
A Common-Sense Hardware Accelerated Approach for Context Modeling and
Reasoning

Jesús Barba, Marı́a J. Santofimia, David Villa, Félix J. Villanueva and Juan C. López
Department of Technology and Information Systems

Computer Engineering School, University of Castilla-La Mancha
Ciudad Real, Spain

Email: {jesus.barba,mariajose.santofimia,david.villa}@uclm.es
Email: {felixjesus.villanueva,juancarlos.lopez}@uclm.es

Abstract—Enabling Ambient Intelligence systems to under-
stand the activities that are taking place in their surroundings is
a rather complicated task that cannot be successfully addressed
if the mechanisms that entitle humans to succeed in this task
are ignored or overlooked. In this sense, it is the common-sense
knowledge and reasoning capability which characterizes hu-
man rationality and cognition. This work is therefore motivated
by the conviction that only by encompassing common-sense
into the Ambient Intelligence systems could they be entitled
to understand the context and to react to it. However, there
are some difficulties that need to be resolved before common-
sense capabilities can be fully deployed to Ambient Intelligence.
Among those issues, response time and efficiency features are
two aspects that yet need to be improved. In this endeavor,
this work presents a hardware accelerated implementation of
a common-sense knowledge-base system.

Keywords-common-sense; context reasoning and understand-
ing; FPGA; hardware-accelerated;

I. INTRODUCTION

The notion of context is at the heart of the Ambient
Intelligence paradigm because of its role in narrowing down
the meaning of those events that take place in a supervised
environment, and in determining the most suitable means
to react to those situations. However, the task of modeling
and reasoning about context yet remains one of the most
challenging topics of Ambient Intelligence.

An analysis of how humans succeed in understanding our
surroundings brings into light that rather than specific or
expert knowledge, the task of understanding the dynamics of
a context involves holding a great deal of knowledge about
how the world works, or what traditionally has been referred
to as common-sense knowledge.

In this respect, in the late 60s McCarthy postulated in [1]
that only by endowing programs with common sense could
they be able to achieve the pursued intelligence. Doug Lenat
in [2] also pointed out to the same direction, highlighting the
importance that common-sense knowledge has on dealing
and reacting to novel situations. The agreement on the key
role that common sense plays in building intelligent systems
is one of the axiomatic facts of the approach presented here.
Efforts are therefore addressed to enacting common-sense

knowledge and reasoning capabilities as a prerequisite to
the automation of the cognitive and understanding processes
demanded in Ambient Intelligence. Nevertheless, Ambient
Intelligence peculiarities poses some serious restrictions on
response times upon which the usefulness of the provided
responses depend on. In this sense, it is preferable to achieve
a “not-so-good” response on an appropriate time rather than
a complete one that arrives too late to be useful.

In essence, the way how search and inference mecha-
nisms are implemented is what makes the difference be-
tween the approaches proposed to date. In this regard,
the Scone Knowledge-Base system,which has inspired this
work, adopts a marker-passing strategy showing excellent
results in minimizing the time employed in search and
inference tasks. The fact that the marker-passing mechanism
implemented by Scone was ideally devised for massively
parallel processing helps in providing very good results
regarding the scalability and expressiveness demands.

Despite the good results achieved by Scone, the complex-
ity of the understanding mechanisms, involved in interpret-
ing context events, poses an arising concern for minimizing
the latency time. Motivated by this need, this work proposes
a hardware implementation of the marker-passing strategy,
used in Scone, and intended to minimize response times
and also intended to improve the efficiency of the reasoning
mechanism.

This rest of this paper is structured as follows. First, in
section II a summary of the related work addressing ad-hoc
hardware architectures for different computing paradigms
in Artificial Intelligence is presented. Special emphasis is
made in common-sense systems. In section III, the Scone
knowledge-base system is introduced in order to provide
the reader with the necessary background upon which the
proposed hardware implementation is inspired in. Section IV
is fully dedicated to the hardware implementation details,
although some inner aspects of the Scone approach are
also provided. For understanding purposes an incremental
approach has been adopted, starting up with a description of
the basic architecture and operations that are supported. In
section V, performance results are assessed by comparing



the proposed hardware implementation approach with the
Scone system, which works as the reference software im-
plementation. Finally, last section is devoted to drawing the
conclusions achieved as a result of the proposed approach.

