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Abstract— Today there are many proposals of middlewares
for sensor and actuator networks (SAN). Each of them
introduces programming paradigms for creating distributed
applications. There are middlewares with different philoso-
phies in terms of architecture and organization (database,
clustering, etc.). From the standpoint of the programmer
these considerations influence the development process and,
in most cases, determine the programming paradigm.

Although these middlewares are so different, there is a
common issue: they assume the SAN is logically separated
from the main network. Thus, it forces the programmers to
think a lot on specific stuff for the SAN and provides a
dissociated vision of the whole system.

In this paper we propose a new development model
for SAN based on standard object oriented middlewares.
Moreover, we provide a language as a new programming
paradigm so that it is possible to have a homogeneous view
of the whole system (including main network and the SAN).

Keywords: sensor and actuators networks, wireless sensor net-
works middleware, integration, development model

1. Introduction
Currently, sensor and actuator networks (SAN) have been

adopted for many information systems: monitoring systems,
industrial control processes, medicine and many others.
There is a huge set of different hardware implementations
of the SAN nodes, and each manufacturer provides software
for creating applications on their own platforms.

The scientific community is aware of the difficulty in
integrating different hardware and software nodes in a single
abstract networked system. Heterogeneous distributed sys-
tems may be a solution for this issue and some approaches
use middlewares as integration platform. There are many
middleware based solutions [1] for building applications in
SAN but most of them are non-compatible with the main
network (composed by servers and other more powerful
resources than SAN nodes).

For this reason, the software development process and
tools used for building applications in a SAN is separated
from the remaining of the distributed system. From the
development process viewpoint, object oriented middlewares

are desirable because they provide high abstraction level to
the designers and programmers. Moreover, some commer-
cial middlewares like CORBA [2], ZeroC-Ice [3], or Java
RMI [4] offer very valuable built-in services that may be
used in SAN (such as location transparency, event channels,
etc.).

Creating applications by using the conventional vendor
software in a heterogeneous context may be a hard task.
Moreover, this kind of devices are microcontroller based and
have a few Kwords of program memory. So, the reduced
hardware resources prevent loading conventional middleware
software for being integrate in the heterogeneous system.
In [5], [6], it highlights the need to integrate sensor networks
in the whole system.

In this work we propose a new development process for
low-cost and resource limited devices so that it is possible
to integrate SAN in heterogeneous distributed systems. We
bring a convenient development methodology and we pur-
pose a distributed object oriented programming paradigm
for devices in SAN that permits hardware abstraction and
high level programming. In this paradigm, it is assumed the
SAN is part of the whole system and there is no logical
difference between main conventional system network and
sensor networks.

In section 2, we discuss the related work and the concepts
on we have based. In section 3 it is exposed the development
process model and in section 4 we show an application
example in which are explained the components of the
designed concepts and tools. Finally, in the sections 5 and 6,
it is offered results of different applications developed and
the conclusion, respectively.

2. Related work
Each SAN middleware provides a development model

for programmers based in their own architecture and tech-
nology. Following, it is described the current programming
paradigms for sensors and actuators networks (SAN) based
in middleware. Most of them are focused on wireless sensor
networks (WSN) due to the specific needs of this kind of
networks [1]:

• Database: based in a “virtual” database, TinyDB [7]
is a good representative. It provides an API for Java



and nesC programs (for TinyOS [8]). The data access
procedure is expressed in SQL-like queries which the
middleware process.

• Macro-programming: the programmer describes the
whole SAN behavior by using a high-level program-
ming language. Then, the runtime deploys the code
to individual nodes. Maté [9], [10], Magnet [11] and
SensorWare [12], [13] are example of this paradigm.

• Clusters: distributed system consists of a set of node
groups (cluster) where each group has a head node.
This node is able to route, filter and collect data.
For example, SINA [14] or DSWare [15] are sensor
middlewares based on clustering and offer a database
programming paradigm.

