
Ubiquitous FPGA Access for Data Intensive
Computing

Julio Dondo, Francisco Sanchez Molina, Fernando Rincon, Francisco Moya, Juan Carlos Lopez
University of Castilla-La Mancha - UCLM

Ciudad Real, Spain
Email: juliodaniel.dondo, francisco.smolina, fernando.rincon, francisco.moya, juancarlos.lopez @uclm.es

Abstract—The availability of ubiquitous distributed reconfig-
urable devices allows the implementation of different function-
alities everywhere using remote resources. This work presents a
development model introducing an efficient and secure manner of
managing these remote and distributed reconfigurable resources.
This model is a promising model to be used in scenarios where
data intensive and high performance computing are needed,
because it allows acceleration of applications using distributed
hardware.

Index Terms—reconfigurable logic; distributed architectures;
FPGA; HPC;

I. INTRODUCTION

A. Data Intensive Computing

Data-intensive computing capabilities are fundamental for
data-intensive scientific research such as biological systems,
weather prediction, simulation of statistical mechanics, as well
as analyses of huge volumes of different data types to and from
several distributed sources. Examples of these situations can be
found in power grids (Smart Grid), or in a distributed-sensors
network (cameras, sensors, etc.) used for security, and disaster
prevention, among others. These networks may acquire large
amounts of data and the data processing also may need to be
done locally, and in real time, requiring some computation-
intensive task, e.g. edge detection in images. Even more, in
these networks each node can be power-constrained and then
a data-intensive task can be limited by power consumption.

In a wireless sensor network, nodes are low-cost sen-
sors operating in an environment with limited processing
power and restricted battery autonomy. In this scenario data
processing can be done locally, using nodes equipped with
dedicated processors. Only the results of the processed data
are transmitted to the base station. This approach has the
advantage of consuming less bandwidth when sending data,
but it has to deal with power restrictions. Another approach
is to process data remotely. In this case a high volume of
data is transferred through the network. One way to solve
the disadvantages of both approaches is through the use of
low power reconfigurable hardware (FPGAs) dedicated to per-
forming data processing locally. Data Processing algorithms
can be implemented in these FPGAs obtaining n improved
time response with low power consumption. In a system with
several sensors and actuators, FPGAs can be configured in
order to perform different data-intensive processing, liberating
the sensors from the data processing [7]

B. High Performance Computing
Currently there exists a great demand for high performance

computing due largely to the requirements of scientific re-
search. For these applications, the use of accelerators offers
a qualitative improvement in terms of computing power and
consumption, compared with the classical solutions of general
purpose computing.

FPGA-based scientific computation is one of the solutions
in the scientific community to improve the response time for
numerically-intensive computation. FPGA-based systems are
faster than a software-only approach in terms of computational
power [5] [1].

Approaches for high performance reconfigurable comput-
ing, (HPRC), integrates both processors and FPGAs into a
parallel architecture. HPRC can achieve an improvement in
speed, size, and cost of several orders of magnitude over
conventional supercomputers [6].

Another solution widely used to improve response time
in intensive computation consists of the shared use of dis-
tributed resources [8]. Grid computing allows the connection
of scattered computational resources enabling the use of their
computer capacity, data, and storage space, regardless of their
location. To deal with such diversity of resources and local
administration policies virtualization technology has been used
to abstract the demands and use of resources from the sujacent
hardware platform [3].

Facilities to accelerate computational problem using recon-
figurable hardware, and the availability of these reconfigurable
resources as in a distributed grid system, can be combined
to create a computing resource capable of making significant
breakthroughs in data-intensive computing.

Distributed reconfigurable resources can be integrated ac-
cording to the grid model, allowing the creation of a distributed
reconfigurable platform for data-intensive computing as in
sensor network or Smart Grids. Even more, this distributed
reconfigurable platform is ideal also for high performance
computing for the resolution of scientific computational prob-
lems. This platform is depicted in figure 1.

