

A Dynamically Reconfigurable Architecture
for Smart Grids

David Villa, Cleto Martín, Félix Jesús Villanueva, Francisco Moya and Juan Carlos López, Member, IEEE

Abstract — This paper introduces a proposal for a smart

grid management platform built on the distributed
programming paradigm. Besides it is based on an information
model and event architecture. The information model defines
a set of clear interfaces to manage every “grid node”. We
built an actual implementation of a low-cost embeddable
control/meter device that may even be attached to individual
appliances. These devices behave as conventional autonomous
remote distributed objects and provide full support for the
information model and also for integration with the
communication middleware. The resulting event architecture
provides great flexibility to manage information flows from
services and applications1.

Index Terms — smart grids, middleware, information model.

I. INTRODUCTION

Today there are many commercial devices that allow
controlling any electric appliance, even in a remote way.
Recently, concepts like smart grid or Advanced Metering
Infrastructure (AMI) emerge for electrical power management
and measurement purposes. However, related standards do not
exist, nor programming interfaces, so they cannot be widely
used yet.

In this paper, we propose a system for controlling and
measuring the electrical power consumption for large scale
and heterogeneous infrastructures. Intended to be used in
smart grids, this proposal offers the following valuable
features [1]:

• Adaptability: it makes it possible to build Embedded
Metering Devices (EMDs) to manage arbitrary
level facilities, from individual appliances to whole
buildings or larger.

• Scalability: it scales easily with the number of nodes
or equipments to be managed thanks to the
middleware common services: event service,
replication, indirect binding, etc.

• Availability: because of its distributed nature, this
proposal allows that some network segments

1 This work is supported by ERDF and the Regional Gov. of Castilla-La

Mancha under grants PAI08-0234-8083 (RGrid). Also, it has been supported
by Spanish Ministry of Science and Innovation under grants CEN-20091048
(Energos) and TEC2008-06553 (DAMA).

All authors are with the Department of Information Technologies and
Systems, University of Castilla-La Mancha, Spain. School of Computer
Science, Paseo de la Universidad, nº 4. 13071, Ciudad Real (Spain) (e-mail:
{david.villa, cleto.martin, felixjesus.villanueva, francisco.moya,
juancarlos.lopez}@uclm.es).

become temporarily isolated due to some failure
and they may still continue to work in an
autonomous way.

• Hierarchical: different types of infrastructures
(house, building, residential area, etc.) may be
integrated in a transparent way to build federated
domains.

 Furthermore, this proposal also provides other advanced
features that are desirable in smart grids:

• Small size: in many appliances, the EMD may be
very small and simple, as small as to be installed in
an electrical junction box or even inside the bulb
lamp base.

• Low cost: the EMD is cheap enough so that its cost
is negligible in relation to the installation and
maintenance of the controlled charge.

• Low consumption: obviously, the EMD power
consumption must be insignificant in relation to the
controlled charge.

• Flexible access: the platform is able to employ
several communication systems, from telephone
lines to standard Internet connections, or any kind
of wireless network with the appropriate gateway.

• Access transparency: transparent and homogeneous
remote access is allowed even with technologically
different communication and computational
resources (both hardware and software).

• Conventional tools: it allows using well-known and
well tested protocols and software tools. That
avoids additional costs and efforts derived from
developer training.

• Reconfiguration: it lets the system customer/
administrator to easily change the logical
configuration of the smart grids (the domain under
its control). A switch would act over one or tens of
power lines with a simple runtime reconfiguration.

This paper is organized as follows: Section II describes

the current related work of smart grid architectures and
management systems. Section III introduces our proposal
and their main components: the OO (Object Oriented)
communication middleware concept is briefly discussed and
its terminology is presented at section IV, the design of
EMDs and its classification is described in section V and
the section VI shows the proposed information model.
When every node of the smart grid is deployed, system

administrator needs to configure and maintain the grid.
Section VII describes which services may be useful for
these tasks. An example of dynamically reconfigurable
infrastructure is explained in section VIII. Section IX
introduces one of our prototypes, where results about
footprint are provided and, finally, we draw some
conclusions and future work in section X.

II. RELATED WORK

 Recently, smart grids are becoming an interesting
research field due to their potential and impact on industry,
economy and society. Many works address the need of a
dynamic behavior and configuration of smart grids [2]-[4].
This is a requirement to implement the following
functionalities in a smart grid:

• Smart reactions to faulty conditions: applications
may monitor different measurement parameters to
detect and predict fault occurrence in any part of
the grid. Thus, Smart Grids should provide an
adaptive control for power supply and consumption
in case of system malfunction or when certain parts
of the grid are down. In this situation, the grid may
be reconfigured to isolate the faulty zone by using
an architecture that provides dynamic control.