• Virtual machine: this approach install a virtual machine
on each sensor node for executing a certain bytecode.
Despite the cost involved, it may be interesting using
a virtual machine for reach code portability. From pro-
grammer viewpoint, virtual machine hides the concrete
platform and communication issues.
Maté defines an abstract instruction set architecture
(ISA) for developing applications in sensor nodes.
However, this ISA is not abstract enough since it
provides closed platform instructions.
SensorWare and WSP [16] are examples of the virtual
machine approach.

All this solutions assumes that SAN entities are separated
logically from the rest of the distributed system. However,
there is an integrated solution proposed by Moya et al. [17]
that use standard and generic middlewares.

This approach describes the concept of picoObject [18],
[19], that is, a state machine described in FSM language
for parsing specific protocol messages, running on resource-
constrained platforms and serving one or more distributed
objects. The picoObjects may be integrated in object ori-
ented middlewares implementing the inter-ORB protocol
(i.e. GIOP). The state machine code is executed by a
FSM virtual machine implemented in a platform-dependent
language and technology.

picoObjects have the advantages of the virtual machine
paradigms and may be used to integrate SAN in the dis-
tributed system. The sensor nodes may be seen on the same
way as any other object on the network. However, writing
a FSM that implements even basic services is a heavy and
error prone task because its low-level orientation.

3. Development Model
We have defined a development model for SAN nodes

based on the use of object oriented middlewares and event-
driven automata like picoObjects. Figure 1 shows the four
main actors involved in this model and their tasks and
responsibilities are bounded. In the figure, server application
resides in the sensor node (labeled as picoObject) and client
application may be implemented for any other node of the

Fig. 1: Proposed development model

distributed system (server, router, PC or either other which
is not included in the SAN).

On one hand, the server side is composed by a sensor
node. We assume that in this node runs a picoObject
virtual machine serving one or more distributed objects. On
the other hand, we consider a client side where a tipical
distributed application may be used.

Before the client and server processes start it is needed to
definite the distributed object interfaces. Thus, the system de-
signer is responsible of defining the interfaces implemented
by the distributed objects and designing the system behavior.
In systems based on CORBA, the designer should define
these object interfaces using IDL code. Other object oriented
middlewares offer similar languages like Slice (for ZeroC Ice
middleware) and Java (for Java RMI).

This information is shared between the server and client
applications, thus client knows the invokable server methods
and server knows the methods that it must implement. So,
once the interface information is defined server and client
design processes may start concurrently.

First, the server development process is described:
• Environment developer: the environment developer

have to define the distributed environment in which the
sensor node will be included. In general, the program-
mer describes all useful information for the target node:

– Objects: describe the objects whose are part of the
system. Any distributed object must to implement
one interface (at least). The environment developer
may use the interface definitions provided by the
system designer.

– Nodes: a node may be seen as a set of distributed
objects accessible by an endpoint. It is necessary to
describe the nodes of the distributed system. This
definition must include the target node and those
nodes that have functional relationship with it.



Note that hardware implementation of the node
does not matter. These nodes are abstract and may
represent different hardware technology nodes.

– Relations: implement the relationship between
nodes and objects. In other words, it is necessary to
define which objects are registered in which node.

Besides this, the environment developer should describe
the object behavior of the target node. As it will be
shown, this description may be implemented by using
invocations between objects and other high abstraction
level structures.

• Driver designer: so far, it has been defined the inter-
faces of the distributed objects, the scenario in which
the target node will be immersed and its behavior
within the distributed system. However, it is needed
to implement the methods effectively. This is also
necessary when building a server application in object
oriented middleware, that is, the driver designer has to
build the platform-dependent code which implements
the methods of the sensor node resident objects. This
code concerns OS calls, hardware access and other low-
level tasks. This software may be develop by the driver
designer or be provided by the vendor.
In any case, the driver designer should provide a
binary interface which be useful to join the behavior
description and the final implementation.