II. RELATED WORK

A context model for Ambient Intelligence comprises the
rules that establish how to map sensor data values into high
level knowledge. These rules, far from being unique and
common to context-aware systems, they tend to be tailored-
made solutions that prevent context-aware systems from
sharing and leveraging the knowledge they hold. Context
models are therefore characterized for their lack of interop-
erability. The work in [3] provides an appropriate starting
point for surveying the existing modeling techniques.

Regarding the semantics that should be also captured in
the context model, although primarily devoted to the field
of meaning in natural language, the theory of situation
semantics, proposed by Barwise and Perry [4] has been
extrapolated to context-awareness. However, as stated in [5],
situations cannot be completely described by propositionally
enumerating all the aspects involved in the situation since,
aspects such as intuitions about context escape from that
modeling strategy.

Sowa proposes in [6] a theory for context modeling,
based on conceptual graphs of semantic networks which,
as explained underneath has many aspects in common with
the approach adopted here. Under this theory, contexts are
modeled as propositional containers of additional conceptual
graphs. Scone, directly implements the notion of context
as an effective mean to store and retrieve large amounts of
knowledge pieces, by means of a multiple-context
mechanism. McCarthy’s ist(c, p) predicate [7], which can be
read as “proposition p is true in context c” was his attempt
to provide an universal mechanism to overcome the large
number of arising logic for different reasoning theories.

The meaning of propositions is unavoidable associated to
the context in which they are being considered. A plausible
way of doing so is by means of the “possible world” theory.
As stated in [8] there are two possible ways of describing
what a possible world is. On the one hand it can be described
as a set of consistent propositions that are true in a given
world. On the other hand, a possible world can also be
explained as an account for how things can be interpreted
in a given world.

The work presented here adopts an strategy in which
contexts are devoted to encompass the knowledge about
a certain situation. Inferences and deductions about the
information held in that context are therefore the enacted
mechanisms so as for the Ambient Intelligence system to
understand the situations that are undergoing in the super-
vised context.

Regarding hardware approaches for fast reasoning and
context analysis and evaluation, very little work has lately

been done. Implementations of current accelerated AI rea-
soning platforms mostly rely on distributed grids or many-
cores architectures to take advantage of a hypothetical
parallelism of the operations to be executed. The bulk of the
optimization to speed up execution times stems in efficient
data structures implementations and effective load balancing
and synchronization mechanism. TROJAN [9] is a well
representative of this kind of systems.

It is also worth mentioning the compilation work dine
by Delgado-Frias in [10] in which an overview of the
very first attempts to implement tailored architectures for
semantic networks operations is presented. Additionally, it
is also relevant for this work the SNAP system [11], and
the PNW Machine [12]. The Connection Machine [13] aims
to realize the theoretical artifacts posed in the NETL [14]
description; the reference hardware architecture for marker-
parsing algorithms. However, all these early approaches are
based on massively parallel and fixed configurations that are
very difficult to scale since each processing element in the
datapath corresponds with a single element in the semantic
tree.

III. SCONE

The Scone project, leaded by Scott E. Fahlman at
Carnegie Mellon University, represents an open-source
knowledge-based approach which, in contrast to approaches
such as Cyc [15], WordNet [16], or ConceptNet [17], place
the focus not at collecting common-sense knowledge but
rather at providing the means for supporting common-sense
reasoning mechanisms. The Scone system therefore pays
special attention to providing an expressive, easy to use,
scalable and efficient approach for accomplishing search and
inference operations.

The main difference between this and other approaches
lies in the way in which search and inference are imple-
mented. As previously stated, Scone adopts a marker-passing
algorithm [18] devised to be run in the NETL machine
[14]. Despite the fact that these marker-passing algorithms
cannot be compared with general theorem-provers, they
are indeed faster, and most of the search and inference
operations involved in common-sense reasoning are sup-
ported: inheritance of properties, roles, and relations in a
multiple-inheritance type hierarchy; default reasoning with
exceptions; detecting type violations; search based on set
intersection; and maintaining multiple, immediately overlap-
ping world-views in the same knowledge base.