• Dynamic load balancing: usually, different parts of
the grid are not fed with the same energy at the
same time. Different consumption profiles or time
zones contribute to unbalance the energy grid. In
short, smart grids should adapt energy production
to current consumption demands of users.
Reconfiguration makes possible a smarter and
automated redistribution of the load through the
grid.

• Flexible configuration: a reconfigurable architecture
provides a way to customize the infrastructure to
the end users needs without additional hardware
installation. For instance, users might manage and
monitor every home appliance (including those that
may be installed in the future) with the same
“control panel”.
In a similar way, but on a larger scale, electrical
power companies and energy providers may use
this flexibility for managing and monitoring
substations, energy generators and so on.

A recent proposal is FREEDM System [5], a distributed
hardware/software infrastructure, focused on MicroGrids [6]
and renewable energies, for controlling and storing electric
power. This system uses a collection of smart services, so
called Distributed Grid Intelligence (DGI). Algorithms, like
smart load balancing [7], are implemented at DGI and provide
functionality and knowledge to users and high-level
applications. FREEDM is a good solution if all of the
hardware nodes and network protocols are homogeneous. Our
proposal is based on smart grids that are built on different
hardware platforms and different network protocols and, at the

same time, the entire system should be seen in a homogeneous
way. In fact, our architecture might integrate a FREEDM-
based smart grid into the system.

Other research works have been carried out in relation with
the Advanced Metering Infrastructure (AMI) concept. These
platforms are focused on measurement, monitoring and
accounting processes for smart grids. For instance, ZAMI [8]
is a ZigBee based AMI for monitoring electric system in
buildings. The AMI is separated logically from the rest of the
system, so it is not integrated. A service perspective is able to
provide access transparency and the integrative view of the
system [9]. In this case, Web Services are proposed to be used
as application-level network protocol to build AMIs. This
provides hardware and protocol abstractions but the need of a
XML parser implies non-trivial hardware resources. Instead, in
our proposal, a basic meter able to provide voltage, intensity
and energy consumption data has a footprint about 340 bytes
on a single 8-bit micro-controller.

Most of the current literature about smart grid is focused on
measurement tasks [10]. Recently, multi-agent based proposals
have appeared, as in [11]. However, they do not provide data
about hardware/software requirements for an actual installation
and deployment.

We have not found any former approach dealing with
reconfigurable architectures for smart grids with
heterogeneous components at different levels that allows
applications, power supplier and end-users to reach fine
grained control and measurement functionality.

III. A RECONFIGURABLE PLATFORM FOR POWER

M ANAGEMENT

Our target is a generic platform suitable to develop
advanced electric power management services and
applications for any environment and provide core
mechanisms and support for them. With this in mind, we
employ object-oriented distributed communication middleware
to deal with inevitable heterogeneity in smart grids and to
provide a standard protocol for the whole system. That
platform is called CoSGrid (Controlling the Smart Grid).

On top of the base of the distributed programming
paradigm, we define an information model that will be shared
among the grid components. To achieve that, all involved
parties must understand the underlying application protocol
(imposed by the chosen middleware). That is not a problem for
company computers (even in substations) but we are talking of
all of the grid components, including user home appliances,
wall switches, bulbs and virtually any electric device
susceptible to be connected to an electric outlet. That
conceptual approach requires an actual implementation that we
achieve by means of the Embedded Meter Devices.

When all of the system components can be managed as
objects and they share the same information model, it is
possible to establish logic relations among them. By means of
event channels, and object and data aggregation it is easy to
perform non-trivial services, as we show in the section VIII.

Therefore, the platform is based on the next components
that are explained in detail in the next sections:

• The communication middleware.
• The Embedded Meter Device.
• An information model.
• A set of core services.

IV. COMMUNICATION M IDDLEWARE

The platform is based on standard Object Oriented
Middlewares (OOM) like CORBA [12] or similar [13], [14].
Thus, the system may be seen as a set of distributed objects
that share information via remote method invocations. The
middleware provides a uniform, generic and fully specified
application protocol. There are many general purpose
middlewares supported by the industry2.

Fig. 1. Simplified invocation schema in object-oriented middleware.

Fig. 1 shows the essential behavior of this kind of

middlewares. From the programmer point of view, invocation
occurs as usual in the object oriented paradigm (dotted arrow).
Actually, it does not happen in this way. Client invokes a
method on a reference of the remote object: the proxy. Using
the communication core, the invocation is coded (marshalled)
using a specific binary protocol and transmitted to the server
using the underlying network. At the server side, the
invocation is re-built (unmarshalled) and finally it arrives to
the object; the reply goes back to the client in the same
manner.

