
A multimodal distributed architecture for indoor
localization

M.A. Martı́nez, F.J. Villanueva, M.J. Santofı́mia and J.C. López
Computer Architecture and Networks, School of Computer Science,

University of Castilla-La Mancha, Ciudad Real, Spain.
Email: [miguela.martinez, felix.villanueva, mariajose.santofimia, juancarlos.lopez]@uclm.es

Abstract—The indoor location problem, despite being a hot
topic for the research community, it is still an issue with great
room from improvement. The poor results reported by the use
of isolated location technologies are leading current research
efforts to work in the combination of different technologies. This
work presents an object-oriented distributed architecture that,
supporting different location technologies, is capable of providing
a multimodal location system. The main contribution of this work
is therefore the proposal of a system in which the information
retrieved from different location technologies can be combined in
order to provide high level services, such as user device tracking
or watch areas.

I. INTRODUCTION

People location for indoor environments is the cornerstone
of higher level applications such as real-time tracking, user
activity recognition, user and robot navigation or target-of-
interest monitoring, just to name a few. The goodness of the
results provided by those high level applications are therefore
dependent on how precisely people can be located. In this
regard, the literature review yields different approaches to
people location, ranging from those that cover mathematical
aspects for estimation purposes [1], to those that resort to
available indoor technologies [2] such as WiFi[3], 802.15.4[4],
RFID[5], or Bluetooth[6].

Relevant research is also being done in providing ad-
hoc solutions to the positioning problem through different
techniques, such as augmented reality[7]or audio[8].

However, last advances in indoor location are being
achieved by approaches based on the composition of the
information retrieved from different location technologies, im-
proving therefore the resultant indoor location system [9][10].
The authors of this work strongly believe that efforts must
be addressed on this direction, at least until a more accurate
technology appears on the scene. This work has been mainly
motivated by the need to overcome the lack of precision of
the current positioning technologies. To this end, the range
of technologies used to gather location data must be broaden,
rather than being just constrained to a single or a small group
of technologies.

The multimodal location architecture proposed in this paper
is characterized for being technology independent, scalable
and auto-configurable. Adopting the object-oriented philos-
ophy, this work provides a high level interface in order to
offer location services to external systems in a technologically-
transparent way.

The remainder of this article is organized as follows. Section
II presents the foundation of the location-based system (LBS)
proposed here. Section III describes the proposed architecture.
Finally, Section IV presents the conclusions drawn from this
work along with the future work directions.

II. A DISTRIBUTED LOCATION BASED SYSTEM

The main drawback of current location systems is that
positioning is based in the information retrieved from single
location technologies, rather than in the combination of several
(cooperating) technologies. Furthermore, those systems pro-
vide location services to third-party applications by means of
monolithic modules in which the location technology cannot
be decoupled from the service itself.

For the sake of minimizing the coupling between the
location technology and the service itself, this work proposes
the definition of two roles, as known: the Location Event
Provider (LEP) and the Location Event Consumer (LEC). The
former supports the technology-dependent role while the latter
is technology independent. The adoption of such a decoupled
approach entitles LEP to propagate location events to any
LEC.

Nevertheless, role separation it is neither the silver bullet for
the LBS, since challenges such as the heterogeneity problem
arises. The differences among the location events provided by
the distinct technologies makes unfeasible to compose infor-
mation unless that some homogenization tasks are performed
upon such events.

For the sake of homogenization, we have followed an
implementation based on the Mobile Location Protocol[11]
standard adapted to incorporate the tenets of the object-
oriented paradigm. This standard defines geometrical shapes,
interfaces to manage the location information and the location
concept, that is to say, the location event format.

Additionally, the wide variety of systems that would be
using the LBS should be also taken into account. It is therefore
necessary to offer a high level interface that allows different
LBS users to transparently obtain location information. The
idea behind the use of a high level interface is to provide
a unique way of managing and dealing with location events.
It is also desirable to consider supporting different operative
systems, programming languages, mobile devices, distributed
components, etc. Both challenges -a common interface and
heterogeneous software- are to be faced through the use of



a CORBA-like object-oriented middleware[12]. Adopting a
strategy based in physically decoupling the LEP from the LEC
allows LBS to provide a common interface to any third-party
system while at the same time abstracting it from the software
heterogeneity.

The distributed nature of the proposed system poses some
key issues such as scalability and fault tolerance. In this regard,
a service discovery protocol (SDP) has also been designed and
implemented providing the means to compose and replicate the
LBS services.

The main contribution of this work is a technology-
independent and scalable LBS, designed on the basis of the
aforementioned challenges and the named solutions proposed
to address them.

III. ARCHITECTURE

The multimodal indoor location system is composed of two
logic subsystems: the Location Event Provider (LEP) -which
implements the location event provider role- and the Location
Service (LS). The LS, besides from implementing the LEC
role, it also provides highly elaborated services in contrast to
the raw ones provided by LEPs.

