Distributed Reconfigurable Hardware for Image
Processing Acceleration

Julio D. Dondo, Jests Barba, Fernando Rincén, Francisco Sdnchez, David D. Fuente and Juan C. Lépez
School of Computer Engineering, Universitty of Castilla-La Mancha
Ciudad Real, Spain
Emails: {juliodaniel.dondo, jesus.barba, fernando.rincon,francisco.smolina,david.fuente, juancarlos.lopez} @uclm.es

Abstract—Lately, the use of GPUs is dominant in the field
of high performance computing systems for computer graphics.
However, since there is ”’not good for everything” solution, GPUs
have also some drawbacks that make them not the best choice
in certain scenarios: poor performance per watt ratio, difficulty
to rewrite code to explode the parallelism and synchronization
issues between computing cores, for example.

In this work, we present the R-GRID approach based on
the grid computing paradigm, with the purpose of integrating
heterogenous reconfigurable devices under the umbrella of the
distributed object paradigm. With R-GRID the aim is to of-
fer an easy way to non experience hardware developers for
building image processing applications using a component model.
Deployment, communication, resource sharing, data access and
replication of the processing cores is handled in an automatic
and transparent manner, so coarse grained parallelism can be
exploited effortless in R-GRID, accelerating image processing
operations.

Index Terms—image processing; reconfigurable logic; dis-
tributed architectures; component model;

I. INTRODUCTION

Multimedia processing imposes intensive computation ca-
pabilities and even real-time constraints in some applications
(i.e. 3D content rendering for mobile devices, face recognition
in surveillance systems,...). Due to the limited computation
capabilities of conventional processors, many of those appli-
cations must be delegated on other kind of parallel computing
environments.

Many core chips with highly efficient communication ar-
chitectures emerge nowadays as a solution in this area, pro-
viding a unified programming environment for parallel high-
performance applications. Most of those environments are
currently based in the use of GPUs with huge computational
capabilities, reduced cost but high power consumption. An
example is the line of NVidia products based on the Quadro
CPUs !.

In this work a general framework for the acceleration
of such kind of applications is presented, where inherent
application parallelism can take benefit of custom hardware
accelerators. This framework, that we call Reconfigurable Grid
(R-GRID), comprises a set of spatially distributed FPGAs, and
optionally general-purpose processors, that includes a set of
functionalities that have been developed to provide the ability

IQuadro website:http://www.nvidia.com/object/quadro-fermi-home.html.
Last visited July 2011.

of a transparent implementation of concurrent distributed
hardware applications in order to obtain maximum benefits
from reconfigurability and spatial distribution of resources.

II. RECONFIGURABLE COMPUTING FOR IMAGE
PROCESSING

Image processing has been a traditional application field
for reconfigurable computing since the very beginning of
this computer architecture area [1]. Reconfigurable devices
provide a midway approach between pure software and custom
hardware development, which make them suitable for all
kind of applications where extra acceleration is needed at
a reasonable cost. More specifically, image processing, and
computer graphics in general, can take benefit from these
architectures since they exhibit a high degree of parallelism,
require high memory bandwidth and use simple fixed point
operations in many cases.

Image processing is normally decomposed in a processing
pipeline where a set of different operations are applied over a
stream of data with the possibility of having multiple inputs
and outputs. Reconfigurable devices are specially well suited
for this, in special when the type and size of data is not
the standard in general purpose computing. On the other
side parallelism can be exploit to the last consequence, not
only for fine grain repetitive operations applied to a pixel
neighborhood, but also for the global concurrent processing
of several images at a time.

The irruption of GPUs in these fields has raised the discus-
sion about the use reconfigurable architectures versus the more
general purpose solution they represent. However, there is not
a “good for everything” solution, and each technology has its
advantages and drawbacks [2]. GPUs are good at fine grain
parallelism, where the same simple operations are applied to
a set of pixels without much coupling between them, but they
failed for those situations where multiple passes are required to
complete an operation. On the other side, FPGAs run at much
lower clock frequencies, with leads to lower peak speeds,
although they are much more power efficient, and are also
more scalable.

The solution we propose in this paper is based on the
grid computing paradigm, with the purpose of integrating
heterogenous processing devices (reconfigurable or not) under
the umbrella of the distributed object paradigm [3]. The grid
approach implies a common logic architecture of the grid,

regardless of the concrete hardware it is built upon, and a set
of standard services in order to ease the design, deployment
and run-time management of any application.

