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Abstract — This paper introduces a proposal for a smart 

grid management platform built on the distributed 
programming paradigm. Besides it is based on an information 
model and event architecture. The information model defines 
a set of clear interfaces to manage every “grid node”. We 
built an actual implementation of a low-cost embeddable 
control/meter device that may even be attached to individual 
appliances. These devices behave as conventional autonomous 
remote distributed objects and provide full support for the 
information model and also for integration with the 
communication middleware. The resulting event architecture 
provides great flexibility to manage information flows from 
services and applications1. 
 

Index Terms — smart grids, middleware, information model. 

I.  INTRODUCTION 

Today there are many commercial devices that allow 
controlling any electric appliance, even in a remote way. 
Recently, concepts like smart grid or Advanced Metering 
Infrastructure (AMI) emerge for electrical power management 
and measurement purposes. However, related standards do not 
exist, nor programming interfaces, so they cannot be widely 
used yet. 

In this paper, we propose a system for controlling and 
measuring the electrical power consumption for large scale 
and heterogeneous infrastructures. Intended to be used in 
smart grids, this proposal offers the following valuable 
features [1]: 

• Adaptability: it makes it possible to build Embedded 
Metering Devices (EMDs) to manage arbitrary 
level facilities, from individual appliances to whole 
buildings or larger. 

• Scalability: it scales easily with the number of nodes 
or equipments to be managed thanks to the 
middleware common services: event service, 
replication, indirect binding, etc. 

• Availability: because of its distributed nature, this 
proposal allows that some network segments 

 
1 This work is supported by ERDF and the Regional Gov. of Castilla-La 

Mancha under grants PAI08-0234-8083 (RGrid). Also, it has been supported 
by Spanish Ministry of Science and Innovation under grants CEN-20091048 
(Energos) and TEC2008-06553 (DAMA). 

All authors are with the Department of Information Technologies and 
Systems, University of Castilla-La Mancha, Spain. School of Computer 
Science, Paseo de la Universidad, nº 4. 13071, Ciudad Real (Spain)  (e-mail: 
{david.villa, cleto.martin, felixjesus.villanueva, francisco.moya, 
juancarlos.lopez}@uclm.es).  

become temporarily isolated due to some failure 
and they may still continue to work in an 
autonomous way. 

• Hierarchical: different types of infrastructures 
(house, building, residential area, etc.) may be 
integrated in a transparent way to build federated 
domains. 

 Furthermore, this proposal also provides other advanced 
features that are desirable in smart grids: 

• Small size: in many appliances, the EMD may be 
very small and simple, as small as to be installed in 
an electrical junction box or even inside the bulb 
lamp base. 

• Low cost: the EMD is cheap enough so that its cost 
is negligible in relation to the installation and 
maintenance of the controlled charge.  

• Low consumption: obviously, the EMD power 
consumption must be insignificant in relation to the 
controlled charge. 

• Flexible access: the platform is able to employ 
several communication systems, from telephone 
lines to standard Internet connections, or any kind 
of wireless network with the appropriate gateway. 

• Access transparency: transparent and homogeneous 
remote access is allowed even with technologically 
different communication and computational 
resources (both hardware and software). 

• Conventional tools: it allows using well-known and 
well tested protocols and software tools. That 
avoids additional costs and efforts derived from 
developer training. 

• Reconfiguration: it lets the system customer/ 
administrator to easily change the logical 
configuration of the smart grids (the domain under 
its control). A switch would act over one or tens of 
power lines with a simple runtime reconfiguration. 

 
This paper is organized as follows: Section II describes 

the current related work of smart grid architectures and 
management systems. Section III introduces our proposal 
and their main components: the OO (Object Oriented) 
communication middleware concept is briefly discussed and 
its terminology is presented at section IV, the design of 
EMDs and its classification is described in section V and 
the section VI shows the proposed information model. 
When every node of the smart grid is deployed, system 



 

administrator needs to configure and maintain the grid. 
Section VII describes which services may be useful for 
these tasks. An example of dynamically reconfigurable 
infrastructure is explained in section VIII. Section IX 
introduces one of our prototypes, where results about 
footprint are provided and, finally, we draw some 
conclusions and future work in section X. 