One of the main objectives with which Scone was con-
ceived for was to emulate humans’ ability to store and
retrieve pieces of knowledge, along with matching and
adjusting existing knowledge to similar situations. To this
end, the multiple-context mechanism implements an effec-
tive means to tackle this objective. The multiple-context
mechanism also provides an efficient solution by which to



tackle a classical problem of Artificial Intelligence, as it is
the frame problem.

The great potential of the multiple-context mechanism
used by Scone can be better stated by using the example
described in [18]. Since “Harry Potter World” is quite similar
to the real world, a new context, “HPW”, could be created
as an instance of the real world1. Nevertheless, there are
differences between these two contexts, such as the fact
that in the “HPW” context a broom is a vehicle. This fact
can be easily stated in the “HPW” without affecting real
world knowledge, in the same way that knowledge of the
real world could be canceled so as to not be considered
in the “HPW” context. The way in which Scone handles
multiple contexts so as to avoid incongruities problems is
by activating one context at a time. By doing this, only the
knowledge contained in the active context is considered for
the reasoning and inference task.

Unless otherwise stated, the knowledge described in a
parent context is inherited by the child context. The context
itself is also a node and, like the other the nodes, it stores
a set of maker-bits. One of these marker-bits is the context-
marker. This bit, when enabled, determines the activation
of all the nodes and links that are connected to the active
context.

IV. HARDWARE-BASED REASONING

As it has already been mentioned, the hardware accel-
erated approach presented here is inspired in the software
implementation of the Scone system which, at the same time,
implements the marker-passing approach initially devised
for the NETL machine. This section starts by providing the
reader with a comprehensive overview of the most relevant
aspects of the Scone system. Provided the foundations of the
NETL and the Scone system, the next subsection is devoted
to describing how those have been mapped into hardware
implementation decisions.

A. Scone system overview

One of the main endeavors of Scone is to optimize
the implicit knowledge management, so that even for the
worst case scenario the time spent a in exploring the facts
and properties of the knowledge-base remains constant,
regardless of the knowledge-base size. This achievement is
basically grounded in the architectural approach adopted by
the knowledge-base.

The declarative knowledge kept in the Scone knowledge-
base system complies with a semantic network built upon
two basic concepts, as they are nodes and links units. Nodes
are the abstractions in charge of representing the concep-
tual knowledge, whereas links are devoted to representing
relational knowledge.

1In Scone terminology, “general” is the context node that holds knowl-
edge about the real world, and “HPW” would be an individual node,
connected by an is-a link to the “general” node.

Additionally, both abstractions are implemented by means
of structures in which several bits are dedicated to propagate
information during the deduction process. This activation
mechanism is implemented by means of a bits activation
process or, as referred by the Scone literature, by the so-
called marker-passing algorithm.

Due to the key role played by the marking-passing algo-
rithm, understanding how such process is implemented in
Scone is essential for the hardware optimization pursued by
this work. The work in [18] provides a thorough description
of how, by means of sequential activations, markers are
used to support the inference and search mechanisms that
comprise the deductive activity.

Obviously, the fact that the semantic network is imple-
mented by means of a hierarchical structure also plays a
relevant role in determining how the deductive search should
behave. In this regard, Scone proposes an efficient mean of
managing duplicated knowledge, as it is the virtual copy
abstraction. The fact that the different levels of the semantic
tree also imply different levels of inheritance can complicate
and overload the knowledge-base with information that it
is already held in it. Scone proposes an efficient solution
based on knowledge copies that rather than being physically,
they are virtually present. The most relevant implication
of this virtuallity is the fact that only those nodes that
are indeed providing new information about the knowledge
already held in the knowledge-base, are being physically
created. The way in which the remainder properties are
inherited is implemented at the level of the marking-passing
mechanisms.

B. Hardware implementation decisions

As mentioned in the previous section, the marker-
parsing algorithm implemented by Scone is one of its main
strengths. The marker-pasing mechanisms is mainly devoted
to extracting the implicit knowledge that it is contained in the
semantic network thorough the complex network of nodes
and links that comprise it. Thus, three main challenges arise
when facing the hardware implementation of such a kind of
knowledge-base systems: (a) to simplified the representation
and storage of the semantic network information; (b) to opti-
mize the memory organization for efficient implementations
of the marker-parsing algorithm; and (c) to provide a scalabe
distributed architecture that simplifies the task of adding new
knowledge and that it is capable of parallelizing searches.