III. R-GRID FRAMEWORK

As stated before, R-GRID provides a distributed set of
reconfigurable resources and the technology necessary for
transparent deployment of multiple applications. The R-GRID
main objective is to provide the clients with a safe, reliable
and accessible platform to implement and deploy accelerated
applications using hardware resources in a transparent way.

However, it is necessary to take into account that clients
can develop their applications using an endless of different
hardware structures, components, tasks or functionalities con-
nected through very different interfaces and using different
communication mechanism. In order to facilitate the deploy-
ment of such diversity of applications, R-GRID provides also
an Application Development Model.

Since R-GRID is based in the distributed object paradigm,
each processing element in the application is modeled as an
object and data exchange flow is modeled using the consumer-
producer approach.

This approach is the one typically used in multimedia
software processing frameworks such as avstreams [4] or
gstreamer 2. Apart from considering processing elements as
objects, another remarkable feature in R-GRID is how process-
ing data is stored. Here no specific memory implementation is
assumed, and data is accessed through a functional interface.
Memory is considered a data container whose content can be
read and written, but without imposing any particular kind of
implementation (FIFO, shared memory, scratchpad memory,
etc). We consider the result as a component.

Once the application components have been defined, the
next step is to decide wether to implement each one in
hardware or software, compose the application and deploy it
over a certain FPGA technology. The first problem to solve
is the location and connection of the core component and the
rest of the application. It could be decided at compile time,
and statically assigned to certain resources (reconfigurable
and memory areas), but this solution is not flexible and it
is against the idea of the grid. R-GRID provides the necessary
infrastructure to dynamically locate the component in any
of the available resources of the architecture, and make it
available to the rest of the application (as described in next
section). Dynamic allocation also implies the use of a dynamic
addressing mechanism where the components can be accessed
through a run-time resolved reference.

A. Application Description

The description of an application in R-GRID starts with a
XML file. In this file all components and its corresponding
binary files are listed. Binary files can shared objects for
software components or a set of configuration bitstreams for
reconfigurable hardware. The bitstream associated to a hard-
ware component is related to the technology where component

Zhttp://www.gstreamer.net

<rgrid>
<application name="Simple">
<component id="controller"/>
<component id="core"/>
</application>

<binaries>
<binary component="controller" type="sw"
bin="/opt/rgrid/controller.exe" />
<binary component="core" type="virtex4"
bin="/opt/rgrid/core v4.bit" />
<binary component="core" type="virtex5"
bin="/opt/rgrid/core v5.bit" />
</binaries>
</rgrid>
Fig. 1. XML Description of the example application

will be implemented. Let us suppose an example of application
formed by two cores to be placed in different resources. Figure
1 shows the XML description. In this simple case there are
only two components, the controller of the application and
the core processor. The task of the controller is to schedule
the data distribution and execution of the other core, so it
has been mapped to a software node, while the core is a pure
hardware component. Both of them have at least an associated
binary file, a software executable for the controller and, in this
example, two hardware partial bitstreams for the core. These
two partial bitstreams are necessary to deploy the core over
two different kind of hardware resources.

B. Application deployment

To deploy an application it is necessary to perform a few
steps. First, registered users have to register the application
using the XML file and adding the corresponding binaries
files indicated before. R-GRID uses this configuration file to
update grid information. Once registered, it is necessary to
deploy the application. For this R-GRID takes information
from configuration file about bitstream or executable file
locations and send it to the corresponding node to start either
reconfiguration of the hardware resource or software node
respectively. Finally, R-GRID updates the addresses of the new
instantiated components in order to allow access to them.

IV. R-GRID ARCHITECTURE

R-GRID architecture was defined taking into account that
must provide a framework for the execution of high- perfor-
mance distributed applications in a multiple users environment
over a scalable, distributed and heterogeneous reconfigurable
platform. For this a set of services were created to facilitate
user registry, application registry and deployment, and remote
resources management.

A. The R-GRID Logical Architecture

Figure 2 describes the logical architecture of the platform,
which has been divided into three levels: the R-Grid admin-
istration level, the platform management level and the node
level.