II.  RELATED WORK  

 Recently, smart grids are becoming an interesting 
research field due to their potential and impact on industry, 
economy and society. Many works address the need of a 
dynamic behavior and configuration of smart grids [2]-[4]. 
This is a requirement to implement the following 
functionalities in a smart grid: 

• Smart reactions to faulty conditions: applications 
may monitor different measurement parameters to 
detect and predict fault occurrence in any part of 
the grid. Thus, Smart Grids should provide an 
adaptive control for power supply and consumption 
in case of system malfunction or when certain parts 
of the grid are down. In this situation, the grid may 
be reconfigured to isolate the faulty zone by using 
an architecture that provides dynamic control. 

• Dynamic load balancing: usually, different parts of 
the grid are not fed with the same energy at the 
same time. Different consumption profiles or time 
zones contribute to unbalance the energy grid. In 
short, smart grids should adapt energy production 
to current consumption demands of users. 
Reconfiguration makes possible a smarter and 
automated redistribution of the load through the 
grid. 

• Flexible configuration: a reconfigurable architecture 
provides a way to customize the infrastructure to 
the end users needs without additional hardware 
installation. For instance, users might manage and 
monitor every home appliance (including those that 
may be installed in the future) with the same 
“control panel”. 
In a similar way, but on a larger scale, electrical 
power companies and energy providers may use 
this flexibility for managing and monitoring 
substations, energy generators and so on. 

A recent proposal is FREEDM System [5], a distributed 
hardware/software infrastructure, focused on MicroGrids [6] 
and renewable energies, for controlling and storing electric 
power. This system uses a collection of smart services, so 
called Distributed Grid Intelligence (DGI). Algorithms, like 
smart load balancing [7], are implemented at DGI and provide 
functionality and knowledge to users and high-level 
applications. FREEDM is a good solution if all of the 
hardware nodes and network protocols are homogeneous. Our 
proposal is based on smart grids that are built on different 
hardware platforms and different network protocols and, at the 

same time, the entire system should be seen in a homogeneous 
way. In fact, our architecture might integrate a FREEDM-
based smart grid into the system. 

Other research works have been carried out in relation with 
the Advanced Metering Infrastructure (AMI) concept. These 
platforms are focused on measurement, monitoring and 
accounting processes for smart grids. For instance, ZAMI [8] 
is a ZigBee based AMI for monitoring electric system in 
buildings. The AMI is separated logically from the rest of the 
system, so it is not integrated. A service perspective is able to 
provide access transparency and the integrative view of the 
system [9]. In this case, Web Services are proposed to be used 
as application-level network protocol to build AMIs. This 
provides hardware and protocol abstractions but the need of a 
XML parser implies non-trivial hardware resources. Instead, in 
our proposal, a basic meter able to provide voltage, intensity 
and energy consumption data has a footprint about 340 bytes 
on a single 8-bit micro-controller. 

Most of the current literature about smart grid is focused on 
measurement tasks [10]. Recently, multi-agent based proposals 
have appeared, as in [11]. However, they do not provide data 
about hardware/software requirements for an actual installation 
and deployment. 

We have not found any former approach dealing with 
reconfigurable architectures for smart grids with 
heterogeneous components at different levels that allows 
applications, power supplier and end-users to reach fine 
grained control and measurement functionality. 

III.  A RECONFIGURABLE PLATFORM FOR POWER 

M ANAGEMENT  

Our target is a generic platform suitable to develop 
advanced electric power management services and 
applications for any environment and provide core 
mechanisms and support for them. With this in mind, we 
employ object-oriented distributed communication middleware 
to deal with inevitable heterogeneity in smart grids and to 
provide a standard protocol for the whole system. That 
platform is called CoSGrid (Controlling the Smart Grid). 