The server side implements a well-defined interface that
clients know and share. Interfaces are usually defined using an
interface description language, like IDL in CORBA. Both
proxy and skeleton parts are dependent of the interface and
may be generated by tools, usually provided by middleware
vendors.

V. EMBEDDED M ETER DEVICES

The EMD allows encapsulating the sensor (electrical
magnitude measures) and actuator (control) to show the
appliance as a distributed remote object. This is a powerful
abstraction that lets the platform operate in a seamless way.
All of the services deal with remote object references, without

2 Our EMD current prototypes work with the Ice middleware.

any knowledge about the underlying device nature: sensor
technology, network access, computing platform or any other
detail.

Every EMD must be capable to hold one or several
distributed objects of the selected middleware. EMDs are
autonomous and just need conventional networking support,
like routers, bridges or gateways between technologies.

Generally, as shown in Fig. 2 the EMD is composed of: a
microcontroller, a network interface, an electrical switch for
turning on/off the electric load and measurement devices for
monitoring such electric load.

Due to the distributed object oriented paradigm, each object
in the EMD must implement a set of interfaces, that is, the
contract with their clients. In this sense, a distributed object
may be seen as a service: the client can access this service
independently of its location (so called location transparency)
and the technology in which it has been implemented.
However, to provide these features different hardware
requirements are needed.

Fig. 2. Block diagram of the general EMD structure.

We provide a classification of different EMD
implementations according to their characteristics, goal or
performance. EMDs can be classified in three different basic
types (see Fig. 3 for an example of deployment):

A. Low range EMD (L-EMD)

For simple electric loads like a light or electric outlet, L-
EMD can modify, know and transmit the state (typically
on/off) of the controlled devices by implementing the Control
interface (see section VI). If the infrastructure requires fine-
grain measured values, EMD-L devices may implement the
BasicMeter interface. Keep in mind that L-EMDs are designed
to be integrated into appliances and devices that consumer will
use. They should be cheap and easy to deploy, so the
functionality they may provide should be simple too.

To integrate them into the whole system, we need to build
distributed objects into devices with a few K-words of memory
and a single 8-bit microcontroller. To achieve that it is used
the picoObject approach [15]. picoObjects are being used to
implement the smallest standard distributed objects (hundreds
of bytes) in a wide variety of embedded devices, including the
cheapest microcontrollers.

In a common deployment, many L-EMD devices will be
deployed. Each L-EMD needs a power line and a data

connection as Fig. 3 shows in ground floor. A multi L-EMD
may be used to reduce cost and simplify the deployment
process. The multi L-EMD behaves as a set of L-EMD that are
accessible individually and remotely, but it employs only a
computing and communication device. We have built a
prototype of a multi L-EMD device which is described in
section IX.

Fig. 3. Example of deployment where different types of EMD are used.

B. Medium range EMD (M-EMD)

This type of EMDs includes all functionality of the L-EMD
but adds some basic properties for measurement of consumed
power, voltage and electrical current. Furthermore, to deal
with scalability issues, M-EMD provides aggregation
mechanisms that let us read and modify any amount of
devices, as if they were all a single one. This class of devices
is designed for the installation in the low-voltage electrical
panel.

In order to implement these properties, this class of device
requires a 16-bit microcontroller, due to their needs of more
memory and also more in/out ports for several sensors. M-
EMDs may support, if desired, routing functions between the
managed (local) area network and the global (external) system
network.

C. High range EMD (H-EMD)

This class of devices requires a more powerful embedded
device because they may store logged data (collected remotely
or locally) about measurements and power statistics, voltage
and current. H-EMDs are a good example of the smart meters
supposedly provided by the electricity supplier. Due to its
goal, these EMD are accessible only to companies and they
may decide whether it requires remote control. The power
company may need this kind of functionality at upper level
(perhaps at substations) but those EMD are essentially the
same of H-EMD.

VI. INFORMATION M ODEL

Our platform (CoSGrid) provides a set of abstractions that
may be used to model and design platform services as
distributed applications. To address all of the requirements and

objectives exposed before, the information model is broken
down into several non-exclusive categories:

• Metering. To access electric magnitude
measurements. It is functionally independent of the
scale of the associated load.

• State control. To activate/deactivate an arbitrary
load.

• Notification. To allow the nodes to send
asynchronous updates of their measures or states.

• Node aggregation. To organize devices (their object
references) in arbitrary ways: functional,
geographic, importance.

• Data aggregation. To build “virtual” objects that
represent composed measures for a set of nodes by
means of an operator.

The next sections explain these interfaces, their possibilities,
features and limitations.