The LEP is a technology-dependent subsystem intended to
detect the presence of those devices involved in the location
task (via Bluetooth, WiFi, audio, augmented reality, etc). The
LEP is also in charge of propagating location events, using
the MLP format, to those other services or systems interested
on such events. There should be a LEP for each supported
technology, and therefore the role of the service discovery
protocol is essential for managing purposes.

The interfaces used by the LEP, in Listing 1, have been
implemented in slice (the interface specification language
for the used middleware). Through the MLP.LocationListener
interface the LEP propagates the location events while the
MLP.LocationAdmin interface allows the LEC to subscribe
to the LEP. In other words, it can be said that the LEC
uses the MLP.LocationListener interface in order to retrieve
location events while the LEP manages the LEC interests in
receiving location events by using the administration interface
MLP.LocationAdmin. Moreover, a new interface, based on the
use of generic properties, has been designed in order to deal
with arising desires to subscribe to a certain type of location
events.

The property-based behavior is inspired in the CORBA
Property Service[13], and it enacts the system flexibility; for
example it is possible to subscribe to a particular LEP that
satisfies specific conditions such a concrete resolution in a
specific area.

Listing 1. Partial MLP slice definition

interface LocationListener {
idempotent void locateReport(Position pos);
idempotent void locateSeqReport(PositionSeq pos);
idempotent void locateRangeReport(PositionSeq pos);

};

interface LocationAdmin extends
LocationDataProvider {

void addListener(LocationListener* listener);
void removeListener(LocationListener* listener);
};

interface LocationAdminProps extends LocationAdmin {
void addListenerWithProps(
MLP::LocationListener* listener,
PS::Properties properties)
throws PS::UnsupportedProperty;

};

These interfaces support the role distinction. However,
further challenges need to be faced in order to provide a
transparent way of dealing with location events. The prosed
solutions are presented underneath.

A. High level interface
In order to support the first issue -to provide a high level

interface to other systems- we have created the LocationSer-
vice (LS). The LS is a LEC service interested in receiving
location events regarding a particular area. LS propagates
events according to a specific semantics.

Location events look similar in any LBS. We are adopted
a structure according to the definitions stated in the MLP
standard. The Position structure is made of three fields, where
the first field -msid- determines the type and identifier of the
event; the second field -time- defines the event timestamp,
and the last field -shape- represents the area where the user
has been detected. The shape field has also been defined
accordingly to the MLP standard.

The LS can be seen as an additional LEP that encapsulates
and manages the location events, and provides them for other
LEC. Specifically, the LS offers a common interface, as
described in Listing 2, for all the LEPs whose area intersects
with the LS area. So, the LS subscribes to all the LEPs whose
areas are covered by the LS area. Federation and composition,
as it will be explained later on, allow us to build LSs with the
capabilility of covering any area of a physical infrastructure
(building, campus, etc.) by composing low-level LS (room,
floor, etc.).

Listing 2. Location Service slice definition

interface LocationService extends
MLP::LocationDataProvider{

void federate(MLP::LocationListener* lsListener,
PS::Properties properties)

throws PS::UnsupportedProperty;

void unfederate(MLP::LocationListener* lsListener);

MLP::Location getLocation(LS::DeviceProfile device)
throws UnknownIdentifier;

void trackingDevice(LS::DeviceProfile device,
MLP::LocationListener* listener)

throws UnknownIdentifier, InvalidProxy;

LS::DeviceProfileSeq usersIntoArea(MLP::Shape area)
throws UncoveredArea;

void watchArea(MLP::Shape area,
MLP::LocationListener* listener)

throws UncoveredArea;
};

It should be highlighted that the LS may receive location
events generated by different technologies. Therefore, it is



necessary to merge the different user positioning events in just
one. In order to do so, the LS receives events from different
LEPs and performs the geometric intersection between all of
them (it is worth noting, once again, that a location event, for
being MLP-compliant, is described as a geometrical shape).
If the intersection is a null set, the LS propagates the event
whose technology is more accurate. In any other case, the LS
propagates the event that results from the intersection.

Additionally, location event management is enhanced with
some semantic knowledge that supports event filtering by
specific areas or from particular devices, allowing device
tracking. Providing semantic knowledge also entails the LS to
determine the identity of those users located at a specific area,
and to federate several LSs. In order to illustrate the federation
capability we can consider several LSs at the building floor
level (one for each floor) and one LS at the building level,
which is actually a federation of floor level LSs. Moreover it
is possible to configure the federation, using the properties
mechanism. For example a federate system could only be
interested in the events coming from a specific technology,
while another could need all the raw location events.