On top of the base of the distributed programming 
paradigm, we define an information model that will be shared 
among the grid components. To achieve that, all involved 
parties must understand the underlying application protocol 
(imposed by the chosen middleware). That is not a problem for 
company computers (even in substations) but we are talking of 
all of the grid components, including user home appliances, 
wall switches, bulbs and virtually any electric device 
susceptible to be connected to an electric outlet. That 
conceptual approach requires an actual implementation that we 
achieve by means of the Embedded Meter Devices. 

When all of the system components can be managed as 
objects and they share the same information model, it is 
possible to establish logic relations among them. By means of 
event channels, and object and data aggregation it is easy to 
perform non-trivial services, as we show in the section VIII. 



 

Therefore, the platform is based on the next components 
that are explained in detail in the next sections: 

• The communication middleware. 
• The Embedded Meter Device. 
• An information model. 
• A set of core services. 

IV.  COMMUNICATION M IDDLEWARE  

The platform is based on standard Object Oriented 
Middlewares (OOM) like CORBA [12] or similar [13], [14]. 
Thus, the system may be seen as a set of distributed objects 
that share information via remote method invocations. The 
middleware provides a uniform, generic and fully specified 
application protocol. There are many general purpose 
middlewares supported by the industry2. 

 

 
Fig. 1.  Simplified invocation schema in object-oriented middleware. 

 
Fig. 1 shows the essential behavior of this kind of 

middlewares. From the programmer point of view, invocation 
occurs as usual in the object oriented paradigm (dotted arrow). 
Actually, it does not happen in this way. Client invokes a 
method on a reference of the remote object: the proxy. Using 
the communication core, the invocation is coded (marshalled) 
using a specific binary protocol and transmitted to the server 
using the underlying network. At the server side, the 
invocation is re-built (unmarshalled) and finally it arrives to 
the object; the reply goes back to the client in the same 
manner. 

The server side implements a well-defined interface that 
clients know and share. Interfaces are usually defined using an 
interface description language, like IDL in CORBA. Both 
proxy and skeleton parts are dependent of the interface and 
may be generated by tools, usually provided by middleware 
vendors. 

V. EMBEDDED M ETER DEVICES 

The EMD allows encapsulating the sensor (electrical 
magnitude measures) and actuator (control) to show the 
appliance as a distributed remote object. This is a powerful 
abstraction that lets the platform operate in a seamless way. 
All of the services deal with remote object references, without 

 
2 Our EMD current prototypes work with the Ice middleware. 

any knowledge about the underlying device nature: sensor 
technology, network access, computing platform or any other 
detail. 

Every EMD must be capable to hold one or several 
distributed objects of the selected middleware. EMDs are 
autonomous and just need conventional networking support, 
like routers, bridges or gateways between technologies. 

Generally, as shown in Fig. 2 the EMD is composed of: a 
microcontroller, a network interface, an electrical switch for 
turning on/off the electric load and measurement devices for 
monitoring such electric load. 

Due to the distributed object oriented paradigm, each object 
in the EMD must implement a set of interfaces, that is, the 
contract with their clients. In this sense, a distributed object 
may be seen as a service: the client can access this service 
independently of its location (so called location transparency) 
and the technology in which it has been implemented.  
However, to provide these features different hardware 
requirements are needed. 

 

 
Fig. 2.  Block diagram of the general EMD structure. 
 

We provide a classification of different EMD 
implementations according to their characteristics, goal or 
performance. EMDs can be classified in three different basic 
types (see Fig. 3 for an example of deployment): 

A. Low range EMD (L-EMD) 

For simple electric loads like a light or electric outlet, L-
EMD can modify, know and transmit the state (typically 
on/off) of the controlled devices by implementing the Control 
interface (see section VI). If the infrastructure requires fine-
grain measured values, EMD-L devices may implement the 
BasicMeter interface. Keep in mind that L-EMDs are designed 
to be integrated into appliances and devices that consumer will 
use. They should be cheap and easy to deploy, so the 
functionality they may provide should be simple too. 

To integrate them into the whole system, we need to build 
distributed objects into devices with a few K-words of memory 
and a single 8-bit microcontroller. To achieve that it is used 
the picoObject approach [15]. picoObjects are being used to 
implement the smallest standard distributed objects (hundreds 
of bytes) in a wide variety of embedded devices, including the 
cheapest microcontrollers. 