Bearing these goals in mind we started the design and
implementation of a hardware platform, based on the use of
FPGAs (Field Programmable Gate Arrays), for fast reason-
ing under the Scone framework. In figure 1, the reader can
find a high level picture of the proposed hardware reasoning
platform. The system is composed of the following elements:

• The Microblaze soft processor in which a modified
version of the software implementation of the Scone’s
machinery runs.



Figure 1. Architecture of the Scone System-on-Chip

• A DDR memory to store a table that relates the names
of the entities represented in the semantic network with
their identification numbers.

• The Reasoning Control Manager (RCM) that is a
coprocessor intended for HW/SW interfacing Applica-
tions communicates with the RCM using a FIFO like
interface, placing commands in its input FSL channel
and retrieving the results out of its output FSL channel.

• One or more Semantic Nodes (SN) in which the data
concerning semantics are mapped into. Each semantic
node owns several memories for storage and indexing
purposes and a specialized control logic and data path
to implement the supported marker-parsing operations.

The device chosen for the implementation of the hardware
prototype is a Xilinx XUPV5 board2. It is based on a Virtex5
LX110T chip, equivalent to four million logic gates with
run-time partial reconfiguration capability. Our reasoning
hardware platform (RHP) takes advantage of this dynamic
feature provided by the FPGA in order to adapt itself
to unforeseen scenarios and be scalable. If the situation
requires it, a new SN would be instantiated in a free partial
reconfiguration area (see transparent dotted box in figure 1)
in order to expand, for example, the semantic network.

C. Overall System Operation

This section is aimed to present an overview of how
the RHP works at system level, before getting into the
implementation details of the individual Semantic Nodes.
From the user’s perspective, the presence of the RHP is
totally transparent to him. The Scone’s python libraries have
been modified in order to forward the requests through the
RCM to the SNs in the platform. The way user interacts
with Scone have been left without a change.

Internally, requests to the Scone reasoning engine are
codified as 32 bit commands which are processed by the
RCM once at a time. The RCM issues the corresponding bus
transactions and waits for its completion before signaling the
software such condition by means of an interruption. Table

2http://www.xilinx.com/products/boards-and-kits/XUPV5-LX110T.htm

Table I
SUPPORTED COMMANDS BY THE REASONING HARDWARE PLATFORM

Name upscan/downscan
Description Mark the StartingNode with MarkerField

and propagates it through RelationType in
the specified direction

Field Name Description Bits

OPCode Operation code (00/01) 2

StartingNode Entity ID the upscan process starts off 20

MarkerField Boolean mask indicating the indexes to ac-
tivate

8

RelationType Type of link 2

Name get nodes
Description Retrieve all nodes that matches the condition

specified

Field Name Description Bits

OPCode Operation code (10) 2

Condition1 is-set (1),is-clear (0) 1

MarkerField1 Boolean mask indicating the indexes that
must satisfy condition1

8

BooleanOp Operation to relate both conditions. 00 noth-
ing, 01 and, 10 or, 11 and-not

2

Condition2 is-set (1),is-clear (0) 1

MarkerField2 Boolean mask indicating the indexes that
must satisfy condition1

8

Name clear markers
Description Set to zero all marker bits

Field Name Description Bits

OPCode Operation code (11) 2

I summarizes the supported commands and the instruction
format for each kind of operation.

In order to control the distributed execution of an op-
eration, each SN core must notify back to the RCM the
initiation and finalization of the local activity. The RCM
holds another RAM for this purpose where it scoreboards
the start/end notifications. When all the pending work has
come to an end, the RCM is ready to pop the next command
out of the input FIFO. In the case of a get nodes command,
the SN sends to the RCM the list of node identifiers before
the finalization which are temporarily stored in the output
channel FIFO. The software is responsible for reading those
values.

D. Optimized Marker Propagation

Upscan and downscan operations are the most costly
in terms of the time required to be completed. Unlike
the get nodes and clear markers commands, which can be
triggered in all SNs concurrently, these tree searches lacks of
parallelism because of the precedence dependencies inherent
to the tree topology. However, it would be desirable to
figure out a method to exploit concurrency in the RHP.
We propose the use of two simple techniques in order to
reduce the overall latency of upscan/downscan executions



Figure 2. For possible distributions for a semantic tree: (a) single SN, (b)
branch partitioning, (c) vertical partitioning with forwards links, and (d)
arbitrary combination of both.

in our platform: (a) horizontal or branch partitioning; and
(b) vertical partitioning with forward links. These methods
are based on a smart spatial distribution of the semantic
tree among several SNs. Let us illustrate how the marker
propagation process is improved through a series of simple
examples.