B. Composition mechanism

To support the aforementioned geographical semantics, the
LS needs to know where LEPs are placed and the area they
represent. We assume that each LEP knows their covered
area. At this point the LS needs to discover (via the Service
Discovery Framework[14]) the LEPs that represent areas that
intersect with the one covered by the LS.

To support area definition the standardized Well Known
Text (WKT)[15] format has been used. Therefore, each LEP
needs a shape property defined in its configuration file using
the WKT format. On the other hand means to deal with the
Service Discovery Protocol are needed. For this purpose some
middleware features have been used. In this particular case,
the ZeroC Ice[12] middleware has been considered, because
it provides an efficient publish/subscribe event service called
IceStorm, and the capability of creating a grid of computers
remotely manageable through the IceGrid service.

The composition mechanism, which allow LS to find those
LEP located in its area, is carried out in two different ways.

1) LEP discovery: In this method the LS starts the compo-
sition mechanism, therefore finding the LEPs. The LS looks
up the LEPs (Figure 1) whose areas are covered by the LS. To
do so, the LS creates an event channel to retrieve the search
results. Next, the LS sends a look up message that specifies the
area, the specific type of server to be discovered (a LEP) and
the response channel. When the LEPs receives the discovery
event they check their represented area and reply to the LS
consequently. Finally the LS subscribes to the location event
channel of the corresponding LEPs.

2) LEP announcement: Through this method the LEP no-
tifies its presence to the system, and the LS can subscribe to it
(Figure 2). When a LEP starts to run, it announces itself to the
advertisement channel. The LS was subscribed to that channel
and consequently receives the LEP advertisement. The LS asks

LocationProvider:lp IceStorm.Topic:Discover

subscribe(lpPrx)

LocationService:ls

retrieve(topicId)

lookup(cb, area)

lookup(cb, area)

inArea(area)

IceStorm.Topic:Cb

create(cb)

subscribe(lsPrx)

adv(lpPrx)

adv(lpPrx)

addListenerWithProps(lsPrx, area)

IceStorm.Topic:Events

create(id)

subscribe(lsPrx)

inArea(area)

Fig. 1. Sequence diagram of the LS discover of LEPs

to be added to the LEP location event channel. The LEP checks
the LS covered area and subscribes the LS consequently. When
the LS is subscribed to the LEPs location event channels it will
receive the location events. The LS will then propagate these
events using the LocationService interface.

LocationProvider:lp IceStorm.Topic:Announce

adv(lpPrx)

LocationService:ls

subscribe(lsPrx)

inArea(area)

IceStorm.Topic:Events

addListenerWithProps(lsPrx, area)

adv(lpPrx)

create(id)

subscribe(lsPrx)

Fig. 2. Sequence diagram of LEP announcement

It should be noted that the discovery process uses properties
in order to localize the LEPs. That is, the LS sends the
“look up” using a property which represents a shape (in MLP
format). However, it may use other properties to restrict the
search.

C. Multiple technology identifiers

The LS can operate in two modes. In the first mode, the
LS can dispatch the location events in a semantic way. In this
mode the LS does not carry out a batching procedure. It can
detect the event area, technology, and identifier and propagate
them to the interested LEC -the LECs that subscribed via
trackingDevice or watchArea methods-. In the second mode,
the LS carries out a batching procedure in order to apply tech-
nology merging algorithms, and only propagates the estimation
result. This operation mode presents a new handicap: it is nec-
essary to create one common device identifier which supports
the association of all the different technology identifiers.



In order to tackle this issue we define the LS::DeviceProfile.
This class has an attribute which describes a dictionary that
defines entries as pairs technology (as key) and identifier (as
value). Thus the system can manage the different devices of
each system user.

The aforementioned approximation can only partially solve
the problem. It provides the necessary way to manage several
technology identifiers. However, a mechanism that allows
the retrieval of the device profile with a single technol-
ogy identifier is also need. For this purpose we design the
LS::ProfileResolver (Listing 3) which offers resolution meth-
ods, and the LS::ProfileResolverAdmin that offers administra-
tion methods such bind, rebind, unbind and binds (recover all
the binding device profile).

Listing 3. LS::ProfileResolver definition

interface ProfileResolver {

LS::DeviceProfile resolve(string tech, string id)
throws NotFoundProfile;

LS::DeviceProfileSeq resolveSeq(
LS::StringDict techIdDict)
throws NotFoundProfile;

};

Thanks to the Profile Resolver, the LS can carry out the
batching procedures. In fact, if the LS works in this mode
it must know the Profile Resolver service, since otherwise
the LS will not start. In case of location events without
associated devices, for example, motion sensor based LEP,
these localization events are labeled with an “anonymous”
label, and will be used by the system to improve the accuracy.

The proposed architecture provides some features which
are very interesting from the distributed systems perspective,
helping to deal with complexity and offering reliability and
efficiency.