In a common deployment, many L-EMD devices will be 
deployed. Each L-EMD needs a power line and a data 



 

connection as Fig. 3 shows in ground floor. A multi L-EMD 
may be used to reduce cost and simplify the deployment 
process. The multi L-EMD behaves as a set of L-EMD that are 
accessible individually and remotely, but it employs only a 
computing and communication device. We have built a 
prototype of a multi L-EMD device which is described in 
section IX. 

 

 
Fig. 3.  Example of deployment where different types of EMD are used. 
 

B. Medium range EMD (M-EMD) 

This type of EMDs includes all functionality of the L-EMD 
but adds some basic properties for measurement of consumed 
power, voltage and electrical current. Furthermore, to deal 
with scalability issues, M-EMD provides aggregation 
mechanisms that let us read and modify any amount of 
devices, as if they were all a single one. This class of devices 
is designed for the installation in the low-voltage electrical 
panel.  

In order to implement these properties, this class of device 
requires a 16-bit microcontroller, due to their needs of more 
memory and also more in/out ports for several sensors. M-
EMDs may support, if desired, routing functions between the 
managed (local) area network and the global (external) system 
network. 

C. High range EMD (H-EMD) 

This class of devices requires a more powerful embedded 
device because they may store logged data (collected remotely 
or locally) about measurements and power statistics, voltage 
and current. H-EMDs are a good example of the smart meters 
supposedly provided by the electricity supplier. Due to its 
goal, these EMD are accessible only to companies and they 
may decide whether it requires remote control. The power 
company may need this kind of functionality at upper level 
(perhaps at substations) but those EMD are essentially the 
same of H-EMD. 

VI.  INFORMATION M ODEL  

Our platform (CoSGrid) provides a set of abstractions that 
may be used to model and design platform services as 
distributed applications. To address all of the requirements and 

objectives exposed before, the information model is broken 
down into several non-exclusive categories: 

• Metering. To access electric magnitude 
measurements. It is functionally independent of the 
scale of the associated load. 

• State control. To activate/deactivate an arbitrary 
load. 

• Notification. To allow the nodes to send 
asynchronous updates of their measures or states. 

• Node aggregation. To organize devices (their object 
references) in arbitrary ways: functional, 
geographic, importance. 

• Data aggregation. To build “virtual” objects that 
represent composed measures for a set of nodes by 
means of an operator. 

The next sections explain these interfaces, their possibilities, 
features and limitations. 

A. Controlling and Measuring 

The basic CoSGrid infrastructure provides interfaces for 
controlling and measuring tasks. Interfaces for measuring are 
described in Slice language as follows: 
 
module CoSGrid { 

interface BasicMeter { 
 short getVoltage(); 
 short getIntensity(); 
 int getPower(); 
}; 
interface AdvancedMeter extends BasicMeter { 
 byte getHarmonic(byte n); 
 int getEnergy(); 
}; 

}; 

 
Depending on hardware features, sensor objects may 

implement the BasicMeter or AdvancedMeter interface. Using 
the first one, clients may collect information relative to 
voltage, current intensity and power from sensors. Advanced 
sensors which are also able to determine n-harmonic using a 
FFT [16] and the consumed energy, should implement the 
AdvancedMeter interface. This information is useful for 
provider companies to prevent side-effects due to harmonics 
and to predict grid malfunctions. 

On the other side, CoSGrid provides the following 
interfaces for controlling tasks: 

 
module CoSGrid { 

interface Status { 
 bool isEnabled(): 
 bool isUsed(); 
}; 
interface Control { 
 void setEnable(bool value); 
}; 

}; 

 
Distributed objects representing actuators should implement 

the Control interface that enables clients to change their state. 



 

An actuator controls one electric lines, regardless of its load. 
Furthermore, if actuators are able to provide its state, objects 
may implement Status, so that clients would be able to know if 
the electric line is in use, that is, something is consuming 
electric power in that moment (the current is greater than 
zero); or if the line is enabled, that is, it is ready to provide 
power. 