A. Controlling and Measuring

The basic CoSGrid infrastructure provides interfaces for
controlling and measuring tasks. Interfaces for measuring are
described in Slice language as follows:

module CoSGrid {

interface BasicMeter {
 short getVoltage();
 short getIntensity();
 int getPower();
};
interface AdvancedMeter extends BasicMeter {
 byte getHarmonic(byte n);
 int getEnergy();
};

};

Depending on hardware features, sensor objects may

implement the BasicMeter or AdvancedMeter interface. Using
the first one, clients may collect information relative to
voltage, current intensity and power from sensors. Advanced
sensors which are also able to determine n-harmonic using a
FFT [16] and the consumed energy, should implement the
AdvancedMeter interface. This information is useful for
provider companies to prevent side-effects due to harmonics
and to predict grid malfunctions.

On the other side, CoSGrid provides the following
interfaces for controlling tasks:

module CoSGrid {

interface Status {
 bool isEnabled():
 bool isUsed();
};
interface Control {
 void setEnable(bool value);
};

};

Distributed objects representing actuators should implement

the Control interface that enables clients to change their state.

An actuator controls one electric lines, regardless of its load.
Furthermore, if actuators are able to provide its state, objects
may implement Status, so that clients would be able to know if
the electric line is in use, that is, something is consuming
electric power in that moment (the current is greater than
zero); or if the line is enabled, that is, it is ready to provide
power.

Of course, it is possible to have not-controllable objects that
may implement the Status interface, although in that case, the
isEnabled() method returns always True.

B. Event notification and logic relations

A monitoring object (that usually implements the Status or
Meter interfaces, or both) may send its state to other objects by
means of method invocations too. The former (the object that
send updates) is called active object and the latter (the one that
receive them) is called observer [17]. The observer is, of
course, a remote object and therefore it is required that it
implements well-defined interfaces to indicate the signature of
its supported methods. Note that, when the active object sends
notifications to its observer it is acting as a client.

The point here is that the observer of an active object may
be changed at any time, even in a working system. To do that,
the active object exposes specific interfaces that allow others
to modify the reference of its observer. The observer object
reference is persistent and is stored in the active object flash
memory. That feature allows the system to be dynamically
reconfigurable because these flows of information may be
changed by very high abstraction level services.

This kind of object reference supports interoperability (they
may be shared through the network), keeping the reference to
the correct object: its remote proxy.

The next listing shows the CoSGrid interfaces related to
active objects and observers.

module CoSGrid {

interface MeterObserver {
 void setVoltage(short value);
 void setIntensity(short value);
 void setPower(int value);
 void setHarmonic(byte n, int value);
 void setEnergy(int value);
};
interface ActiveMeter {
 void setMeterObserver(MeterObserver* observer);
 MeterObserver* getMeterObserver();
};
interface StatusObserver extends Control {
 void setUsed(bool value);
};
interface ActiveStatus {
 void setStatusObserver(StatusObserver* observer);
 StatusObserver* getStatusObserver();
};

};

Active objects are those that implement ActiveMeter,

ActiveStatus or both. Trough these interfaces, clients are able
to get and set/change the observer object at execution time.

That is, the object which will receives the measurement or
state updated value notifications of the active object. This
observer object must implement a concrete observer interface
depending on active object type. An ActiveMeter requires a
MeterObserver object and, in the same way, an ActiveStatus
requires a StatusObserver object.

Note that actuators (objects implementing Control interface)
may be active objects too, both for metering and status
purposes. You may assume that a non-controllable line or
charge is always enabled, but may be being used or not.

Active objects introduce a new way to implement different
kinds of relationships between objects:

• 1-to-1: this is the relationship that has been
described so far: an active object has an associated
observer which receives state changes.

• 1-to-n: if the observer is an event channel, other
objects can be subscribed to the channel and
receive state changes. Event channels may be
federated and linked to others3.

• n-to-1: several active objects may share a single
observer, so that all state changes will be received
by the same observer (useful for logging purposes).
Note that in this case, the observer may be a
channel also, and then the relation will be n-to-n.

Besides state change, an active object may use different
ways to notify observer objects:

• Asynchronously. Active objects send notifications
when the related magnitude changes. For the
ActiveStatus, that occurs when an electric load is
connected/disconnected (setUsed() method) or the
node is enabled/disabled (setEnable() method).
The latter is only applicable for actuators, as we
explained above. This mechanism is of course fully
asynchronous and it just requires a message.
For the ActiveMeter, a notification for each change
is definitely inefficient for continuous magnitudes.
In that case, an additional mechanism may be
implemented to specify conditional notifications.
For each magnitude users may define a range, a
delta or both. Range specifies the values that the
magnitude must fit in order to trigger a state update
notification. Delta indicates the minimum
difference between current and last sent value to
generate a new update message.
Conditional notifications should be set up locally,
that is, as part of the program code of the node.

