configuring and 
controlling the movement of data using the DMA engine. The 
software uses the provided Xilinx drivers to interface with the 
IPs. 

In version two (OOCE-based), we have generated the core 
bus wrappers making it use of our interface compilers. As 
mentioned before, the interfacing software routines were also 
obtained. Contrary to the non-OOCE version, the control 
software routine running in the processor has little 
responsibility regarding data movement between blocks. Such 
duty is now delegated to the component wrappers. Proxies and 
skeletons are able to synchronize and exchange data buffers on 
their own, without the intervention of the software. This is 
possible because the HW to HW asynchronous invocation 
semantic introduced by OOCE. The interface to software is 
limited to the initial configuration (setup of the producer and 
consumer logical links – SW to HW invocations) and the error 
control flow (exception notification – HW to SW invocations). 

In both versions, after the core wrapper generation, it was 
needed some manual work in order to adapt the wrapper logic 
to the core interface. 

 
Figure 3.  Original main program and modifications (boxed sentences).  

long des::crypt(long key, long data) { 
   tOOCE_msg msg; 
   void *ptr = NULL; 
   msg.src = 0 
   msg.dst = this�objid; 
   msg.rid = this�rqid++; 
   msg.op = this�CRYPT_OPID  
   msg.type = OOCE::OOCE_MSG_REQUEST; 
   msg.size = 4; //known at design-compile time 
   //marshalling 
   ptr = &msg.data  
   *(long *) ptr = key; 
   ptr += sizeof(long); 
   *(long *) ptr = data 
   this�_loa�send(&msg); //blocking call, 
//response is passed back within the same structure  
  return  *(long *)msg.data; 
}  

Figure 4.  Generated C++ code of a DES crypto SW proxy 



TABLE I.   RESOURCE AND TIMING COMPARISON 

 
System Version 

�on-OOCE OOCE-based 

LUTs 12105 11258 (-7%) 

FFs 7710 7324 (-5%) 

Measured Frame 

Rate (fps) 
13 15 (+15%) 

 
Table I shows all the results regarding implementation 

efficiency and communication overhead. Our system proves to 
be more efficient since it does not suppose an increment in the 
required resources mainly due to a significant reduction in the 
logic for the bus adapters (up to 40% less). 

Moreover, a better frame rate is also achieved by the 
OOCE-based implementation since most of the control 
operations avoid the use of software routines. This represents a 
reduction of the processor load since most of the control data 
flow traffic does not necessary pass through the processor. 

Regarding implementation details of each OOCE platform 
components, following we present a brief summary. All of them 
have been prototyped on the Xilinx XUP-V2Pro board. 

The OOCE component library comprises two versions of 
the LNI coprocessor (one for the Microblaze using the FSL 
interface and one for the Power PC using the DCR bus) and a 
customizable core for the ROA (OPB and PLB versions) that 
works with the Ethernet MAC core from Xilinx. Regarding the 
SW side, the LNI_link layer had to be tailored to the FSL and 
the DCR interfaces aforementioned. On the contrary, only one 
implementation of the LOA layer was done since it is platform 
independent. The total size of the software stack (excluding the 
generated SW proxies and skeletons) is 90 lines of C code 
which has a positive impact in the overhead introduced in 
HW/SW communication. The interface compilers are written in 
C++ and, currently, they only support the generation of VHDL 
for HW and C++ or C for SW. They both are thought to be 
easily extended to other implementation languages such as 
Verilog or Java if required. 

The evaluation of the extra HW resources needed by the 
OOCE infrastructure is quite satisfactory. In average, each HW 
wrapper only represents about 1% of the total logic used by a 
single core. When we compare the HW proxies and skeletons 
with the equivalent Xilinx IPIF solution, OOCE demands much 
less resources (this reduction ranges from 20% to 40%). 
Moreover, HW proxies and skeletons together with the LNI 
provide exactly the same communication services to SW 

resources than IPIF and increment the HW/SW communication 
bandwidth up to 40%. This important increment in performance 
is due to the efficiency of the software layer and the small delay 
introduced by the LNI component in HW/SW invocations (just 
6 cycles for incoming traffic and 3 cycles for an outgoing 
invocation). The LNI core represents an increment of about 5% 
and 3% regarding the logic used by the Microblaze and the 
PowerPC respectively.  

The ROA core is able to process ICEP messages two orders 
of magnitude faster than its counterpart in SW. The ROA is 
able to parse a complete frame (Ethernet, TCP and ICE 
headers), check and validate the packet and translate the object 
and method identification strings to internal bus addresses in 
less than 90 microseconds. 

VIII. CONCLUSIONS 

In this paper, a complete approach for SoC design based on 
a distributed object model is presented. OOCE defines a light-
weight, efficient communication architecture for systems that 
are modeled as communicating objects. The principal features 
of OOCE are: (1) flexibility since it is extremely easy to adapt 
it to new target technologies, (2) it provides the same 
programming interface for HW and SW elements (which boost 
the productivity of the embedded software developers), (3) it 
adds the necessary semantics to directly translate invocations to 
an implementation level using elemental communication 
services, (4) it supports advanced services to ease the 
management of complex tasks such as synchronization, 
migration, replication, etc., and (5) most of its components are 
generated in and automatic way. 

REFERENCES 

[1] Jerraya, A.A., “HW/SW Implementation from Abstract Architecture 
Models,” Proc. DATE’07, 2007, pp. 1-2. 

[2] P.G. Paulin et al. Parallel Programming Models for a Multiprocessor 
SoC Platform Applied to *etworking and Multimedia, IEEE 
Transactions on VLSI systems, vol. 14, 17, July 2006. 

[3] P.G. Paulin et al. Distributed Object Models for Multi-Processor SoC's, 
with Application to Low-Power Multimedia Wireless Systems. In Proc. 
of Design Automation Conference, Mar 2006. 

[4] Klingauf, W. et al.., “Embedded software development on top of 
transaction-level models”. CODES+ISSS '07, 2007. 

[5] Dondo, J. , Rincon, F., Barba, J., et al. ,“Dynamic reconfiguration 
management based on a distributed object model,” Proc FPL’07, 2007, 
pp.684-687 

[6] A.A. Jerraya, A. Bouchhima, F. Pétrot, “Programming models and Hw-
Sw interfaces abstraction for Multi-Processor SoC”, In Proc. of the 43th 
Design Automation Conference, San Francisco, California, 2006.

 