Of course, it is possible to have not-controllable objects that 
may implement the Status interface, although in that case, the 
isEnabled() method returns always True. 

B. Event notification and logic relations 

A monitoring object (that usually implements the Status or 
Meter interfaces, or both) may send its state to other objects by 
means of method invocations too. The former (the object that 
send updates) is called active object and the latter (the one that 
receive them) is called observer [17]. The observer is, of 
course, a remote object and therefore it is required that it 
implements well-defined interfaces to indicate the signature of 
its supported methods. Note that, when the active object sends 
notifications to its observer it is acting as a client. 

The point here is that the observer of an active object may 
be changed at any time, even in a working system. To do that, 
the active object exposes specific interfaces that allow others 
to modify the reference of its observer. The observer object 
reference is persistent and is stored in the active object flash 
memory. That feature allows the system to be dynamically 
reconfigurable because these flows of information may be 
changed by very high abstraction level services. 

This kind of object reference supports interoperability (they 
may be shared through the network), keeping the reference to 
the correct object: its remote proxy. 

The next listing shows the CoSGrid interfaces related to 
active objects and observers. 

 
module CoSGrid { 

interface MeterObserver { 
 void setVoltage(short value); 
 void setIntensity(short value); 
 void setPower(int value); 
 void setHarmonic(byte n, int value); 
 void setEnergy(int value); 
}; 
interface ActiveMeter { 
 void setMeterObserver(MeterObserver* observer); 
 MeterObserver* getMeterObserver(); 
}; 
interface StatusObserver extends Control { 
 void setUsed(bool value); 
}; 
interface ActiveStatus { 
 void setStatusObserver(StatusObserver* observer); 
 StatusObserver* getStatusObserver(); 
}; 

}; 

 
Active objects are those that implement ActiveMeter, 

ActiveStatus or both. Trough these interfaces, clients are able 
to get and set/change the observer object at execution time. 

That is, the object which will receives the measurement or 
state updated value notifications of the active object. This 
observer object must implement a concrete observer interface 
depending on active object type. An ActiveMeter requires a 
MeterObserver object and, in the same way, an ActiveStatus 
requires a StatusObserver object. 

Note that actuators (objects implementing Control interface) 
may be active objects too, both for metering and status 
purposes. You may assume that a non-controllable line or 
charge is always enabled, but may be being used or not. 

Active objects introduce a new way to implement different 
kinds of relationships between objects: 

• 1-to-1: this is the relationship that has been 
described so far: an active object has an associated 
observer which receives state changes. 

• 1-to-n: if the observer is an event channel, other 
objects can be subscribed to the channel and 
receive state changes. Event channels may be 
federated and linked to others3. 

• n-to-1: several active objects may share a single 
observer, so that all state changes will be received 
by the same observer (useful for logging purposes). 
Note that in this case, the observer may be a 
channel also, and then the relation will be n-to-n. 

Besides state change, an active object may use different 
ways to notify observer objects: 

• Asynchronously. Active objects send notifications 
when the related magnitude changes. For the 
ActiveStatus, that occurs when an electric load is 
connected/disconnected (setUsed() method) or the 
node is enabled/disabled (setEnable() method). 
The latter is only applicable for actuators, as we 
explained above. This mechanism is of course fully 
asynchronous and it just requires a message. 
For the ActiveMeter, a notification for each change 
is definitely inefficient for continuous magnitudes. 
In that case, an additional mechanism may be 
implemented to specify conditional notifications. 
For each magnitude users may define a range, a 
delta or both. Range specifies the values that the 
magnitude must fit in order to trigger a state update 
notification. Delta indicates the minimum 
difference between current and last sent value to 
generate a new update message. 
Conditional notifications should be set up locally, 
that is, as part of the program code of the node. 

• Periodically. Measured values may be updated and 
transmitted at certain programmed period. 
Typically, most high level applications do not 
require large amounts of data continuously. In 
these scenarios, periodically and time programmed 
requests may reduce the network load. 

 
3 Ice middleware provides a built-in event channel service, so-called 

IceStorm [13], that we use in our prototypes. 