• Periodically. Measured values may be updated and
transmitted at certain programmed period.
Typically, most high level applications do not
require large amounts of data continuously. In
these scenarios, periodically and time programmed
requests may reduce the network load.

3 Ice middleware provides a built-in event channel service, so-called

IceStorm [13], that we use in our prototypes.

• On-demand: clients may cause state notification on
demand by means of a common method. For
instance, any remote object implements the Object
interface that provides a ping-like method. It is
used by clients to check object reachability. In our
implementation, when an active object receives
such invocation it transmits their current state
values to the configured observer. Such methods
may be found in environments based on CORBA
or CORBA-like frameworks.

The most valuable feature of CoSGrid platform is the active
objects. In section VIII an application example is shown using
a distributed smart grid environment.

C. Object and data aggregation

Power grids are large scale systems. Suppose a smart grid
with hundreds or thousands of sensors and each sensor sending
its measured values to a processor data node. This scenario is
not scalable. Thousands of sensors will cause a storm of
messages through the network that would interfere with the
correct operation of other applications.

For these situations, CoSGrid provides interfaces for
composite objects. A composite object is inspired in the
software design pattern with the same name [17]: a composite
object is-an object that knows other objects (that in turn can be
composites) and the whole set behaves as one of them (it
exposes the same interface). In CosGRid, a composite object is
a virtual sensor/actuator object that contains references
(proxies) to remote objects that may be grouped by arbitrary
criteria. Furthermore, composite objects may be used for
aggregating data. For instance, a composite BasicMeter sensor
would provide the average value of its associated objects.

The CosGrid Composite module provides the following set
of interfaces (simplified code for readability):

module CosGrid {

interface Component {
 Ice::StringSeq getAllFacets();
};
module Container {
 interface RW;
 interface R { ObjectPrxDict list(); };
 interface W {
 void link(string key, Object* value);
 void unlink(string key);
 Container::RW* create(string key);
 void destroy();
 };
 interface RW extends R,W {};
};
module Composite {
 const string MIN = "minimum"; // lowest value
 const string MAX = "maximum"; // highest value
 const string AVG = "average"; // sum(0..n)/n
 const string MED = "median"; // sort(0..n)[n/2]
 const string HEI = "height"; // max-min
…
 const string ANY = "any"; // true if any true
 const string ALL = "all"; // true if all true
 interface R extends Container::R, Component {};

 interface W extends Container::RW, Component {};
 interface Factory {
 Object* create(string scalarType);
 void destroy(Object* proxy);
 Ice::StringSeq getAllowedTypes();
 };
};

};

The composite object implements the Container interface

(to hold remote object references) and the Component
interfaces (to provide facets browsing). Each facet may be
used to offer different aggregation operator. For instance, a
composite sensor would provide both average and maximum
value of the electric power consumed by using different facets
with these names. Thus, Component interface lets the clients
know which facets the object has.

Composite objects, as containers, may be readable
(interface R) if clients are only able to get their references but
not change them. If modification is required, composite
objects should be writable (interface W). A Factory interface
to create and destroy composite objects is also provided.

Note that composite objects may also be active, that is,
when the aggregated value changes (with the same
considerations explained in section VI-B) the composite send
an update to its configured observer.

All these interfaces may be mixed (interface inheritance) to
specialize behavior. Fig. 4 shows an example of class diagram
of a CoSGrid composite object that clarifies which part of the
total functionality contribute each interface.

Fig. 4. Example of user interface definition for a composite object.

A FloorSensor would provide statistical measured values
(through facets) from all sensors of an entire floor. Thus, the
interface FloorSensor extends from AdvancedMeter and
Composite::W, so that clients can retrieve values from
associated sensors and reconfigure in execution time which
sensor are part of the composite object.

VII. DEPLOYMENT AND CONFIGURATION

After the physical deployment of the EMDs has been done,
the system administrator needs to identify and associate each
object with the electric load it will monitor and/or control. We
designed a service discovery protocol suitable to identify every
node in the environment [18]. The node can periodically send

asynchronous messages to advertise itself and its features.
With the advertisement information and an administration
software tool, it is possible to add user or application specific
information to each node, such as the location in the building,
human readable description, etc. All of this information is
propagated up in the hierarchy when required.

For security and privacy reasons, the access to the system
follows a role-based schema. The visibility and access
privileges depend on each actor role; a house owner may see
and access all of the devices that control his appliances.
Furthermore, middlewares usually provide security at protocol
level by using SSL/TSL encrypted communications.