• Compiling: with all described information bellow, a
compiler can generate a interpretable bytecode for a
virtual machine. This bytecode represents all the de-
fined objects (their interfaces and other attributes) and
the event-driven behavior of the automata.
The virtual machine (picoObject), the associated byte-
code and the driver implementation are the compo-
nents whose should be loaded in the physical device.
Thus, sensor node is ready for being integrated in
the distributed system on the same way as any other
distributed object.

The application developer has the same tasks as if were
to develop a tipical client for middlewares like CORBA or
ZeroC-Ice. The designer should use a compiler which trans-
late the interfaces specification in a certain language (IDL
for CORBA and Slice [3] for Ice) into an implementation in
the same language of the client application code. Normally,
these translators are provided in middleware distributions.

Once the interface code is translated, application devel-
oper just add the specific application code and no more.

4. IcePick, SIS and ipkc compiler
We have developed several tools to be used in the devel-

opment model described below. The main tools are:
• IcePick: is a language designed for describing the dis-

tributed system, the relations between nodes and objects
and the target node behavior. IcePick is an hybrid

Fig. 2: ipkc compiler process

language. On one hand, it is a declarative language
for describing the distributed scenario. On the other
hand, IcePick allows programmer to define the sensor
node behavior in an imperative way by using local and
remote invocations.
The behavior is described based on an event-driven
automata, so the invocations are grouped in different
kinds of triggers.

• SIS: the Servant Interface Specification is a language
for building the binary interface (provided by the driver
designer). In SIS files, it is possible to define the binary
interface with the follow entities:

– Events: automata has an event-driven behavior. SIS
provides structures for declaring the basic interface
with the event implementation.

– Remote methods: every method declared at any
object interface is accessible remotely. SIS pro-
vides structures for establishing correspondence
between the methods used in IcePick and their
implementations.

– Local methods: it is possible that driver designer
offers methods that are not declared as part of
the object interface, but may be used by the envi-
ronment developer as locally callable method. SIS
provides structures that allow to specify the binary
interface with this kind of methods.

• ipkc: is a compiler that accepts the interface specifica-
tion, an IcePick and a SIS file as input and generates
bytecode for a selected virtual machine. Figure 2 shows
the ipkc compiler structure. The shown compilation
process is for a TinyOS based device, but it is possible
generate code for other virtual machine implementa-



Fig. 3: The tank level controller

tions.
In general, the modular architecture of the compiler
allows extensibility in the compilation process. The
plugin system allows to extend the semantic level of
IcePick, so the programmer may adapt IcePick to a con-
crete context problem. An IcePick semantic extension
may require a specific code generation process. For this
reason, ipkc backends may delegate the generation of
the concrete context code to a backend plugin.
In the figure, Slice is used as interface specification
language and generates bytecode for a C implemented
VM. Thus, it is possible generate picoObjects for the
Ice middleware. Although ipkc compiler may integrate
new languages as IDL [2], and also other code gener-
ators as the CORBA picoObjects backend [17].

For better understanding, an application example devel-
oped using the described tools is shown below. As a simple
example, suppose a heterogeneous system in which one
sensor node and one actuator are involved. We will use a PC
for configuring the system and ZeroC Ice as object oriented
middleware. Figure 3 shows a schematic summary of the
sample application.

Suppose a sensor node which measures the level of a
tank. When level exceeds a certain limit sensor will active
a remote alarm. This value limit may be reconfigured in
execution time. Periodically, sensor sends the measured level
to an event channel, when others distributed objects (by
implementing a concrete interface) may subscribe on it and
receive the sensor information.

module Dev {
interface Sensor {
void setLimit(Byte limit);

};

interface SensorOb {
void update(Byte value);

};

interface Alarm {
void activate();

};
};

The system designer may define the interfaces of the
distributed objects in Slice language as shown in previous
listing. Sensor observers (Dev::SensorOb) will receive
the periodic information via update() method. In our
example, a PC application implements a sensor observer for
collecting measurement data and deciding if it is necessary
to change the sensor limit value. However, multiple objects
may receive this information just subscribing to the event
channel.

In the following, assume this code is saved in a file named
“tank.ice”.