 

• On-demand: clients may cause state notification on 
demand by means of a common method. For 
instance, any remote object implements the Object 
interface that provides a ping-like method. It is 
used by clients to check object reachability. In our 
implementation, when an active object receives 
such invocation it transmits their current state 
values to the configured observer. Such methods 
may be found in environments based on CORBA 
or CORBA-like frameworks. 

The most valuable feature of CoSGrid platform is the active 
objects. In section VIII an application example is shown using 
a distributed smart grid environment. 

C. Object and data aggregation 

Power grids are large scale systems. Suppose a smart grid 
with hundreds or thousands of sensors and each sensor sending 
its measured values to a processor data node. This scenario is 
not scalable. Thousands of sensors will cause a storm of 
messages through the network that would interfere with the 
correct operation of other applications. 

For these situations, CoSGrid provides interfaces for 
composite objects. A composite object is inspired in the 
software design pattern with the same name [17]: a composite 
object is-an object that knows other objects (that in turn can be 
composites) and the whole set behaves as one of them (it 
exposes the same interface). In CosGRid, a composite object is 
a virtual sensor/actuator object that contains references 
(proxies) to remote objects that may be grouped by arbitrary 
criteria. Furthermore, composite objects may be used for 
aggregating data. For instance, a composite BasicMeter sensor 
would provide the average value of its associated objects. 

The CosGrid Composite module provides the following set 
of interfaces (simplified code for readability): 

 
module CosGrid { 

interface Component { 
 Ice::StringSeq getAllFacets(); 
}; 
module Container { 
 interface RW; 
 interface R { ObjectPrxDict list(); }; 
 interface W { 
  void link(string key, Object* value); 
  void unlink(string key); 
  Container::RW* create(string key); 
  void destroy(); 
 }; 
 interface RW extends R,W {}; 
}; 
module Composite { 
 const string MIN = "minimum"; // lowest value 
 const string MAX = "maximum"; // highest value 
 const string AVG = "average"; // sum(0..n)/n 
 const string MED = "median"; // sort(0..n)[n/2] 
 const string HEI = "height"; // max-min 
… 
 const string ANY = "any"; // true if any true 
 const string ALL = "all"; // true if all true 
 interface R extends Container::R, Component {}; 

 interface W extends Container::RW, Component {}; 
 interface Factory { 
  Object* create(string scalarType); 
  void destroy(Object* proxy); 
  Ice::StringSeq getAllowedTypes(); 
 }; 
}; 

}; 

 
The composite object implements the Container interface 

(to hold remote object references) and the Component 
interfaces (to provide facets browsing). Each facet may be 
used to offer different aggregation operator. For instance, a 
composite sensor would provide both average and maximum 
value of the electric power consumed by using different facets 
with these names. Thus, Component interface lets the clients 
know which facets the object has. 

Composite objects, as containers, may be readable 
(interface R) if clients are only able to get their references but 
not change them. If modification is required, composite 
objects should be writable (interface W). A Factory interface 
to create and destroy composite objects is also provided. 

Note that composite objects may also be active, that is, 
when the aggregated value changes (with the same 
considerations explained in section VI-B) the composite send 
an update to its configured observer. 

All these interfaces may be mixed (interface inheritance) to 
specialize behavior. Fig. 4 shows an example of class diagram 
of a CoSGrid composite object that clarifies which part of the 
total functionality contribute each interface. 

 

 
Fig. 4.  Example of user interface definition for a composite object. 
 

A FloorSensor would provide statistical measured values 
(through facets) from all sensors of an entire floor. Thus, the 
interface FloorSensor extends from AdvancedMeter and 
Composite::W, so that clients can retrieve values from 
associated sensors and reconfigure in execution time which 
sensor are part of the composite object. 

VII.  DEPLOYMENT AND CONFIGURATION  

After the physical deployment of the EMDs has been done, 
the system administrator needs to identify and associate each 
object with the electric load it will monitor and/or control. We 
designed a service discovery protocol suitable to identify every 
node in the environment [18]. The node can periodically send 



 

asynchronous messages to advertise itself and its features. 
With the advertisement information and an administration 
software tool, it is possible to add user or application specific 
information to each node, such as the location in the building, 
human readable description, etc. All of this information is 
propagated up in the hierarchy when required. 