User Administration Level and Platform Management Level
are implemented in software and are part of the R-GRID
Server. R-GRID Server is responsible for administration of the

R-GRID
CLIENT

R-GRID
SERVER

LOCATOR DEPLOY REGISTRY MANAGEMENT

R-GRID
PLATFORM

SECURITIAND ACTIVATION & REPLICATION

MONITORING PERSISTENCE
R-GRID
RESOURCES
RESOURCES
Fig. 2. R-GRID Logical Architecture

whole system, keeping information about descriptor of appli-
cations, registered users, correspondence between applications
and owners, components and nodes, used resources, available
resources, etc.

R-GRID Server indicates to client which kind of FPGAs
are available and which one will match with user resources
requirements, indicating FPGA type and model in order that
client can create the corresponding bitstream for that FPGA.

1) User Administration Level: To start using R-GRID, the
Server offers a user interface, fist level, which is formed by the
Registry, Deploy, Root Locator and Management objects: The
Registry is an object with a public interface that allows clients
with the proper access rights, to register a new application in
R-GRID. A repository of applications is also offered that can
be used anytime and from any location. The Deploy object is
accessed by users to perform the deployment of registered
application. Each application is formed by one or several
component and each component has an associated bitstream.
Each bitstream has also associated a node.

The Root Locator object is a component that keeps informa-
tion of deployed component and their location. It is intended to
provide access to already deployed components.After deploy-
ment the Deploy object will update the Root Locator Object
to register component address.

Management Object gives administrator access to all sys-
tem functions, to ensure the proper behaviour of the R-
GRID,providing to the administrator information about the
availability of resources, the state of the system FPGAs nodes,
the addresses of deployed objects to solve any problem that
arise.

2) Platform Management Level: As second level we found
R-Grid Platform management level where transversal platform
management decision are taken. Issues concerning security,
monitoring, activation, component replication and persistence
take place at this level.

a) Security: Security module is implemented taking into
account user and application points of view. In the first
aspect, security module will authenticate and authorize users,
checking if they have privileges to perform required actions.
User identification and permission to perform actions provide
security in a way that only authorized users can make use of
storage, deployment, management or location services.

From application point of view, due to R-GRID runs differ-
ent applications from different owners over shared resources
at the same time, control application access needs to be
made at each computing node level of R-GRID. At this
level, security functionality will ensure that each component
of each application can contact and can be contacted only
by components that belong to the same application. This
functionality is performed by the Object Adapter on each
FPGA. In this way, the execution of each application can be
performed safely.

b) Monitoring: Monitoring functionality collects all in-
formation about use and availability of grid resources, status
data, load and queue status, to provide information to the ad-
ministrator to facilitate grid utilization and resource brokering.

c) Advanced functionalities: Activation, Replication and
Persistence are advanced functionalities that are invoked by
Root Locator and Deploy objects.

Activation: is a mechanism that implement a non instanti-
ated component when is needed by other component of the
same application. This situation can occur if a component of
the application was removed and is later required. In order to
avoid collapse of the application, this advanced functionality
instantiates the required component when that requirement
occurs.

Replication: is a functionality that allows component repli-
cation, if application and resources availability permit. This
functionality will create a new instance of deployed component
enabling parallelism.

Persistence: In case an instantiated component is removed
or stopped from the grid, Persistence allows saving its state in
order to be later reused if component is reinserted. With this
functionality, components can be removed from the grid and
reinserted in another place when needed, without lost of data
consistency.

B. The R-GRID Physical Architecture

The R-Grid resource level in figure 2 is formed by heteroge-
neous FPGAs nodes, so this level is the physical architecture
level. R-GRID is intended to hide implementation details of
computing nodes to upper levels. The relationship between the
logical and physical architectures can be observed in the figure
3.

R-GRID physical architecture was implemented using dy-
namically reconfigurable FPGAs. Each FPGA node is divided

Memory Memory
[FPGA H
Di yc Static
area area

FPGA FPGA NODE

Static Di
area area

Static area
Comm.

infrastuct.
y
Locator

Node

Areal

Dynanic area

Area 2
Static Di
area area

Dinamyc Static
area area

u

Memory

R-Grid Server

Locator Deploy |Registry Manag S Arean

R-Grid

Fig. 3. R-GRID Physical Architecture

in two parts: the static part, formed by three objects: Locator,
Node and Object Adapter, and a dynamic part, which is formed
by several dynamically reconfigurable areas, as shown in figure
3 . Each reconfigurable area can host a component that can be
formed by several objects depending on its size. The location
of each instantiated object inside the partial reconfigurable area
of the FPGA is solved by the local Locator object.