Figure 2 represents an schematic picture of a simple
semantic tree and four possible distribution configurations
among one or more SNs. First case (figure 2.a) is the non-
optimized version where the whole tree data is stored in a
single SNs. Although individual SNs are able to perform
marker operations quite efficient due to the specialized
hardware architecture (more on this in the next subsection),
this configuration prevents from concurrent propagation of
marker and searches. Within a SN, tree traveling through the
links and nodes is perform serially (see IV-F), in the order
specified by the tree traversal algorithm. Thus, the necessary
time to complete one of this operations mainly depends on
the total number of links that must be visited which is related
to the depth and width of the tree.

Now, let us imagine that we start and upscan or downscan
operation from the black and red nodes respectively on the
same tree. If the tree is broken down in three parts, taking
as a reference the main branches of the tree, and each part is
sent to different SNs, the propagation can be done in parallel.
Figure 2.b depicts this scenario. The depth of the resulting
subtrees is equal to the former tree but their width and,
therefore, the number of links to be traversed is reduced.
Activation of the operations in all the SNs involved in a
search takes place this way:

• First, the RCM requests the initiation of the upscan or
downscan commands to all the active SNs.

• Each SN look into its own tree data and determines
wether it has to start marker propagation or not. Since

Figure 3. SN internals block diagram

a node is only owned exclusively by one SN, only one
SN is activated (in our example, SN #1 for both cases).

• Once the propagation process reaches an edge link,
the SN requests the target SN to initiate the same
command. An edge link is a regular link tagged as
external and for which it is also stored the number
of the SN that owns the node at the other end of the
link. This way, in figure 2.b after marking the red or
black node, two upscan or downscan operations will be
triggered on SN #2 and SEN #3 that will run in parallel.

Another possible optimization to accelerate marker-
parsing algorithms in RHP is the one represented in figure
2.c. In this case, the semantic tree or branch is split verti-
cally. This technique reduces the total depth of each resulting
partition and, therefore, the time to visit each node. However,
just the partitioning would not have the desired effect. In
order to early activate a parallel search or propagation, it
is necessary to add extra knowledge to the semantic tree in
form of forward links. A forward link is an external link that
captures the transitive property of a given relation.

In both cases (vertical and horizontal partitioning), to
reduce the number of internal operations on the local mem-
ories, the SN keeps trace of the already visited/traverse
node/links for an operation. The SN logic will cut the
propagation of any marker that has been set/clear before.
This has to be taken into account since one node can be
reached through different paths.

Finally, arbitrary combinations of these techniques can be
done (see figure 2.d). It is out of the scope of this work
the algorithms or approaches that would obtain the best
partitioning for a given semantic tree.

E. Architecture of the Semantic Nodes

In this section we cover the internal architecture of the
individual Semantic Nodes as hardware cores attached to
the system bus. The SN supports the actual execution of
the RHP commands (Table I) on the portion of the semantic



tree assigned to it. RHP commands are translate to bus write
transactions by the RCM, where the data bits encapsules the
32 bit representation of the operation. Figure 3 shows a high
level diagram block of the main components that conform
the SN architecture. Following, we proceed to give a brief
explanation of each one:

• Bus wrapper. It is the adapter to the bus in charge of
isolating the core logic of the SN from the implemen-
tation details of physical protocol bus. This makes it
easy to port component to other bus infrastructures.

• Central control. It is the component in charge of the
execution management of each operation and synchro-
nization of the other control components.

• CAM control. It is responsible for interpreting the
actions to be performed on the CAM (Content Access
Memories) memories: match and write.

• Command queue. It is a FIFO to store the CAM
control commands. The match command is intended to
check whether an input bit pattern matches any content
in the CAM. The write command modifies the content
of the CAM.