For security and privacy reasons, the access to the system 
follows a role-based schema. The visibility and access 
privileges depend on each actor role; a house owner may see 
and access all of the devices that control his appliances. 
Furthermore, middlewares usually provide security at protocol 
level by using SSL/TSL encrypted communications. 

VIII.  SCENARIO  

This section describes an example scenario where high-level 
applications can be implemented over CoSGrid platform to 
provide smart services using reconfiguration and aggregation 
features. A schematic representation of such scenario is shown 
in Fig. 5. 

 

 
Fig. 5.  Example scenario of a power grid where CosGrid devices have 
been installed. 
 

User buildings may represent complex hospitals or business 
buildings that need generators in case of power blackout. 
Batteries (or other way to accumulate energy) may be charged 
using wind generator or main power, and the remaining energy 
is inserted into the grid. 

All of these infrastructures are provided with L-EMD (or 
multi L-EMD) and M-EMD devices for electric appliance and 
floor electrical panels, respectively. Thus, fine grain control 
and measurement of consumption or generation values can be 
done. L-EMD devices can monitor appliances like computers, 

lights, electrical sockets, etc. M-EMD devices are composites 
of L-EMD devices and control an entire floor (or a small 
building). Using the composite interface, clients can get 
statistical values from the associated L-EMD devices. 
However, if it is required by the application, each L-EMD 
device may be individually inspected. 

H-EMD devices are also represented in the figure above, 
and typically monitor an installation or building: 

• H1: controls and measures the power line from 
substation. It is a composite object which provides 
statistical values from the other H-EMD nodes 
(there is a two level hierarchy of H-EMD). 

• H2: controls and monitors the generated energy from 
the wind generator. It is also a composite of EMD 
devices of the generator system. Unlike the rest, it 
is expected that this EMD will provide negative 
consumption values due to energy generation. 

• H3: this EMD just controls whether the batteries 
system should start providing power or they should 
stay disconnected. 

• H4 and H5: monitor and control their respective 
buildings and both are composite objects. 

By using composite and active objects, smart agents or 
services (built on top of this platform) can reconfigure the 
logical architecture under different situations described below.  

A. Billing and measuring 

The most basic capabilities of the Smart Grid (the energy 
accounting and billing) may be directly obtained from the state 
of EMDs. In addition, the platform provides some other 
features along this line:  

• It allows the provider to read the whole energy 
consumed (or generated) by each user. 

• It is possible to summarize in real time the combined 
expenditure of all users (taken from the 
corresponding composite object facet) and 
compare it with the actual measure for the whole 
area. In this way it is possible to detect and localize 
installation or maintenance problems, sensor 
defects, frauds, billing errors, etc. 

• It allows the user to know his expenditure 
immediately, and which appliances are responsible 
of it. 

B. Flexible and automated deployment 

New appliances may be deployed at buildings. By using the 
service discovery protocol (see section VII) and M-EMD and 
H-EMD composite objects, agents can group automatically 
new appliances, so that they may be monitored and controlled 
immediately.  

By using a graphical interface, the administrator can 
remove, edit and add new properties and meta-information 
which describes location, features description and so on. This 
information may be used by agents to provide more valuable 
functionality like automated service composition [19]. 



 

C. Power blackout 

Suppose H1 detects that a substation stops supplying 
electric power due to a certain failure. If H1 is an active status 
object, a conditional notification may be programmed in this 
case: enable the observer (setEnable(True)) if electric current 
falls to zero, otherwise disable it. If H3 is the observer of H1, 
when a power blackout occurs, the batteries system will be 
activated to supply electric power. 

Agents may change observer object at execution time, so 
that the same active object will notify state changes to other 
observer. Depending on grid requirements and its state, smart 
agents can reconfigure active objects so that the batteries 
systems supply electric power to the right grid zones. A 
batteries system which originally was not designed as a backup 
of a concrete infrastructure may be used by others by simply 
modifying observer references. 