The partial reconfiguration process of a reconfigurable area
is triggered by the Deploy object, placed at User Adminis-
tration level. The Deploy object commands the Node object
of the target FPGA. The Node object takes the bitstream
from memory and performs a partial reconfiguration of the
FPGA. The Node object isolates the partial reconfiguration
mechanism inherent to each FPGA from upper levels.

The Object adapter provides the mechanism to control and
to avoid the access to instantiated objects from objects belong-
ing to different applications, providing security at application
level and isolating each application from another within the
system. Each object adapter has a unique global address
within the system. These components are entirely hardware
implemented and create the abstraction layer from technology.

C. Communication Interface

Components can be locally or remotely connected. In the
former case it is equivalent to a point to point connection from
the client to the server, and implies no additional logic, while
in the latter it involves the use of remote adapters, in order
to translate messages into the transport protocol used by the
communication link.

R-GRID extends the functionality of the OOCE (Object
Oriented Communication Engine) middleware [5] in order
to enhance inter FPGA communication of data. The base
configuration in OOCE isolates the computational aspect from
communication details, mainly at chip level. In this scenario,
software components can access to hardware components and
vice versa. OOCE interface compilers generates the software
and hardware adapters that automatically manage hardware-
software interfacing. These adapter are in charge of translating
bus request and module activation signals in one domain to
conventional calls in the host processor. A more detailed de-
scription about the adapters and how they can be automatically
generated is provided in [6].

An extra effort has been done in the abstraction of the

memory interfaces and the memory hierarchy in R-GRID.
For example, external memory to a component can be im-
plemented as a shared memory in the same node or any other
kind of memory in a different node. In any case, the mid-
dleware provides the component with the MemoryResource
abstraction, through an adapter, so the physical access to
such resource is decoupled from the component’s logic. For
example, it might be available through a DMA controller, a
point-to-point connection or, through a Ethernet network.

In summary, data flow is performed through the requests
to a MemoryResource interface. Such interface represents a
generic memory and provides methods for reading and writing
data blocks. The addressing of the different memories is
delegated to the proxies together with the global addressing
system used in R-GRID.

V. COMPONENT MODEL IN RGRID FOR IMAGE
PROCESSING

In this section, the component model chosen in RGrid for
image processing is described. The hardware processing cores
deployed in the reconfigurable areas of the FPGA must follow
this model in order to assure compatibility and correctness in
the system. This can be guaranteed since our component model
defines the communication and synchronization mechanisms
in order to efficiently move data between hardware (and
software) components.

The component model developed for R-Grid is inspired in
the one defined by the Khronos Group for multimedia and
streaming applications; the OpenMax (in brief, OMX) standard
[7]. OpenMax defines a set of Application Programming
Interfaces (APIs) at different layers, each layer representing
a domain of compatibility: (a) application, (b) component
integration and, (c) development of core functions. The main
goal is to shorten the time needed to introduce new products in
the market by means of reducing the effort required to port a
legacy application to a new platform or architecture. However,
the standard only specifies the primitives and services from
an only-software position. We have extended the OpenMax
vision [8], mainly working at the Integration and Development
layers of the standard, to embrace hardware components to
accelerated functions as proposed in RGrid.

An R-Grid application is, thus, defined as a collection of
OpenMax compliant components either implemented in soft-
ware or hardware. The synchronization and communication
mechanisms, defined by the OMX Integration Layer (IL), have
been tailored for our RGrid platform respecting the standard
interfaces. This allows software version of OMX components
to be codified exactly in the same way it is done for OpenMax
non-RGrid applications. Software components are distributed
as shared objects and the node’s RGrid run-time where the
component has been actually deployed is in charge of loading
it and feed it with data. A more detailed description about
how data is exchanged for the intra and inter node scenarios
is provided next. To date, only tunneled means have been
considered in RGrid because its non-centralized approach for
data flow management.

