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Abstract—In multimedia embedded systems, the performance
of the interconnection system is key to meet the system require-
ments due to the hard timing constraints and large amount of
data they handle.

Since buses are a widely used communication infrastructure
in SoCs, this paper describes a Hw/Sw multimedia platform that
offers efficient, optimized and dynamically configurable commu-
nication mechanisms for bus based systems. Such optimization
mechanisms are inspired in an open standard for multimedia
systems, which has been adapted and ported to the special needs
of embedded systems.

At the end, we provide a transparent, homogeneous and
decentralized way for efficient data transfers between hardware
and software components on this platform, with a minimum
overload.

I. INTRODUCTION

In general, multimedia systems have to face with the pro-
cessing of a large amount of data with hard timing constraints.
In order to fulfill the demanded requirements, pieces of the
system functionality have been traditionally implemented on
electronic circuits. The result is the improvement of both, the
throughput and performance of the system.

The first approaches dealing with hardware-based accele-
ration made use of ASICs (Application Specific Integrated
Circuit) or DSPs (Digital Signal Processors). Lately, the
emergence of high capacity reconfigurable devices such as
FPGAs (Field Programmable Gate Array) is encouraging
developers to use this technology for multimedia embedded
systems. Some of the reasons that back up this trend are:
short development/prototyping time, the ability to customize
hardware, flexibility and reconfiguration facilities, the low cost
compared with other programmable devices, etc.

However, there is a lack of standardization in many facets
of multimedia embedded systems (e.g. data interchange me-
chanisms between the Hw and Sw elements in a system). This
fact leads to ad-hoc implementations whereas the adoption of
standards provides portable, flexible and reusable designs for
embedded systems.

In this work we present a Hw/Sw platform for embedded
multimedia systems, based on the use of the OpenMAX
standard [1]. The goal is to provide the developers with
the infrastructure and mechanisms that allow to build fully
reusable and portable multimedia embedded systems in a
reasonable time.

OpenMAX is an open standard, promoted by the Khronos
Group, which pursuits to reduce the cost and complexity of
porting multimedia software to new processors and architec-
tures. Since the OpenMax reference implementation is only
software, it has been necessary to revisit and redesign all the
architectural concepts and protocols offered by OpenMAX
in order to be applied to multimedia embedded systems.
OpenMAX standard provides an API that enables porting both
components and complete applications to multiple operating
systems and platforms.

As mentioned previously, the proposed platform allows the
development of Hw/Sw multimedia systems, and hence, a fle-
xible and transparent mechanism to manage Hw/Sw commu-
nication is necessary. In addition, to cope with the temporal
and computational requirements, it is mandatory to reduce
the overload introduced by the integration infrastructure to a
minimum. To get it, we rely on the facilities provided by the
Object Oriented Communication Engine (OOCE) [2]. OOCE
is an hybrid middleware, based on bus architecture, for SoCs.
It provides basic and advanced in-chip communication services
to transparently handle communication between the software
and the hardware parts of an embedded system. We have
extended OOCE with new features and some optimizations in
order to meet the performance levels demanded by multimedia
systems.

The rest of the paper is structured as follows: Section 2
gives an overview of the related works. In section 3 we offer
a general view of OpenMAX and its application to the field
of embedded systems. Section 4 analyzes our proposal and,
in section 5 we explain a specialization of the communication
mechanisms, based on a decentralized hardware-to-hardware
data transfers and synchronization mechanism. Then, in sec-
tions 6 we describe the results of their application. Finally,
section 7 summarizes the paper.

II. RELATED WORKS

Multimedia applications have their own requirements that
differentiate such applications from other domains. For exam-
ple: an intensive traffic of data and use of the memory
subsystem, a characteristic application model, real time res-
trictions, etc. These particular features have led the research
community to invest a significant amount of effort in projects



addressing the specific challenges imposed by the development
of multimedia (embedded) systems.

The most widespread solution to improve the throughput
relates to the development of the multimedia platform with
hardware acceleration in mind. This solution is mentioned in
[3] and [4], which respectively implement the computational
cores as coprocessors or heterogeneous reconfigurable engines.