4.1 Alarm actuator node
First one, it being shown how it should be implemented

the alarm node using our development model. Alarm node
would be seen as “pure server” object. It means alarm object
does not perform invocations to other objects.

The driver designer may provide a binary interface similar
to the following listing. In picoObject architecture, any event
or method are identified by an identifier. Thus, the alarm
binary interface is a definition of an only one remote method.
In this case, objects that implement the Dev.Alarm in-
terface have a method called activate identified by the
identifier 10.
remote Dev.Alarm activate(10);

As pure server, alarm object has not an associated behav-
ior in terms of remote objects. Next listing shows an IcePick
description of the distributed scenario, from the viewpoint
of the alarm node. This description should be provided by
the environment developer.
uses "tank.ice";

object Dev.Alarm alarm;

local adapter node {
endpoint = "xbow -h 20";
objects = {"WALARM":alarm};

};

In this case, the distributed scenario is quite simple. It
is composed by a Dev.Alarm object (alarm) and a local
node in which alarm is registered (with the object identifier
WALARM). This node has a endpoint that use the Xbow radio
protocol (for CrossBow devices).

With the Slice interface definition, SIS information and
the IcePick description of the distributed scenario, the ipkc
compiler is ready to generate whole required code to be
loaded in the real device.

4.2 Level sensor node
Following listing describes the SIS binary interface. Apart

from defined methods in the Slice interface, the driver de-
signer provides getValue() and getLimit() methods
that are sensor locally accessible and should be used for
getting level measure and the limit value, respectively.
event LIMIT_EXCEEDED(5);



remote Dev.Sensor setLimit(10);

local Dev.Sensor getValue(20) {
output = byte;

};
local Dev.Sensor getLimit(21) {
output = byte;

};

The method implementations is hidden to the environment
developer. Suppose that the limit value is saved into node
when an invocation of setLimit() method occurs. Thus,
LIMIT_EXCEEDED is defined as an asynchronous internal
event that occurs when the limit value is exceeded.

With the Slice and SIS information, the environment
developer is be able to describe the sensor node scenario
and its behavior by using IcePick language. The following
IcePick source code is an implementation example for the
level sensor node.
uses "tank.ice";

object Dev.Sensor sen;
object Dev.SensorOb ob;
object Dev.Alarm alarm;

local adapter sensor_node {
endpoint = "xbow -h 25";
objects = {"WLSENSOR":sensor};

};
remote adapter alarm_node {

endpoint = "xbow -h 20";
objects = {"WALARM":alarm};

};
remote adapter channel_node {

endpoint = "xbow -h 30";
objects = {"WLCHANNEL":ob};

};

timer(60) {
ob.update(sen.getValue());

}

event LIMIT_EXCEEDED do {
alarm.activate();

}

From sensor viewpoint, the interested objects are the
sensor itself, a tank level observer ob and the alarm.
The observer ob may be a single object, an event chan-
nel or any other entity which implements the interface
Dev.SensorOb.

Now, the sensor_node is a local node (target node) and
the rest are remote respect to sensor, such as alarm_node.
Each adapter structure has a Xbow endpoint and a set of
registered objects by using the objects attribute.

After the distributed scenario description, a timer trigger
is defined which include a sequential set of invocations. In
this case, there is only one invocation that is executed every
60 seconds. The measure value is sent to ob via update()
method.

By using event trigger, it may be implemented the
activation of the alarm. When the internal event oc-
curs(LIMIT_EXCEEDED), the alarm will be switched on
via activate() method.

This is a simple behavior, but IcePick provides triggers

for other kinds of events:
• boot: associated invocations will be executed at node

boot time.
• when INVOCATION do: invocations associated to a
when trigger will be executed when a local node object
receives a certain INVOCATION. The trigger invocation
parameters are available to be used in the corresponding
invocations.

Moreover, IcePick allows to specify conditional invoca-
tions that will be executed if the condition success.