This platform that we call Reconfigurable Grid (R-GRID) is
not just a set of spatially distributed FPGAs but also includes
a set of functionalities to provide the ability of a transparent
implementation of concurrent distributed applications, in order
to obtain maximum benefits from reconfigurability and spatial
distribution of resources. R-GRID platform was designed to



facilitate the implementation of multiple-users, and multiple-
application-instances, in such a way that clients are unaware
of the complexity inherent in the subjacent grid of FPGAs
(thereby avoiding the need to provide implementation details),
and to provide services that guarantee the security of deployed
applications.

The R-GRID approach must deal with the complexity of
distributed heterogeneous FPGAs. It is necessary to decouple
the behaviour of the hardware resource from the physical
implementation level. For this, R-GRID uses virtualization
techniques allowing the sharing of the same resource to
different users as if it were a local resource, and providing
the same interface to geographically distributed users. Each
user sees a virtual FPGA where it can deploy its components.
R-GRID also provides the virtualization techniques to connect
and communicate distributed components using a middleware
approach.

Figure 1. R-GRID

II. THE R-GRID CONCEPT

The R-GRID main objective is to provide a safe, reliable
and accessible platform where clients can implement and
deploy their accelerated applications. For that it is necessary
to provide a set of functionalities to facilitate the deployment
of applications and the use of resources.

A. The R-GRID Logical Architecture

R-GRID platform is built upon a different set of services,
with the purpose of providing a framework for the execution of
high-performance distributed applications. Figure 2 describes
the logical architecture of the platform, which has been divided
into three levels: the user administration level, the platform
management level and the node level.

User Administration Level and Platform Management Level
are implemented in software and are part of the R-GRID
Server. R-GRID Server is responsible for administration of the
whole system, keeping information about descriptor of appli-
cations, registered users, correspondence between applications
and owners, components and nodes, used resources, available
resources, etc.

Figure 2. R-GRID Logical Architecture

Figure 3. R-GRID Physical Architecture

1) User Administration Level: To start using R-GRID, the
Server offers a user interface, first level, which is formed
by the Registry, Deploy, Root Locator and Management ob-
jects: The Registry is an object with a public interface that
allows clients with the proper access rights, to register a new
application in R-GRID. A repository of applications is also
offered that can be used anytime and from any location. The
Deploy object is accessed by users to perform the deployment
of registered application. Each application can be formed
by one or several components and each component has an
associated bitstream. Each bitstream has also associated a
node. After deployment the Deploy object will update the
Root Locator Object to register component address. The Root
Locator object is a component that keeps information of the
deployed components and their location. It is intended to
provide access to the components.

Management Object gives to the administrator access to all
system functions, to ensure the proper behaviour of the R-
GRID. With the management service, the administrator can
obtain information about the availability of resources, the
state of FPGAs nodes, addresses of deployed objects and can
modify this information to solve any problem that arise.

2) Platform Management Level: As a second level we
found Platform Management. At this level transversal platform
management decision are taken. Issues concerning security,
monitoring, activation, component replication and persistence
take place at this level.

a) Security: Security module is implemented taking into
account two different points of view, user and application. In



the first aspect, security module will authenticate and authorize
users, checking if they have privileges to perform required
actions. From application point of view, due to the fact that
in R-GRID different applications from different owners over
shared resources are running at the same time, control of
application access needs to be done at each computing node
level of R-GRID. At this level, security functionality will
ensure that each component of each application can contact
and can be contacted only by components that belong to the
same application. This functionality is performed by the Object
Adapter on each FPGA.

b) Monitoring: Monitoring functionality collects all the
information about use and availability of resources, status data,
load and queue status, to provide information to the adminis-
trator to facilitate grid utilization and resource brokering.

c) Advanced functionalities: Activation, Replication and
Persistence are advanced functionalities that are invoked by
Root Locator and Deploy objects.

Activation: is a mechanism that instantiate a component
when it is required by other component of the same appli-
cation, if it is not in the system. This situation can occur
if a component of the application was removed to liberate
resources and it is required later.

Replication: is a functionality that allows component repli-
cation, if application and resources availability permit.