The Cell BroadBand Processor [5], with its characteristic
four ring buses, combines a general-purpose PowerPC archi-
tecture with streamlined coprocessing elements which greatly
accelerate multimedia and vector processing applications.

Recently, multi-core architectures for graphical applications,
such as NVidia GPUs arrays, have gained a great importance
mainly due to the availability of CUDA [6], an open soft-
ware development framework based on a standard widespread
language as C.

PeaCE [7] is another alternative to develop Hw/Sw multi-
media platforms. PeaCE provides a development flow (from
functional simulation to the synthesis process) to multimedia
applications with real time constraints.

An important feature of these platforms is how the com-
ponents in the system communicate. Generally, communica-
tion mechanisms are fixed, with a limited capability to be
customized. Since there are many factors that can affect to
the communication performance that should be considered,
offering the ability to reorganize the communication channels
in run time is essential. This would also be a useful tool for
designers that could quickly and easily perform a design space
exploration.

For example, Na Ra Yang et al. [8] propose double buffer,
open row access and interleaved memory techniques in order
to achieve an efficient communication. Another alternative
to improve the communication performance is described in
[9] which presents a solution based on a time multiplexed
memory, where the system memory is accessed several times
during a single bus cycle. To allow this, the memory and
the DMA logic must operate at a clock frequency which is
a multiple of the clock frequency of the microprocessor.

In relation to the communications performance analysis in
multimedia dedicated platform, in [10] several alternatives for
a shared memory data exchange mechanism are compared:
point-to-point connection, and based on bus-based architecture
using DMA. In the final part of the work, they present a per-
formance estimation tool based on a Bus and Synchronization
Event Graph (BSE graph) that is used to obtain statistical
results.

III. OPENMAX MULTIMEDIA APPLICATION

A typical multimedia application in OpenMAX is formed by
a chain of processing elements called OpenMAX Components
(OMX Component from now) that process data on their inputs,
generating new data on their outputs. An OMX Component
implements one or more media processing functions out of
four application domains (audio, video, image and other) as
defined in the standard. The OMX Integration Layer (IL), [11])
abstracts and unifies the access to the functionality embodied

in the OMX Components and also provides different functions
to: establish communications between OMX Components,
send commands to the OMX Component, configure the OMX
Component parameters and obtain the necessary resources.

The OMX Components in an application exchanges media
data in packets called buffers. The communication is handled
through ports which can be classified as an input or output
port, depending on whether it receives or sends buffers. The
standard describes three types of communication:

• Tunneled: the communication between components takes
place directly without the intervention of any other com-
ponent in the system. To this end, the standard defines a
buffer exchange convention.

• Non-Tunneled: the communication between components
takes place through the entity that implements the appli-
cation control.

• Proprietary: the communication between components
takes place directly but, opposite to the tunneled case,
the mechanism is not defined by the standard.

The IL houses some of the most important functionality
in OpenMAX (initialization and connection of the OMX
Components and resource communication and synchronization
management). Therefore a hardware implementation of the
main OMX Components will help to raise the throughput of
an OpenMAX-based multimedia platform.

A. OpenMAX Hardware Implementation

The implementation process to adapt OpenMAX to an em-
bedded multimedia heterogeneous environment, started with
the identification of the critical parts of the standard that
should be implemented in silicon. Later, we performed an
efficient Hw implementation of the entities and communication
methods selected using the facilities provided by OOCE.

Fig. 1. Hw OMX Component structure



The most important element of the subset implemented
in Hw is the OMX Component (Hw OMX Component)
which belongs to the IL layer. This element encapsulates the
hardware module, the Processing Core (PCore), that actually
implements the multimedia function. The PCore interacts with
the rest of the logic through a fixed physical interface, facil-
itating, thereby, its reuse. The architecture of the Hw OMX
Component, which is generated automatically, is thought as
the placeholder for the PCore and it is mainly dominated by
the presence of two local memories that are used to store the
input and output buffers to be produced or consumed by the
PCore.

The Transfer Manager (TM) is the subsystem, within the
OMX Component, responsible for the buffer exchanging
process between one Hw OMX Components and any other
regardless of its implementation (Hw or Sw). The TM realizes
the concept of communication ports in the standard. In order
to establish the communication with the previous/following
OMX Component in the chain, the TM uses the references
(OOCE proxies) contained in the source and target registers.
The TM implements the three communications types described
in the OpenMAX because the target application could benefit
from the variety of the communication models provided and
the flexibility introduced in the design.