Length out

/ Length in

Src Addr

~

Control

/Status Tgt Addr

Processing
Core (Pcore)

Output
BRAM

| OOCE Skeleton

\\ Master Driver

Fig. 4.

| | OOCE Proxy |

DMA |

4

OpenMax Hardware Component Architecture

Slave Driver

A. Component architecture

The architecture of the Hardware OMX Core (HOMXC)
(the hardware version for the standard OMX component) is
thought as the placeholder for the PCore (Processing Core,
the logic that implements the actual processing operator). The
PCore has a fixed physical interface to the HOMXC which
makes it independent of the bus technology and, therefore,
the platform it is going to be deployed. Figure 4 shows the
structure of a HOMXC mainly dominated by the presence of
two local memories where input and output data are stored.
At least one buffer (the minimum data unit to be processed by
a HOMXC) must be in the input memory before the PCore
starts to process it. It is usual to dimension such memories to
hold a minimum of two buffers in order to implement ping-
pong buffer techniques to help to reduce the number of cycles
the PCore is waiting for new valid data.

The logic surrounding the PCore is not only intended
for isolation purposes but also for implementation of the
OMX Core functionality supported in RGrid. The skeleton
interprets the bus requests and recognizes the operation to
be triggered, typically synchronization primitives, component
parameter setup, etc. The proxy controls the initialization of
buffer transfers through the communication channel with the
help of the local DMA control. The drivers are the only
modules totally dependent of the physical communication
protocol. They role is twofold: in one hand, they decode the
bus signal activity and activates the skeleton (slave). On the
other hand, they control the low level data flow through the
communication channel (master).

It is worth remarking again that the implementation of the
PCore is completely orthogonal to the rest of the infrastructure
above described. Since the interface to the shell and the
activation protocol are defined beforehand, new developments
only have to focus on implementing efficient architectures for
the algorithms to be accelerated. The ultimate goal is to ease
as much as possible the elaboration of a HOMXC, trying to
make it similar to the software case. Therefore, ongoing work
is exploring the use of Menthor Graphics Catapult C 3 to

3http://www.mentor.com/esl/catapult/overview

Dynamic. Reconfigurable areas.
Component A

COWPOV‘E”tB Component C

X
Host processor
Rgrid
OMX
IL
- _4
Component
<«

HW— (top) and HW< (bottom) dataflow in RGrid FPGA node

Static.

Fig. 5.

synthesize the PCore functionality from a high level ANSI
C++ description.

B. Intra-node communication

This scenario refers to all data movement that takes place
between RGrid components hosted in the same FPGA node.
Then, two alternatives must be analyzed HW—HW and
HW<<SW. For the later, further considerations must be done
depending on the role (producer/consumer) of the ends in the
communication. Buffer progression in the processing chain
between two HOMXCs realizes through efficient HW to HW
data transmissions using a technique we call DMA interleav-
ing. Each HOMXC implements a local DMA engine which
transfers the output buffer, which it is written in the output
memory, to the next-in-the-chain component’s input memory
(addressed by the content of the TgrAddr register.

DMA interleaving is an optimization that allows the trans-
mission of parts of the buffer before the last word is placed
in the output memory. This way, component’s execution is
parallelized with buffer transmission, but this is not the main
advantage. Since the size of the individual bursts bus is
reduced using this technique, the system scales better than
using a classic DMA approach and, on top of that, the de-
centralized management of concurrent buffer transmissions
between components minimizes the idle time of the bus
and reduces the wait cycles due to bus congestion. Once a
complete buffer is ready in the input memory of a HOMXC,
the producer invokes the Empty operation on the consumer
signaling it can start to process it. Once the buffer has been
consumed (which means, completely read by the PCore) a new
one is demanded to the previous component (SrcAddr register
stores the address) in the chain (Fill operation). Notice that,
again, the execution in the component is concurrent with input
buffer transmission over the on-chip bus (see top half in figure
5).

Data exchanging involving one SW component and one
HOMXC necessarily happens through shared memory. The
RGrid OMX IL run-time is responsible for: (a) signaling
the SW components a new buffer is ready in memory to be

consumed; (b) transmitting the content of a buffer from shared
memory to the local memory of the HOMXC has to process
it (SW—, SW component as the producer); and (c) managing
the shared memory areas dedicated to intermediate storage
of buffers and configuring the TgtAddr registers. When the
HOMXC is the producer (HW—), it does not realizes it is
actually writing on the shared memory instead of another local
memory’s HOMXC making it its behavior homogeneous to
this sceneraio.

C. Inter-node communication

Although it is desirable all the components of an application
to be deployed in the same node (to reduce latency time due
to communications), there are many situations where it is
not possible to do this. For example, current occupation of
the different FPGA nodes in the Grid may force to split the
application logic up among several nodes. In this scenario,
inter-node communication is a requirement for both data
exchanging and synchronization purposes.