Persistence: In case that an instantiated component is re-
moved or stopped from the grid, Persistence allows to saving
its state in order to be later reused if component is reinserted.
With this functionality, components can be removed from
the grid and reinserted in another place, without lost of data
consistency.

B. The R-GRID Physical Architecture

The NODE level in figure 2 is formed by heterogeneous
FPGAs nodes, so this level is the physical architecture level.
R-GRID intended to hide the implementation details of com-
puting nodes to upper levels. Relationship between logical and
physical architectures can be observed in the figure 3.

R-GRID physical architecture was implemented using dy-
namically reconfigurable FPGAs. Each FPGA node is divided
in two parts: the static part, formed by three objects: Locator,
Node and Object Adapter, and a dynamic part, which is
formed by several dynamically reconfigurable areas. Each
reconfigurable area can host a component, and the location
of each instantiated component in the FPGA is solved by the
local Locator object.

The partial reconfiguration is triggered by the Deploy object
at User Administration level and performed by the Node object
of the target FPGA. Node object takes the bitstream from
memory and performs a partial reconfiguration of the FPGA.
This object isolates the partial reconfiguration mechanism
inherent to each FPGA from upper levels. Node object presents
two methods: StartServer (/bitstream/path) to load the partial
bitstream, and StopServer (int area) to stop the bitstream.

The Object adapter provides the mechanism to control
and to avoid the access to instantiated components from

those belonging to different applications, providing security
at application level. Each object adapter has a unique global
address within the system. These components are entirely
hardware implemented.

This model is perfectly scalable to a set of FPGAs that are
not partially reconfigurable. Each FPGA is registered in the
Locator at the first level of architecture, the Deploy Object,
instead of invocate the Deploy node to reconfigure the FPGA,
proceed to reconfigure the target FPGA directly. Each FPGA is
configured offering to Deploy object the same interface. From
the registry point of view the hardware resources interface is
the same.

C. Communication interface

Components can be locally or remotely connected. In the
former case it is equivalent to a point to point connection from
the client to the server, and implies no additional logic, while
in the latter it involves the use of remote adapters, in order
to translate messages into the transport protocol used by the
communication link. R-GRID extends the functionality of the
OOCE (Object Oriented Communication Engine) middleware
[2] in order to enhance inter FPGA communication of data.
The base configuration in OOCE isolates the computational
aspect from communication details, mainly at chip level. In
this scenario, software components can access to hardware
components and vice versa. OOCE interface compilers gen-
erates the software and hardware adapters that automatically
manage hardware-software interfacing. These adapter are in
charge of translating bus request and module activation signals
in one domain to conventional calls in the host processor. A
more detailed description about the adapters and how they can
be automatically generated is provided in [4].

An extra effort has been done in the abstraction of the
memory interfaces and the memory hierarchy in R-GRID.
For example, external memory to a component can be im-
plemented as a shared memory in the same node or any other
kind of memory in a different node. In any case, the mid-
dleware provides the component with the MemoryResource
abstraction, through an adapter, so the physical access to
such resource is decoupled from the components logic. Such
interface represents a generic memory and provides methods
for reading and writing data blocks. The addressing of the
different memories is delegated to the proxies together with
the global addressing system used in R-GRID.

D. Application Deployment

Once the set of components of the application have been
defined, the next step will be the description of the application.
For such purpose R-GRID uses an XML file, where all the
components in the application are listed and the corresponding
binaries are assigned. Let suppose an example of application
with two cores to be placed in different resources. Figure 4
shows the XML description. In this simple case there are only
two components, the controller of the application and the core
processor. The task of the controller is to schedule the data
distribution and execution of the core, so it has been mapped



Figure 4. XML Description of the example application

to a software node, while the core is a hardware component.
Both of them have at least an associated binary file: a software
executable for the controller, and a two hardware partial
bitstreams for the core, to deploy it over two different kind of
hardware resources. Those binaries will be deployed at run-
time from the R-GRID server to the corresponding nodes.

To deploy an application it is necessary to perform a few
steps. First, the registry of an application using XML file as
indicated before. With this configuration file R-GRID Server
updates grid information. After registered, it is necessary to
invoke Deploy object. Deploy takes information from R-GRID
Server and send to the corresponding Node information about
bitstream location to start reconfiguration. Finally, Deploy
update address information to Root Locator and local Locator,
in order to allow access to new component.