Although two Hw OMX Components can communicate in
three different ways (tunneled, non-tunneled and proprietary),
the most optimal mechanism to exchange buffers is the tunne-
led communication because the synchronization, control and
data flow traffic is handled directly by the two actors in the
communication process. For this reason, in this paper we focus
on the adaptation made of tunneled communication. In our
implementation, this means this process takes place between
two hardware instances of an Hw OMX Component without
the intervention of a controller or any kind of software process.
This has a positive impact in performance since the processor
is not mediating in every single data transfer that takes place
in the system. The OOCE Hardware-to-Hardware invocation
semantics makes it possible. Moreover, the use of OOCE in
our proposal enriches the final solution, adding transparency
and homogeneity to the platform.

Finally, the Control Unit (CU) dispatches the OpenMAX
commands coming from communication layer to the correct
entity in the component for further processing. Also, the CU
orchestrates the internal communication of all the subsystems
in the OMX Component. The OpenMax commands are sent
and received through the OOCE adapters (proxies, skeletons
and drivers) that make the Hw OMX Component independent
of the bus technology and, therefore, the platform in which it
is going to be deployed. OOCE establishes the semantics to
guarantee transparent interoperability between any two OMX
Components (either Hw or Sw).

IV. THE PROPOSAL

In this proposal, we rely on the use of FPGAs devices
and industry standards for the design and development of

Fig. 2. Implementation example of an heterogeneous hw/sw multimedia
processing chain with HW OpenMax Components.

multimedia systems which allow portable and efficient imple-
mentations of in less time.

As a global view of the proposal, in figure 2 it is represented
how a multimedia processing chain is implemented using our
proposal. In this example, components B and C in the chain are
mapped to a hardware implementation of an OMX Component
and they can communicate using any communication models
offered by OpenMAX. Communication between two OMX
Components that remain implemented in Sw is not treated here
since it follows the same principles and mechanism as defined
in the documentation of the standard and the implementation
reference provided by Khronos. Therefore, in this section we
focus on those scenarios where a Hw version of the OMX
Component is present.

Every Hw OMX Component has a software counterpart
that interacts with the rest of the OpenMax middleware. This
is mandatory in order to keep the rest of the application
unchanged. This software wrapper stands for the hardware
component and exactly implements the same API required by
the standard, acting as a facade.

To illustrate what transparency and easy integration of Hw
OMX Components actually mean, let us introduce the listing
1 showing a fragment of an OpenMax application running
in a FPGA. The application receives one video frame from
the Ethernet interface, transforms the RGB picture to grey
scale, applies a border detection algorithm and finally sends
the result via Ethernet. The img ethreader and image ethsink
components are in charge of the acquisition of the image
to be processed by the chain, and the delivery of the result
respectively. These components run in software, whereas the
hw.img RGB2BW and hw.img sobel components are imple-
mented in hardware. Nonetheless, there are no distinctions
between the use of the hardware components and the software
ones since both of them are OMX compatible.

i n t main ( i n t a rgc , c h a r ∗∗ a rgv ) {
/∗ G e t t i n g Components Hand le r ∗ /



OMX GetHandle(& appPr iv−>e t h r e a d e r , ‘ ‘omx . e x t . image .
e t h r e a d e r ’ ’ , NULL,& r e a d e r c a l l b a c k s ) ;

OMX GetHandle(& appPr iv−>hwrgb2bw , ‘ ‘omx . hw .
img RBG2BW ’ ’ , &RGB2BWcallbacks ) ;

OMX GetHandle(& appPr iv−>hwsobel , ‘ ‘omx . hw . img sobe l ’
’ , NULL, &h w s o b e l c a l l b a c k s ) ;

OMX GetHandle(& appPr iv−>e t h s i n k , ‘ ‘omx . e x t . image .
e t h s i n k ’ ’ , NULL, &s i n k c a l l b a c k s ) ;