• Content Access Memories. They are used to index
the Block Rams. Due to technological restrictions, the
maximum addressable content in these memories is
4096 entries, each. Approximately 20 SNs are needed
to store a semantic tree of 106 elements (including
nodes and relations). There are two types of CAMs
in the design:

– The Semantic Tree CAM (STC) is used for naviga-
tion purposes. Each entry in this CAM represents
a relation between two entities in the semantic tree
as it is explained below.

– The Markers CAM (MC) maintains a copy of
the marker bits for each relation which applies to
both nodes at the ends. This CAM is necessary
to implement conditional selections (i.e. all the
predecessors of a node that has markers M1 and
M2 activated): one pattern is given to the Semantic
Tree CAM and the other to the Markers CAM.

• Match registers. Temporal registers where are stored
the hits found by a CAM. The output of the CAMs
is configured not to be coded. Then, one hot coding is
used instead which simplifies the control process of the
operation.

• Navigation control. Given a mask of hits, schedules
the read/write operations on the block RAMS. Also,
it feeds the command queue with new operations. For
example, in a downscan operation, the CAMs are used
to spot where, in the BRAMs, are the successors of a
node. The node numbers are read from the BRAMs and
the navigation control inserts new match command in
the queue, this time to find the successors of the child
nodes.

Figure 4. Memory content and basic tree search functionality

• Dual port block RAMs. A replica of the Markers
and Semantic Tree CAMs is stored in these memories
together with status and property bits to control the
navigation/propagation process (i.e. the external link
flag). The data is interleave among the two memories
banks in order to perform up to four memory operations
simultaneously.

• Check condition logic. It is a combinational con-
figurable (through a select operation port) block that
implements the logic comparison between the marker
bits in memory and the marker masks in a get nodes
command.

F. Basic Reasoning Operations

Upscan and downscan operations are mainly a way to
traverse the tree structure in order to activate a set of marker
bits. Thus, the way semantic tree relations are represented in
the different SN memories matters. Each word in the STC
contains the following information for a link of the semantic
tree: kind of relation (i.e. is-a, equals,...), A node identifier
and B node identifier. In Scone, the A node plays the role
of son in a relationship while the B node is the father.
With this simple configuration we can perform fast retrieval
operations such as ”find all the predecessors of this node
for a relation” or its complementary with the successors.
Putting the right search mask at the input, in one cycle the
CAM output register tells which memory addresses satisfy
that condition.

In figure 4 the reader can find two simple examples that
help to understand the whole process. First, the semantic
tree is represented as a collection of links or relations that
goes to the STC. The BRAM contains the same data plus the
marker, cancelation, becomes-equal and context bits. These
bits are interpreted by the navigation control module to
determine the next set of nodes to visit in the next iteration.
For basic reasoning with no exceptions, only the marker bits
are sounded.



In upscan and downscan operations, a marker is prop-
agated upwards or downwards iteratively through the tree
hierarchy following a specific relation type. Marker propa-
gation actually means set to one the corresponding market bit
both in the BRAM and the MC. Recall a copy of the marker
bits is maintained in the MC so it is possible to select only
those nodes that have the proper marker bit activated (logic
and between the STC output register and the MC).

As it can be seen in the picture, check for the children
(query number one) or parents (query number two) of a node
is easy. The STC output feeds the navigation control module
which reads the selected memory addresses in order to get
the set of node identifiers (field A or B, depending on the
operation performed).

G. Advanced Features: Cancelation, Virtual Copies and
Contexts

Advanced Scone features have also been considered in
this work. Due to the lack of space, only a brief explana-
tion about how exceptional reasoning scenarios have been
incorporated is given.

We start this exposition with the cancelation mechanism.
This mechanism is intended to model exceptions in the norm
such as ”all birds can fly but penguins can not fly although
they are birds”. To model this situations, Scone uses special
markers (cancelation bits) that block the propagation of
another markers. In the hardware implementation, First we
look at cancelation links for a node before initiating the
propagation to the next level. A cancelation link is a regular
link but with complementary meaning (for example, a is-
not-a represents the cancel link for a is-a relation). Second,
a propagation of the cancel bit starts, which means set
to one the cancel bit in the STC and BRAMs memories
(this propagation is done using the regular propagation
procedure). Third, the former upscan/downscan operation
can proceed but this time, if the corresponding cancel bit
is activated for a link, the navigation control will stop the
propagation and will not include that node in the nodes to
be processed list.