III. IMPLEMENTATION

To evaluate our approach a model of grid was implemented
using Virtex4 vlx60 ff668-10 FPGA. In this FPGA a node
and a locator were implemented. The resources used for both
components are shown in the following tables:

Locator
Number of Usage Percentage
Slices 281 out of 26624 1
Slice Flip Flops 159 out of 53248 0,2
4 input LUTs 528 out of 53248 0,9
IOs 104
bonded IOBs 0 out of 448 0

Node
Number of Usage Percentage
Slices 176 out of 26624 0,6
Slice Flip Flops 162 out of 53248 0,3
4 input LUTs 331 out of 53248 0,6
IOs 211
bonded IOBs 0 out of 448 0

In this model were created 8 reconfigurable areas using
locally independent clocks obtaining an easier and more
efficient place and route. The defined areas are symmetrical
allowing the interchange of bitstreams. The DDR memory

controller alllows an independent access channel to memory
for each area, prioritizing concurrent access using rotatory
shifts. The DDR memory controller also allows independent
memory partition for each implemented application.

IV. CONCLUSION

This article presents a new infrastructure for data intensive
and high performance computing based on FPGAs. Ubiquitous
reconfigurable resources can be integrated according to the
grid model allowing the creation of a reconfigurable platform
oriented to concurrent and decentralized exploitation of het-
erogeneous cluster of FPGAs. The combination of location
transparency of components, (the capacity to invoke any
object as it was a local invocation), access transparency (the
capacity to reach any hw or sw component), and remote
activation of the reconfiguration process, provide great benefits
in the overall system design process. In environments where
power constraints are mandatory, this approach allow the
use, management and configuration of low power, low cost,
FPGAs remotely and, in this way to take advantages of the
reconfigurability of these devices.

V. ACKNOWLEDGEMENT

This work has been founded by the Spanish Ministry of
Science and Innovation under the project DADA (TEC2008-
06553/TEC), and by the Regional Government of Castilla-La
Mancha under project RGRID (PAI08-0234-8083)

REFERENCES

[1] W. J. Gross A. J. Wong. Configurable flow models for fpga particle graph-
ics engines. In 16th International Symposium on Field-Programmable
Custom Computing Machines, pages 283–284, Washington-USA, 2008.

[2] J. Barba, F. Rincon, F. Moya, F. Villanueva, D. Villa, J. Dondo, and J.C.
Lopez. Ooce, object-oriented communication engine for soc design. In
Proc. X Euromicro Conf. on Digital System Design (DSD), Germany,
2007.

[3] Sumalatha Adabala et al. From virtualized resources to virtual computing
grid: the in-vigo system. Future Generation Computer Systems - Special
Section: Complex problem-solving environments for Grid computing, 21,
2005.

[4] F. Rincon, F. Moya. J. Barba F. Villanueva D. Villa J. Dondo and
J.C. Lopez Transparent ip cores integration based on the distributed
object paradigm. In LNEE- Intelligent Technical Systems, volume 38,
pages 131–144. Springer Netherlands, February 2009.

[5] V. Rana. M. Santambrogio and D. Sciuto. Dynamic reconfigurability in
embedded system. In Proc. IEEE ISCASS 2007, pages 2734–2737, 2007.

[6] M. Huang K. Gaj V. Krindatenko D. Buell T. El-Ghazawi, E. El-Araby.
The promise of high-performace reconfigurable computing. Computer,
41(2):69 – 76, Feb 2008.

[7] Y. Kwok T. Kwok. Computation and image processing in wireless sensor
network based on reconfigurable computing. In Proceedings of the 2006
International Conference on Parallel Processing Workshops (ICPPW’06),
pages 43–50, 2006.

[8] R. Sun Y. Ouyang, L. Yang. Research on grid platform oriented to
intensive data processing. In Seventh International Conference in Grid
and Cooperative Computing, pages 226–231, 2008.