4.3 PC node implementation
Middlewares like CORBA or Ice provide tools to translate

the interface specification to a concrete implementation
language (Java, C++, Python, etc.). In our example is used
Slice as interface specification language. So, the application
developer may use the tools provided by ZeroC to translate
that code.

The application developer does not care about if the server
is a sensor node or any other kind of hardware system. The
designer just knows the interface which server implements.
The following pseudo-code implements how to attach a
subscriber into the sensor event channel:
class Observer implements NodeOb {

void update(byte b) {
saveValue(b); // process value b

}
}

[...]

Topic t = resolveObject("xbow -h 30");
Observer ob = new Observer();
t.subscribe(ob);

Thus, the observer ob will receive the status changes
from tank level sensor and it just save that value. Based on
received values history, client may change the value limit as
follows:
byte limit = determineNewLimit(history);
Sensor s = new Sensor("xbow -h 25");
s.setLimit(limit);

5. Results
For getting results we have built the ipkc compiler in

C++ using Flex [20] and Bison [21] tools for the parsing
stage. We have selected Slice as interface specification
language. There is a back-end available (written in Python)
that generates state machines called picoIce [17]. These state
machines can parse IceP [3] messages (ZeroC-Ice protocol).
Each state machine represents a node of the distributed
system.

Furthermore, we have used different implementations of
the FSM virtual machines provided by ARCO research
group. The features of these virtual machines are as follows:

• 256 bytes for RAM memory.
• 256 bytes for EEPROM.



• 256 bytes for Flash memory.
• 1 KB for program memory.
Thus, that features limit the generated code complexity.

However, this hardware resources are enough for many
simple operations like self-state reporting, invoking a remote
operation, reactive behavior or even device advertisement.

Table 1 shows the size of some prototypes. Column A
shows whether or not the object is able to advertise itself
using the ASDF protocol [22], [23]. T is the number of
triggers programmed and R/RW means the type of access
an object implements (Read only or Read/Write), that is,
whether it is possible to change the object state or just to
read it. The virtual machine that executes the FSM bytecode
requires about 2.2 Kwords and 55 bytes of RAM in an 8-bit
MicroChip microcontroller.

Table 1: Result values generated by compiler. Values are
expressed in bytes (no mistake).

Objects A T# Data Code Flash Total RAM

Minimum - 0 14 89 0 103 18
Bool.R+Bool.RW - 0 68 374 0 442 19
Bool.RW X 1 177 322 0 449 19
Bool.R+Active.R X 2 212 431 100 743 19

“Minimum” is a pure server object, similar to alarm node
of the application example shown bellow. The compiler
optimize the generated code, so it is possible to create a
entirely functional pure server object using 103 bytes of
program memory and only 18 bytes for RAM (without
virtual machine code).
Active.R interface is implemented by objects that re-

port its status change to event channels. Active object should
save the references to remote publisher and channel objects.

6. Conclusion
The new proposed development model integrates the SAN

programming in the conventional development process of the
distributed applications by using standard object oriented
middlewares. With ipkc, and the associated language and
tools, we can build distributed objects in low-cost, and
then constrained-resource, devices. It is a way to create
small objects in a conventional general purpose distributed
system for applications such as consumer products remote
management, ambient intelligence, wireless sensor networks,
home networking, etc.

IcePick is a powerful and extensible tool to design dis-
tributed scenarios defining the nodes behavior and their
interactions. Thus, we propose use the distributed object
oriented paradigm for building SAN applications based
on the distributed scenarios description and the relations
between objects. Any entity of the system may be seen as
an object which implements a concrete interface. There is

no matter if the object resides in a PC, in a powerful server
or resource-constrained node. The main idea of IcePick is
that the SAN is not separate from the distributed system; the
SAN is part of the system.

Furthermore, compiling IcePick files with ipkc we can
test and check the modeled distributed system over a test
platform before the final installation in the physical devices.

As future work a plugin to develop hardware versions
of the picoObjects as stated in [24] is being designed, so
we will be able to design also distributed hardware objects
following the same methodology.
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