VIII. SCENARIO

This section describes an example scenario where high-level
applications can be implemented over CoSGrid platform to
provide smart services using reconfiguration and aggregation
features. A schematic representation of such scenario is shown
in Fig. 5.

Fig. 5. Example scenario of a power grid where CosGrid devices have
been installed.

User buildings may represent complex hospitals or business
buildings that need generators in case of power blackout.
Batteries (or other way to accumulate energy) may be charged
using wind generator or main power, and the remaining energy
is inserted into the grid.

All of these infrastructures are provided with L-EMD (or
multi L-EMD) and M-EMD devices for electric appliance and
floor electrical panels, respectively. Thus, fine grain control
and measurement of consumption or generation values can be
done. L-EMD devices can monitor appliances like computers,

lights, electrical sockets, etc. M-EMD devices are composites
of L-EMD devices and control an entire floor (or a small
building). Using the composite interface, clients can get
statistical values from the associated L-EMD devices.
However, if it is required by the application, each L-EMD
device may be individually inspected.

H-EMD devices are also represented in the figure above,
and typically monitor an installation or building:

• H1: controls and measures the power line from
substation. It is a composite object which provides
statistical values from the other H-EMD nodes
(there is a two level hierarchy of H-EMD).

• H2: controls and monitors the generated energy from
the wind generator. It is also a composite of EMD
devices of the generator system. Unlike the rest, it
is expected that this EMD will provide negative
consumption values due to energy generation.

• H3: this EMD just controls whether the batteries
system should start providing power or they should
stay disconnected.

• H4 and H5: monitor and control their respective
buildings and both are composite objects.

By using composite and active objects, smart agents or
services (built on top of this platform) can reconfigure the
logical architecture under different situations described below.

A. Billing and measuring

The most basic capabilities of the Smart Grid (the energy
accounting and billing) may be directly obtained from the state
of EMDs. In addition, the platform provides some other
features along this line:

• It allows the provider to read the whole energy
consumed (or generated) by each user.

• It is possible to summarize in real time the combined
expenditure of all users (taken from the
corresponding composite object facet) and
compare it with the actual measure for the whole
area. In this way it is possible to detect and localize
installation or maintenance problems, sensor
defects, frauds, billing errors, etc.

• It allows the user to know his expenditure
immediately, and which appliances are responsible
of it.

B. Flexible and automated deployment

New appliances may be deployed at buildings. By using the
service discovery protocol (see section VII) and M-EMD and
H-EMD composite objects, agents can group automatically
new appliances, so that they may be monitored and controlled
immediately.

By using a graphical interface, the administrator can
remove, edit and add new properties and meta-information
which describes location, features description and so on. This
information may be used by agents to provide more valuable
functionality like automated service composition [19].

C. Power blackout

Suppose H1 detects that a substation stops supplying
electric power due to a certain failure. If H1 is an active status
object, a conditional notification may be programmed in this
case: enable the observer (setEnable(True)) if electric current
falls to zero, otherwise disable it. If H3 is the observer of H1,
when a power blackout occurs, the batteries system will be
activated to supply electric power.

Agents may change observer object at execution time, so
that the same active object will notify state changes to other
observer. Depending on grid requirements and its state, smart
agents can reconfigure active objects so that the batteries
systems supply electric power to the right grid zones. A
batteries system which originally was not designed as a backup
of a concrete infrastructure may be used by others by simply
modifying observer references.

On the other side, in case of a power blackout, certain
appliances can be shutdown without major inconvenience but
some others are critical. All of the devices in an operating
room or staff elevators in a hospital are examples of critical
appliances.

We propose a flexible architecture for agents that can
manage this situation: every non-critical appliance is
subscribed to the non_critical channel. This channel is the
observer of an active object which detects the electric power
failure. In such case, active object will send a setEnable(False)
to channel, and the message will be retransmitted to
subscribers, turning off all of the appliances to reduce electric
power consumption.

Fig. 6. Multi L-EMD prototype

The valuable contribution of this solution is that it is

reconfigurable. Suppose the hospital building is restructured
and where there was an operating room, now there is a seating
room for the staff. Electric sockets and all of the appliances
installed into it are now non-critical. Just subscribe them into
the non_critical channel and they change their role
immediately and without any operational action.

IX. PROTOTYPE

Currently, we have built a prototype using a CORBA-like

middleware and the picoObject concept. Fig. 6 shows our
multi L-EMD prototype with the following hardware
components:

• Embedded Ethernet network interface. It includes an
implementation of TCP/IP protocol.

• 8-bit microcontroller with 14.3 KB for program
memory, 368 bytes of RAM size and 256 bytes for
ROM memory.

