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Abstract—The incorporation of reconfigurable devices (FP-
GAs) to traditional grids of processing units such as GPUs add
more complexity to the design and exploitation of heterogeneous
reconfigurable computing systems. A lot of proposal were made
to facilitate critical aspects such as network interconnection,
devices access, programming models... but a few proposal offers
a complete flexible solution. For this purpose, we need to
cover three different domains: the user access (services), the
application developer (programming models), and finally the
system developer architecture (architectural model). In this way
this work proposes a complete dynamic reconfigurable computing
system integrating aspects to offer a three domain architecture
solution.

Index Terms—FPGA, Dynamically reconfigurable, Reconfig-
urable Computing, Programming Models, Architectural Models.

I. INTRODUCTION

The multi-node dynamically reconfigurable distributed com-
puting compromise three different domains (fig. 1) related to
type of system access:

• Architecture development domain
• Application development domain
• User access domain

Fig. 1. Reconfigurable computing: three domains

Architecture development domain is related to the design of
reconfigurable computer systems, including, for example, the

integration of computing devices, how to interconnect them
or the amount of involved resources. The main concerns are
about topology, networking, memory, bandwidth, or comput-
ing devices models.

Application development domain deals with the application
development process, from design to implementation and test-
ing. In this domain, the main concepts involved are program-
ming languages, tools, programming models, and workflows.

Finally, user access domain is related to the interaction of
the final user with the reconfigurable computing system. Users
are those requiring computational capacities for application
deployment, and those providing platform administration roles.
The user submits jobs and requires a variety of services to
easily run their applications in a safe and successful way.
On the other side, grid service provider requires services for
managing system state, or to perform the administrator role.
The main concepts involved in this domain are: a) from client
side: application deployment, user access interface, resource
demand; and b) from administrator side: performance, man-
agement tools for resource allocation and scheduling, security
policy, etc.

Despite its powerful capabilities, current heterogeneous
reconfigurable computing platform does not offer an integral
flexible solution involving the three domains detailed previ-
ously. A proposal integrating solutions for these domains is ur-
gently required. This solution must also posses the capacity to
offer scalability and flexibility in order to cope with the growth
of computational resources for High Performance Computing
(HPC) demands. These characteristics include aspects such
as facility to integrate different technologies and High Per-
formance Reconfigurable Computing (HPRC) architectures,
facility to provide resources access transparency to users and
so on.

In this way, we propose a complete architecture that offers
solutions in these three domains. The propose can be summa-
rized in a reconfigurable computational architecture that sim-
plifies the system development, offers different programming
models and provides clusters services to exploit it.

II. RELATED WORK

The integration in distributed reconfigurable computing of
those three domains defined in section I, have been made par-
tially in HPRC, where several reconfigurable devices (FPGAs)
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are offered with general purpose processors beside a set of
libraries facilitating access and accessibility of resources.

High Performance, flexibility and low power consumption
are the main reasons to integrate FPGAs also in HPC [1].

Most of the solutions in this concern place FPGAs as
a simple coprocessor of a master entity (i.e. an on-board
CPU) that typically runs a control program. FPGAs are, thus,
relegated to a lower level, behind the processor. This is the
dominant role of FPGAs both in High Performance Embedded
Systems [2], [3], [4], [5], [6] and HPC Servers.

Examples of this configuration are the SGI Altix servers [7],
Netezza for data warehouse applications [8], the Convey HC1
and HC-1ex hybrid computers [9] or the Cray XD1 [10], just
to name a few of them. In some cases, FPGA technology
is hidden behind an extended instruction where designated
operations are accelerated in the hardware fabric. In other
cases, FPGAs can only be accessed through a tightly coupled
processor using a closed API.

Few commercial products fall out of this group, such as
the RYVIERA and COPACABAN platforms. SciEngines [11]
provides the developers with a bare reconfigurable platform
with several FPGAs blades at the same level than processors.
However, the development environment is not trivial for non-
expert hardware personnel.