/∗ S e t t h e s i z e f o r img Hw OMX Components ∗ / ;
s S i z e . sWidth . nValue = 640 ;
s S i z e . s H e i g t h . nValue = 480 ;
OMX SetParameters (& appPr iv−>hwrgb2bw ,

EXT OMX IndexConfigImgSize , &s S i z e ) ;
OMX SetParameters (& appPr iv−>hwsobel ,

EXT OMX IndexConfigImgSize , &s S i z e ) ;
/∗ S e t t i n g up t u n n e l e d communica t ion ∗ /
OMX SetupTunnel ( appPr iv−>hwrgb2bw , 1 , appPr iv−>

hwsobel , 0 ) ;
/∗ Change HW OMX Component s t a t e ∗ /
OMX SendCommand ( appPr iv−>hwrgb2bw ,

OMX CommandStateSet , OMX StateIdle , NULL) ;
OMX SendCommand ( appPr iv−>hwsobel ,

OMX CommandStateSet , OMX StateIdle , NULL) ;
OMX SendCommand ( appPr iv−>hwrgb2bw ,

OMX CommandStateSet , OMX StateExecuting , NULL) ;
OMX SendCommand ( appPr iv−>hwsobel ,

OMX CommandStateSet , OMX StateExecuting , NULL) ;
. . .
OMX DeInit ( ) ;
r e t u r n 0 ;
}

Listing 1. Example of an implementation of an heterogeneous Hw/Sw
multimedia processing chain with Hw OpenMax Cores.

Behind the scenes, there is much more to take into account
for hardware components. For example, figure 3 represents
the sequence of OOCE messages needed to perform some
configuration on the Hw OMX Component. When the OMX
Component, that is used as a facade, receives certain standard-
ized notifications, it redirects the notifications to the associated
Hw OMX Component via messages. These messages are
translated into bus transactions by OOCE middleware and
are collected by de Hw OMX Component through the OOCE
adapters. For example, when a OMX Component receives the
configuration values by OMX SetParameters() notification, it
sends two messages to the associated Hw OMX Component
in order to configure the buffers length and the specific
configuration registers.

Fig. 3. Sequence diagram of the Hw OMX Component configuration
messages.

Similarly, when the OMX Component receives the noti-
fications to establish a tunneled communication or to start
execution, it transforms and extends these notifications to the
Hw OMX Component. Once configured and started, two Hw
OMX Components can begin to exchange buffers following
the OOCE Hardware-to-Hardware invocation semantics.

V. HARDWARE-TO-HARDWARE BUFFERS EXCHANGING
STRATEGY

As previously mentioned, tunneled communication is the
most efficient buffer exchange scheme offered by the standard
since it reduces the synchronization traffic. The producer and
the consumer use a rendezvous protocol with no intermediaries
nor controllers. Therefore, it is quite interesting its application
in an embedded system for the best use of the available
communication bandwidth.

However, a Hardware-to-Hardware dialog is rarely present
in heterogeneous embedded platforms which prevents an op-
timal implementation of the standard. But this is not the
case of the OOCE SoC middleware which allows two IPs to
establish direct communication via hardware remote method
invocations.

On top of this, we have implemented a buffer exchange con-
vention and synchronization mechanism between Hw OMX
Components inspired in the standard. The communication
meets the producer/consumer pattern and the components,
involved in the communication, exchange the usual data traffic
besides two types of synchronization messages (“FillBuffer”
and “EmptyBuffer”). Again these messages are translated into
bus transaction.

The main idea in Hardware-to-Hardware communication is
to transfer as soon as possible the content of a buffer content
between two Hw OMX Components without the intervention
of any other component in the system. The sequence of steps
(illustrated in figure 4) in a Hardware-to-Hardware communi-
cation is the following:

1) At the beginning, the input local memory of the con-
sumer Hw OMX Component is empty so sends a “Fill-
Buffer” message to the component playing the role of
producer and wait.

2) When the producer Hw OMX Component output
memory is full, the producer writes the buffer content
into consumer’s input memory and sends a “Empty-
Buffer” notification.

3) When the consumer has read the last word from the
buffer in its input memory (not necessarily processed) it
sends a “FillBuffer” notification to the producer again,
avoiding unnecessary waiting.

Fig. 4. Sequence of messages in Hw-to-Hw Communication.