Synchronization primitives (i.e. empty, fill,...) are treat as
regular invocations by the RGrid platform. Off-FPGA buffer
transmissions are supervised by the RGrid OMX IL run-time.
As stated in the previous section, the RGrid IL run-time is
signaled any time there is a new buffer to be delivered to
the proper consumer. Analyzing the header information of
the buffer structure and the internal data the RGrid IL agent
has about the deployment status of a current application, it
is determined whether the destination of the buffer is local
(previous scenario) or external. Thus, the buffer is transmitted
to the FPGA node holding the consumer component using
the global communication infrastructure, placing the buffer in
the shared memory. From this point, the process continues as
in the HW< case. Once again, from the consumer/producer
perspective, all this operational is transparent to them.

VI. CONCLUSION

Large data set processing, as those that can be found in
image or video processing applications, need of emerging
architectures that would complement the important advances
made in many-core architectures. Although one-chip solutions
such as GPUs reach incredible performance rates, writing
optimized code for one specific technology is a cumbersome
task. The effort, thus, is neither portable or reusable. In
addition, power consumption issues are a concern nowadays
and GPU do not behave well in this field.

In this paper, we have presented the RGrid approach.
RGrid is a distributed infrastructure and a set of service to
integrate, manage and program reconfigurable logic resources.
On one hand, the use of reconfigurable logic allows accelerated
hardware implementations of image processing algorithms in
an efficient way. On the other hand, the application of the
grid computing paradigm enables coarse grain parallelism
exploitation. A RGrid user only has to think in the appli-
cation functionality, modeled as a set of components. Data
distribution, component communication and deployment and,

in general, all the platform dependant issues of the grid are
hidden behind the proposed infrastructure.

Since the level of parallelism considered in RGrid is way
above the one used in other approaches, applications are easier
to architect. No ad-hoc code restructuring is needed and still
comparable levels of performance and throughput are achieved
due to the capability of using a massive replication scheme,
transparent to the developer.

A fast hardware development workflow, closer to the profile
of current developers in the computer graphics area, is also
being explored in RGrid. The use of high level synthesis tools
will make RGrid platform more popular and accessible to
the community due to the possibility to write the accelerated
portions of the application in C++.

ACKNOWLEDGMENT

This research was supported by the Spanish Ministry of
Science and Innovation under the project DAMA (TEC2008-
06553/TEC), and by the Spanish Ministry of Industry and the
Centre for the Development of Industrial Technology under
the project ENERGOS (CEN-20091048).

REFERENCES
[1

—

Reconfigurable Computing: Accelerating Computation with Field-
Programmable Gate Arrays. Springer, 2010.

[2] S. Asano, T. Maruyama, Y. Yamaguchi; “Performance comparison of
fpga, gpu and cpu in image processing,” in International Conference on
Field Programmable Logic and Applications(FPL), 2009, pp. 126-131.
Barba, J., Rincon F.,, Moya FE, Lopez J.C., Dondo J.D.; “Object-based
communication architecture for system-on-chip design,” in Design of
Circuits and Integrated Systems (DCIS), november 2010.

[4] L. T. Iona Technologies and S. Nixdorf, “Control and management of
audio/video streams,” in OMG Doc. Telecom 97-05-07, 1997.

J. Barba, F. Rincon, F. Moya, F. Villanueva, D. Villa, J. Dondo, and
J. Lopez, “Ooce, object-oriented communication engine for soc design,”
in Proc. X Euromicro Conf. on Digital System Design (DSD), Germany,
2007.

F. Rincon, F. Moya, J. Barba, F. Villanueva, D. Villa, J. Dondo, and
J. Lopez, “Transparent ip cores integration based on the distributed object
paradigm,” in LNEE- Intelligent Technical Systems, vol. 38. Springer
Netherlands, February 2009, pp. 131-144.

“Openmax integration layer api specification,” The Khronos Group,
starndard 1.0, December 2005.

J. Barba, D. de la Fuente, F. Rincon, F. Moya, and J. Lopez, “Openmax
hardware native support for efficient multimedia embedded systems,”
Consumer Electronics, IEEE Transactions on, vol. 56, no. 3, pp. 1722
—1729, aug. 2010.

3

—

[5

—_

[6

[t}

[7

—

[8

=