The composition mechanisms are complementary in the
sense that LEPs have to implement both the announcement
mechanism in order to notify the system about their presence,
and the discovery mechanism so as to allow other services
to find them. Additionally, the LS also has to listen to the
announcements published in the system, in order to subscribe
to LEPs. Previously, LEPs needs to be sought in the covered
area.

Using both mechanisms the LSs are always updated. In this
way, some fault tolerant methods can be implemented, since
replication mechanisms can be implemented in a transparent
way: if two LSs covering the same area are started at same
time the will find the same LEPs and subscribe to them. Hence,
both LSs will receive the same location events and therefore
will have the same state.

Event filtering is an additional interesting system feature.
So, a LS can subscribe to the different LSs deployed just to
receive a specific type of events (e.g. estimated events). This
behavior allows in general to reduce the number of location
events propagated to higher levels, and, together with the
federation flexibility it be can used to efficiently handle a
complex hierarchy of spaces.

IV. CONCLUSIONS

This paper describes a multimodal indoor location system
able to combine several positioning technologies so as to
enhance location accuracy. To this end we propose an object-
oriented distributed architecture which is characterized by its
scalability, technology independence an flexibility.

There are two crucial aspects in the system. On the one
hand, the use of a middleware places an abstraction layer
in between the services and the location technologies. On
the other hand, the use -and implementation- of standards
increases the integration capabilities of the system, so as to
be reused or to adopt other technologies.

The future works are focused on the implementation of a
simulator -taking advantage of the modularity and indepen-
dence of the different system components- in order to mea-
sure the algorithm location precision. We also are evaluating
common-sense reasoning engines so as to estimate positions
based on enhanced knowledge about how the world works.

REFERENCES

[1] F. Seco, A. Jimenez, C. Prieto, J. Roa, and K. Koutsou, “A survey
of mathematical methods for indoor localization,” in Intelligent Signal
Processing, 2009. WISP 2009. IEEE International Symposium on, 2009,
pp. 9 –14.

[2] D. Zhang, F. Xia, Z. Yang, L. Yao, and W. Zhao, “Localization
technologies for indoor human tracking,” CoRR, vol. abs/1003.1833,
2010.

[3] Inc. Cisco Systems, “Wi-fi location-based services 4.1 design guide,”
Tech. Rep., May 2008.

[4] P. Barsocchi, S. Lenzi, S. Chessa, and G. Giunta, “Virtual calibration for
rssi-based indoor localization with ieee 802.15.4,” in Communications,
2009. ICC ’09. IEEE International Conference on, 2009, pp. 1 –5.

[5] T. Sanpechuda and L. Kovavisaruch, “A review of rfid localization: Ap-
plications and techniques,” in Electrical Engineering/Electronics, Com-
puter, Telecommunications and Information Technology, 2008. ECTI-
CON 2008. 5th International Conference on, vol. 2, May 2008, pp.
769 –772.

[6] A. Salazar, “Positioning bluetooth reg; and wi-fi trade; systems,” Con-
sumer Electronics, IEEE Transactions on, vol. 50, no. 1, pp. 151 – 157,
Feb. 2004.

[7] H. Hile and G. Borriello, “Positioning and orientation in indoor envi-
ronments using camera phones,” Computer Graphics and Applications,
IEEE, vol. 28, no. 4, pp. 32 –39, 2008.

[8] T. Nishimura, Y. Nakamura, H. Tomobe, T. Kurata, T. Okuma, and
Y. Matsuo, “Location estimation using auditory signal emitted and
received by all objects,” in Networked Sensing Systems, 2007. INSS ’07.
Fourth International Conference on, 2007, p. 295.

[9] M. Papandrea, “Multimodal ubiquitous localization: a gps/wifi/gsm-
based lightweight solution,” in World of Wireless, Mobile and Multi-
media Networks Workshops, 2009. WoWMoM 2009. IEEE International
Symposium on a, 2009, pp. 1 –3.

[10] O. Vinyals, E. Martin, and G. Friedland, “Multimodal indoor local-
ization: An audio-wireless-based approach,” in Semantic Computing
(ICSC), 2010 IEEE Fourth International Conference on, 2010, pp. 120
–125.

[11] Open Mobile Alliance, “Mobile location protocol,” version 1.2.1, 2004.
[12] M. Henning and M. Spruiell, Distributed Programming with Ice, Revi-

sion 3.4, 2010.
[13] Object Management Group, “Property service specification,” version 1.0,

2000.
[14] F. Villanueva, D. Villa, M. Santofimia, F. Moya, and J. Lopez, “A frame-

work for advanced home service design and management,” Consumer
Electronics, IEEE Transactions on, vol. 55, no. 3, pp. 1246 –1253, 2009.

[15] Open Geospatial Consortium Inc., “Opengis implementation standard
for geographic information - simple feature access - part 2: Sql option,”
Candidate Version 3.1, 2010.