Virtual copies semantics in Scone avoids the unbounded
growth of the semantic data when trying to model complex
relations. Typically, those relations involved ternary relations
to model different roles a node can play in different relations.
For instance, one person can play the role ”daughter” and
”mother” in two distinct families. Without the existence of
Scone’s virtual copies semantics, the information to model
such scenarios should be replicated. Generally speaking, the
goal of those ternary representations is to enable reason-
ing paths where it was impossible before because marker
can not cross different relation domains (e.g. if Mary is-
a Mother in Smith Family and Ashley is-a Child in Smith
Family and Mothers love Children, then Mary loves Ashely).
The implementation of virtual copies is realized by means
of qualified links that represent such ternary relations. In

hardware, those relations are taken apart in a separate CAM,
the Virtual Copies CAM (VCC) which was not depicted in
figure 3 for the sake of simplicity. The standard propagation
mechanism is altered this way:

• If the node participates in any ternary relation, then
set to one the becomes-equal bit in every node that
participates in a ternary relation with the same owner.

• Proceed with the standard propagation procedure.
• Continues propagation for every node with the opera-

tion marker bit and the becomes-equal bit activated.
To finish this discussion, context modeling in the HRP is

sketched. As stated in section III, the potential of Scone’s
multiple context modeling resides in the fact semantic in-
formation can be reused from one context to another just
adding the context specific information or canceling facts.
Following the HPW example, it is necessary to state a broom
is-a vehicle and also is-a flying thing. That could be done
only by adding the necessary links to the real world context.
However, such links are only meaningful in the case the
HPW is activated. Context activation is handled in the same
way Scone proposes. We store a context bit mask in the
memories, if the right bit is set to one then the link (STC
entry) is considered in the reasoning operations. Context
activation must be performed beforehand, for such purposes
the context-specific semantic data is loaded in the SNs,
each entry with an associated context bit already activated.
To simplify the reasoning procedures, the entries with all
their context bits set to zero are said to belong the ”general
context” and participates in all the operations.

V. EXPERIMENTAL RESULTS

The evaluation of the HRP presented here needs to be
performed in comparison with the software implementation
of the Scone system. The set of tests has been design with
the following strategy in mind: reproduce similar scenarios
than the ones undertaken in [18].

The computer where the software execution took place is a
Dell XPS 8300 workstation with 8GB of DDR3 memory, an
Intel i7-2600 processor at 3.4 Ghz and a 64-bit GNU/Linux
(kernel version 2.6.16) operating system. Due to space
constrains, Table II only shows the results for the most
relevant tests executed on both the workstation and the
FPGA based prototype of the HRP.

The hardware accelerated implementation presented here
has paid special attention at improving the ternary rela-
tionships that emulate the Scone virtual copies abstraction.
Further tests need to be carried out in both implementations
in which virtual copies plays a key role, so that a better
comparison of both implementations can be provided.

VI. CONCLUSIONS

This work has been mainly devoted to propose a hard-
ware accelerated implementation of the Scone common-
sense knowledge-based system. The ultimate goal of this



Table II
MEAN EXECUTION TIME OF RELEVANT SCONE REASONING

OPERATIONS IN THE HRP AND DELL WORKSTATION. 500 EXECUTIONS
OF EACH TEST WERE CARRIED OUT.

Test SW Time HW Time

Downscan the semantic network tree
(1M elements)

4.5 sec 0.77 sec

Check the type of a given individual 0.23 msec 0.04 msec

Mark & intersect 2 sets with 10K
members, one winner

20.71 msec 2.88 msec

Mark & intersect 3 sets with 10K
members, one winner

36.9 msec 5.59 msec

implementation is to provide a feasible mean upon which
context modeling and reasoning tasks can be undertaken at
run time.

One of the main challenges that need to be faced by
Ambient Intelligence systems is that of understanding the
situations that are taken place in the context while at
the same time devising the most appropriate response that
complies with both the context requirements and the un-
derlying goals. In this endeavor, the work proposed here
advocate the benefits of a hardware accelerated approach of a
particular common-sense knowledge-based system, enabling
these understanding and decision making activities to be
undertaken at a reasonable time.

ACKNOWLEDGMENT

This research was supported by the Spanish Ministry of
Science and Innovation under the project DAMA (TEC2008-
06553/TEC), and by the Spanish Ministry of Industry and
the Centre for the Development of Industrial Technology
under the project ENERGOS (CEN-20091048), and by Indra
under the Cátedra Indra UCLM 2010.