Over this general communication model, we have developed
two different optimizations in order to reduce the transmission



latency and maximize the use of the available bandwidth.
With the proposed optimizations, the number of wait cycles,
due to peaks in the traffic load, is reduced, re-distributing the
bus workload using techniques that parallelize and interleave
all the transfers between OMX components. This is achieved
by means of using the dead times while the component is
processing a buffer.

The first optimization (see Figure 5) forces the Hw OMX
Component to transmit a buffer in the output memory before
filling it. As soon as there is a packet of N-words (configurable
via an internal register), it is transmitted. This optimization is
called “No Wait Until Fill” (NWUF). The benefit of using
this technique is twofold: (1) component’s execution and
output buffer transfer are overlapped; and (2) several buffer
transmissions can take place at the same time.

Fig. 5. No Wait Until Full optimization

The second optimization (see Figure 6) is called MBF
(“Multiple buffering”) and allows to overlap: (1) the reading
of the actual input buffer with the writing of a new input
buffer; and (2) the transmission of the actual output buffer
with the writing of a new output buffer. To this end, the
physical address space of one memory is logically divided into
N independent regions which are managed separately. Thus,
full parallelism is achieved.

Fig. 6. MultiBuffer optimization example

Both optimizations are compatible and they can be used
simultaneously but, depending on the case, their effectiveness
might vary. This is going to be analyzed in the next section.

In any case, several communication parameters are cus-
tomizable for our platform: the size of the buffer, the packet
length, the number of components connected to the bus and
the size of the data transmitted.

VI. EXPERIMENTAL RESULTS

In order to provide the reader with a glimpse of the benefits
and efficiency of the proposed approach, two experiments are
dissected in this section. Particularly, we have focused in the
analysis of the NWUF and MBF techniques and how they help
to increase the system performance compared against the base
case (Wait Until Fill and No Multiple Buffers).

The prototyping platform used in the experiments was a
Xilinx Virtex5 based board with a MicroBlaze running at
100Mhz and a 64 bit PLB bus. All the Hw OMX Components
have two local memories whose sizes are 1 Kword. Several
tests were generated and downloaded to the board with a
variable number of hardware and software components. For
each test, 1Mword of synthetic data was fed into the processing
chain.

It is worth mentioning that in this case we used PLB, but
it is almost straightforward to perform new test over other
platforms just changing the bus type.

The first picture (figure 7) illustrates the benefits obtained
by applying the “No Wait Until Full” optimization mechanism
(described in section V). As it is expected, the occupancy
of the bus increases with the number of components in the
processing chain. What is remarkable is how our proposal
scales in a linear pattern. The measured transmission times are
reduced in 20% (mean value) for the six cases when compared
with the “Wait Until Full” strategy.

Fig. 7. Comparative chart of transferring time based on the number of
components and “No Wait Until Full” optimization.

The second picture (figure 8) represents how the size of the
buffer has an influence on the total transmission time. The
benefits of the “Multiple buffering” technique are exposed in
this experiments and its applicability is delimited, identifying
such scenarios where its application makes sense.

Since the size of the local memories is 1Kword, the number
of buffers that can be held in it varies (for example, two
buffers for a 512 words buffer-size configuration). In this chart,
we can see what is the best value for a certain buffer size
configuration. To increase the number of buffers means that



the control logic also increases, so it is necessary to estimate
the cost/performance relation.

From the picture, two lesson can be learnt: (a) in systems
with a low overhead regarding the bus bandwidth require-
ments, the bigger the size of the buffer the better the per-
formance of the system; whereas (b) in the opposite situation
it is better to reduce the size of the buffer since several buffers
transmissions can be interleaved, reducing the wait times.

Fig. 8. Comparative chart of transferring time based on the number of
components and “Multiple buffering” technique.

VII. CONCLUSION

Multimedia applications need of specialized embedded sys-
tems in order to deal with the demanding future it is dis-
cerned for the next years. This work offers an open, flexible
solution based on accessible technologies and devices but
without sacrificing performance and efficiency. To this end,
we have presented a platform with a communication strategy
for heterogeneous multimedia embedded system with a set of
parameters and optimizations, based on OpenMAX standard
and OOCE.
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