• Three triacs for power control switching.
The distributed objects for the middleware that are built into

this kind of devices (L-EMD and some M-EMD devices) are
be implemented using the IcePick framework [20]. This
framework provides a high-level programming language to
specify the distributed scenario, that is, the logical distribution
of distributed objects into nodes through the distributed
system. Then, an automated tool builds all required
picoObjects in a low-level specification language (bytecode).
The bytecode should be executed by a given virtual machine.
We have built different virtual machines for several platforms:
PC (assembler, Python, C and others) and embedded operating
systems [21] IcePick framework also provides tools for
automated installation of both bytecode and virtual machine in
the final hardware nodes.

There are three distributed objects installed in our multi L-
EMD device. Each object implements the controlling, status
information and active interfaces of CoSGrid, so that each
object implements Control, Status and ActiveStatus interfaces.
Currently, this prototype does not include hardware for
measuring purpose, so that it does not provide sensing
services. Using optimizations provided by IcePick, this
prototype has the following virtual machine requirements:

• 126 bytes for ROM memory.
• 455 bytes of bytecode length.
• 21 bytes for RAM memory.
• 60 bytes for flash memory.

Thus, this prototype requires 662 bytes at virtual machine

level. To get the final footprint, the resources required for the
virtual machine should be added, but these values depend on
the concrete implementation. For instance, a virtual machine
implementation in assembly for the microcontroller platform
with embedded Ethernet interface (as in the prototype)
requires 2643 bytes of program memory and 65 bytes of RAM
memory.

X. CONCLUSIONS

The smart grid presents many common aspects with
distributed systems. Heterogeneity and scalability are key
problems and may be solved by the core platform. OOM
seems to be directly applicable but that is only a part of the
problem. We proposed the use of distributed object paradigm,
but defining a concrete information model that allows
concreting communication mechanisms and the rules that
services must fit to gain interoperability and take advantage of
the middleware features. We also provide a very low cost

implementation of an autonomous and reliable distributed
object; that makes it possible to interact with any components
of the grid easily.

By means of logic relations (built on active objects and
observer concepts) we provide and on-the-fly self-contained
reconfigurable event architecture that greatly simplify the
deploying and management of reactive services in the grid.

As future work, we are working on prototypes that integrate
measurement capabilities and improved management features.
From the company point of view, we are interested in services
that can make automatic data aggregation and data logging to
detect potential grid problems, sabotage, etc. Other goals
include high abstraction level services (agent based) that
analyze user behavior from their activities related to home
appliances and in this way detect anomalous situations,
accidents, security problems, etc.

REFERENCES
[1] R. Hassan and G. Radman, “Survey on Smart Grid,” in Proceedings of

the IEEE SoutheastCon 2010 (SoutheastCon). IEEE, 2010.
[2] M. McGranaghan, D. Von Dollen, P. Myrda, and E. Gunther, “Utility

experience with developing a smart grid roadmap,” in Power and
Energy Society General Meeting - Conversion and Delivery of
Electrical Energy in the 21st Century, IEEE, pp. 1–5, July 2008.

[3] D. P. Bernardon, V. J. Garcia, A. S. Ferreira, and L. N. Canha,
“Multicriteria Distribution Network Reconfiguration Considering
Subtransmission Analysis,” IEEE Transactions on Power Delivery, vol.
25, no. 4, pp. 2684–2691, October 2010.

[4] S. Massoud Amin and B. F. Wollenberg, “Toward a smart grid: power
delivery for the 21st century,” IEEE Power and Energy Magazine, vol.
3, no. 5, pp. 34–41, September 2005.

[5] F. Meng, R. Akella, M. L. Crow, and B. McMillin, “Distributed Grid
Intelligence for future microgrid with renewable sources and storage,”
North American Power Symposium (NAPS), pp. 1–6, September 2010.

[6] S. Chowdhury, S. Chowdhury, and P. Crossley, “Microgrids and Active
Distribution Networks”. Institution of Engineering and Technology,
2009.

[7] R. Akella, F. Meng, D. Ditch, B. McMillin, and M. Crow, “Distributed
Power Balancing for the FREEDM System”, Smart Grid
Communications (SmartGridComm), 2010 First IEEE International
Conference on, pp. 7–12, October 2010.

[8] H. Y. Tung, K. F. Tsang, and K. L. Lam, “ZigBee sensor network for
Advanced Metering Infrastructure,” in 2010 Digest of Technical Papers
International Conference on Consumer Electronics. IEEE, 2010.

[9] S. Chen, J. Lukkien, and L. Zhang, “Service-oriented Advanced
Metering Infrastructure for Smart Grids,” in 2010 Asia-Pacific Power
and Energy Engineering Conference. IEEE, 2010.