REFERENCES

[1] J. McCarthy, “Programs with common sense,” in Semantic
Information Processing, vol. 1, 1968, pp. 403–418.

[2] D. B. Lenat, R. V. Guha, K. Pittman, D. Pratt, and M. Shep-
herd, “CYC: toward programs with common sense,” Commun.
ACM, vol. 33, no. 8, pp. 30–49, 1990.

[3] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D. Nick-
las, A. Ranganathan, and D. Riboni, “A survey of context
modelling and reasoning techniques,” Pervasive Mob. Com-
put., vol. 6, pp. 161–180, April 2010.

[4] J. Barwise and J. Perry, “Situations and attitudes,” Journal of
Philosophy, vol. 78, no. 11, pp. 668–691, 1981.

[5] J. F. Sowa, “Syntax, semantics, and pragmatics of contexts,”
in Proceedings of the Third International Conference on Con-
ceptual Structures: Applications, Implementation and Theory.
London, UK: Springer-Verlag, 1995, pp. 1–15.

[6] J. Sowa, Conceptual Structures: Information Processing in
Mind and Machine. Reading, MA.: Addison-Wesley, 1984.

[7] J. McCarthy, “Notes on formalizing context,” in Proceed-
ings of the 13th international joint conference on Artifical
intelligence - Volume 1. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1993, pp. 555–560.

[8] G. Primiero, “Information and knowledge. a constructive
type-theoretical approach.” in Logic, Epistemology, and the
Unity of Science. Berlin: Springer, 2008, vol. 10.

[9] C.-W. Lee, C.-H. Huang, and S. Rajasekaran, “Trojan: a
scalable distributed semantic network system,” in Tools with
Artificial Intelligence, 2003. Proceedings. 15th IEEE Interna-
tional Conference on, nov. 2003, pp. 219 – 223.

[10] J. Delgado-Frias and W. R. Moore, “Parallel architectures for
ai semantic network processing,” Knowledge-Based Systems,
vol. 1, no. 5, pp. 259 – 265, 1988. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0950705188900792

[11] D. I. Moldovan and Y.-W. Tung, “Snap: A vlsi
architecture for artificial intelligence processing,”
Journal of Parallel and Distributed Computing,
vol. 2, no. 2, pp. 109 – 131, 1985. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0743731585900310

[12] P. Sapaty and I. Kočiš, “A parallel network wave
machine,” in Proc. of the Third International Workshop
on Parallel processing by cellular automata and arrays.
Amsterdam, The Netherlands, The Netherlands: North-
Holland Publishing Co., 1987, pp. 267–273. [Online].
Available: http://portal.acm.org/citation.cfm?id=39696.39729

[13] S.-H. Chung and D. I. Moldovan, “Modeling semantic
networks on the connection machine,” J. Parallel Distrib.
Comput., vol. 17, pp. 152–163, January 1993. [Online]. Avail-
able: http://portal.acm.org/citation.cfm?id=163506.163524

[14] S. E. Fahlman, NETL: A System for Representing and Using
Real-World Knowledge. Cambridge, MA: MIT Press, 1979.

[15] D. Lenat, “Cyc: A large-scale investment in knowledge infras-
tructure,” Communications of the ACM, vol. 38, pp. 33–38,
1995.

[16] C. Fellbaum, WordNet: An Electronic Lexical Database (Lan-
guage, Speech, and Communication), C. Fellbaum, Ed. The
MIT Press, May 1998.

[17] P. Singh, T. Lin, E. T. Mueller, G. Lim, T. Perkins, and W. L.
Zhu, “Open mind common sense: Knowledge acquisition
from the general public,” in On the Move to Meaningful
Internet Systems, 2002 - DOA/CoopIS/ODBASE 2002 Confed-
erated International Conferences DOA, CoopIS and ODBASE
2002. London, UK, UK: Springer-Verlag, 2002, pp. 1223–
1237.

[18] S. Fahlman, “Marker-passing inference in the scone
knowledge-base system,” in First International Confer-
ence on Knowledge Science, Engineering and Management
(KSEM’06). Springer-Verlag (Lecture Notes in AI), 2006.