On the other side, in case of a power blackout, certain 
appliances can be shutdown without major inconvenience but 
some others are critical. All of the devices in an operating 
room or staff elevators in a hospital are examples of critical 
appliances. 

We propose a flexible architecture for agents that can 
manage this situation: every non-critical appliance is 
subscribed to the non_critical channel. This channel is the 
observer of an active object which detects the electric power 
failure. In such case, active object will send a setEnable(False) 
to channel, and the message will be retransmitted to 
subscribers, turning off all of the appliances to reduce electric 
power consumption. 

 

 
Fig. 6.  Multi L-EMD prototype 

 
The valuable contribution of this solution is that it is 

reconfigurable. Suppose the hospital building is restructured 
and where there was an operating room, now there is a seating 
room for the staff. Electric sockets and all of the appliances 
installed into it are now non-critical. Just subscribe them into 
the non_critical channel and they change their role 
immediately and without any operational action. 

IX.  PROTOTYPE  

Currently, we have built a prototype using a CORBA-like 

middleware and the picoObject concept. Fig. 6 shows our 
multi L-EMD prototype with the following hardware 
components: 

• Embedded Ethernet network interface. It includes an 
implementation of TCP/IP protocol.  

• 8-bit microcontroller with 14.3 KB for program 
memory, 368 bytes of RAM size and 256 bytes for 
ROM memory. 

• Three triacs for power control switching.  
The distributed objects for the middleware that are built into 

this kind of devices (L-EMD and some M-EMD devices) are 
be implemented using the IcePick framework [20]. This 
framework provides a high-level programming language to 
specify the distributed scenario, that is, the logical distribution 
of distributed objects into nodes through the distributed 
system. Then, an automated tool builds all required 
picoObjects in a low-level specification language (bytecode). 
The bytecode should be executed by a given virtual machine. 
We have built different virtual machines for several platforms: 
PC (assembler, Python, C and others) and embedded operating 
systems [21] IcePick framework also provides tools for 
automated installation of both bytecode and virtual machine in 
the final hardware nodes. 

There are three distributed objects installed in our multi L-
EMD device. Each object implements the controlling, status 
information and active interfaces of CoSGrid, so that each 
object implements Control, Status and ActiveStatus interfaces. 
Currently, this prototype does not include hardware for 
measuring purpose, so that it does not provide sensing 
services. Using optimizations provided by IcePick, this 
prototype has the following virtual machine requirements: 

• 126 bytes for ROM memory. 
• 455 bytes of bytecode length. 
• 21 bytes for RAM memory. 
• 60 bytes for flash memory. 

 
Thus, this prototype requires 662 bytes at virtual machine 

level. To get the final footprint, the resources required for the 
virtual machine should be added, but these values depend on 
the concrete implementation. For instance, a virtual machine 
implementation in assembly for the microcontroller platform 
with embedded Ethernet interface (as in the prototype) 
requires 2643 bytes of program memory and 65 bytes of RAM 
memory. 

X. CONCLUSIONS 

The smart grid presents many common aspects with 
distributed systems. Heterogeneity and scalability are key 
problems and may be solved by the core platform. OOM 
seems to be directly applicable but that is only a part of the 
problem. We proposed the use of distributed object paradigm, 
but defining a concrete information model that allows 
concreting communication mechanisms and the rules that 
services must fit to gain interoperability and take advantage of 
the middleware features. We also provide a very low cost 



 

implementation of an autonomous and reliable distributed 
object; that makes it possible to interact with any components 
of the grid easily.  

By means of logic relations (built on active objects and 
observer concepts) we provide and on-the-fly self-contained 
reconfigurable event architecture that greatly simplify the 
deploying and management of reactive services in the grid. 

As future work, we are working on prototypes that integrate 
measurement capabilities and improved management features. 
From the company point of view, we are interested in services 
that can make automatic data aggregation and data logging to 
detect potential grid problems, sabotage, etc. Other goals 
include high abstraction level services (agent based) that 
analyze user behavior from their activities related to home 
appliances and in this way detect anomalous situations, 
accidents, security problems, etc. 
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