[10] K. H. Han, S. W. Choi, B. C. Park, and J. J. Lee, “An implementation of
a wireless sensor network-based meter reading system,” in SenSys’09:
Proceedings of the 7th ACM Conference on Embedded Networked
Sensor Systems. New York, NY, USA: ACM, 2009.

[11] M. Pipattanasomporn, H. Feroze, and S. Rahman, “Multi-agent systems
in a distributed smart grid: Design and implementation,” in 2009
IEEE/PES Power Systems Conference and Exposition. IEEE, 2009.

[12] Object Management Group. The Common Object Request Broker:
Architecture and Specification, 3rd ed., 2002.

[13] M. Henning and M. Spruiell, Distributed Programming with Ice,
Revision 3.4.1, 2010.

[14] Sun Microsystems Inc., Java Remote Method Invocation, 2006.
[15] F. Moya, D. Villa, F. J. Villanueva, J. Barba, F. Rincón, and J. C.

López, “Embedding standard distributed object-oriented middlewares in
wireless sensor networks,” Journal on Wireless Communications and
Mobile Computing, vol. 9, no. 3, 2009.

[16] S. Herman, Alternating Current Fundamentals, 7th ed., T. D. Learning,
Ed., 2006.

[17] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:
elements of reusable object-oriented software. Addison-Wesley
Professional, 1995.

[18] F. J. Villanueva, D. Villa, M. J. Santofimia, F. Moya, and J. C. López,
“A framework for advanced home service design and management”.
Consumer Electronics, Transactions on,: IEEE Computer Society,
2009.

[19] M. J. Santofimia, F. Moya, F. J. Villanueva, D. Villa, and J. C. López,
“An agent-based approach towards automatic service composition in
ambient intelligence,” Artif. Intell. Rev., vol. 29, pp. 265–276, 2008.

[20] C. Martín, D. Villa, F. Villanueva, F. Moya, M. Santofimia, and J.
López, “A development model supporting integrative object oriented
middlewares for sensor and actuator networks,” in ICWN ’10:
Proceedings of The 2010 International Conference on Wireless
Networks. CSREA Press, 2010.

[21] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,
D. Gay, J. Hill, M. Welsh, E. Brewer, and D. Culler, “TinyOS: An
Operating System for Sensor Networks,” in Ambient Intelligence, W.
Weber, J. M. Rabaey, and E. Aarts, Eds. Berlin/Heidelberg: Springer-
Verlag, ch. 7, pp. 115–148, 2005.

BIOGRAPHIES
David Villa received the Computer Eng. Diploma from
the University of Castilla-La Mancha (UCLM) in 2002.
Since then he works as a Teaching Assistant at the
UCLM. In 2009, he obtained the PhD degree in
Computer Science at the UCLM. His current research
interests include heterogeneous distributed systems,
distributed embedded system design and virtual network

routing protocols.
Cleto Martín received the Computer Eng. Diploma from
the University of Castilla-La Mancha (UCLM) in 2010.
Since then he works as a Technologist and Researching
Assistant at ARCO Research Lab. He is currently a
Master degree student. His current research interests
include heterogeneous distributed systems, virtual
network and QoS–based routing protocols.

Félix Jesús Villanueva received the Computer Eng.
Diploma from the University of Castilla-La Mancha
(UCLM) in 2001. In 2009 he obtained the PhD degree
from the UCLM, where he is now working as Teaching
Assistant. His research interests include wireless sensor
networks, ambient intelligence and embedded systems.

Francisco Moya (received his MS and PhD degrees in
Telecommunication Engineering from the Technical
University of Madrid (UPM), Spain, in 1996 and 2003
respectively. From 1999 he works as an Assistant
Professor at the University of Castilla-La Mancha
(UCLM). His current research interests include
heterogeneous distributed systems and networks,

electronic design automation, and its applications to large-scale services and
system-on-chip design.

Juan Carlos López (M’76) received the MS and Ph.D.
degrees in Telecommunication (Electrical) Engineering
from the Technical University of Madrid in 1985 and
1989, respectively. From September 1990 to August
1992, he was a Visiting Scientist in the Department of
Electrical and Computer Engineering at Carnegie Mellon
University, Pittsburgh, PA (USA). His research activities

center on embedded system design, distributed computing and advanced
communication services. From 1989 to 1999, he has been an Associate
Professor of the Department of Electrical Engineering at the Technical
University of Madrid. Currently, Dr. LÃ³pez is a Professor of Computer
Architecture at the University of Castilla-La Mancha where he has served as
Dean of the School of Computer Science from 2000 to 2008. He is and has
been member of different panels of the Spanish National Science Foundation
and the Spanish Ministry of Education and Science, regarding the
Information Technologies research programs. He is member of the IEEE and
the ACM.