Most of works using FPGA for HPC repeat the strategy
of integrating an accelerator into applications to speedup the
execution of the kernel of an algorithm [12] [13]. Nevertheless,
this strategy is not intended to execute the whole application
in hardware. The approach presented in [14] represents an
evolution with respect to the acceleration of a single algorithm.
It offers an architecture where reprogrammable hardware re-
sources can be used as if they were resources managed by the
operating system, abstracting in this way user applications.
The proposed architecture is based on a card with partially
reconfigurable FPGAs connected to the bus of a general pur-
pose computer. This architecture offers a system to facilitate
loading those hardware components needed to accelerate the
application, through a software layer that incorporates these
FPGAs as if they were additional system resources. This work
does not provide hardware communication transparency and
replication services.

A. Contributions to development models and tools

To assist in the definition and building process of the
hardware components, designers have relied in the use of High
Level Synthesis (HLS) tools. Some approaches have been made
such as Impulse-C [15], Handel-C [16], and Transmogrifier C
[17]. Lately, important efforts have been done considering only
a subset of particular high-level languages (normally C/C++)
for HDL translation such as Mentor Graphics’ Catapult C [18],
Synfora’s PICO (now Synopsis) and AutoESL’s AutoPilot
(now Xilinx). They have been able to achieve a level of
resource-usage efficiency comparable to that obtained using
hand-written RTL code [19]. Another interesting initiative
that takes advantage of HLS tools applied to HPC related
problems is the recent announcement of Altera [20] that uses

OpenCL as the unique programming model for FPGAs, GPUs
and CPUs. In the same line (OpenCL synthesis capabilities)
can be found the project ”Hardware Virtualization Layer for
Ubiquitious Reconfigurable Computing” at the NFS center
for HPRC. Finally, it is worth mentioning the EU FP-7
funded project ”REFLECT: Rendering FPGAs to Multicore
Embedded Computing” [21] which explores the use of Aspect
Oriented Programming as an alternative way to deal with high
level synthesis for FPGAs.

III. Cluster Architecture

In this section, we describe our proposal in each recon-
figurable computing domain. We start with architecture base
description, after that we explain the programming models
support, and finally we present the clusters services for the
users.

All domains are interconnected each other. Since design
decisions in one domain can affect decisions in the other, we
need inter-domain interfaces that limit their responsibilities. In
figure 2, we briefly denote these responsibilities, and we will
explain each one in next sections.

Fig. 2. Interfaces

A. Architecture development domain - Architecture

The physical architecture must offer the maximum flexibil-
ity to build reconfigurable computing systems with different
topologies, network connections and different computational
devices. To obtain that, we offer an Cluster Architecture
template with construction system rules, and a functional
model to fix its behavior.

The Cluster Architecture template allows the designer to
build a scalable FPGA-based cluster, while functional model
defines a several useful features such as: user application
repository, automatic application deployment, transparent lo-
cation and communication, and auto-discover resources, and
programming libraries among others.

The template is based on a very simple two role scheme,
represented in the figure 3. One of them is centered in the
management of platform resources and in the interaction with
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the user access domain, and the other one is centered in
offering computational resources.

The model has another element, the network interconnec-
tion, that allows cluster node to communicate between them.

Our Cluster Architecture template defines a single instance
of the management node, while the number of instances of the
computation node can reach high values.

A computational device becomes part of the architecture
when it implements a set of services such as communication,
announcement, deployment and location. These services, that
we define as computational node kernel services, represent the
lowest access level allowed in the device, for the management
node or for the applications.

An application can use this basic services layer. It has sim-
ple primitives for send and receive messages inter-task, locate
a remote task, local memory resources access, implicit task
deployment, and stop/activation task mechanisms. However,
the developer can use more sophisticated parallel programming
model with layers implemented over these basic services.

Fig. 3. Cluster Architecture template

In figure 4 we can see an example of the cluster physical
topology using this template.

Fig. 4. Architecture Example

The features of each role of the architecture model are
summarized below:

• Management role:
– Applications repository for each user
– Management of all resources (Autodiscover protocol)
– Application deployment
– Transparent remote access

• Computation role:
– Load partial bitstream
– Stop and extract/set state of tasks
– Location of a deployed task
– Announcement message when start-up

– Local memory management

Next we described each node of the architectural template.

1) Management node RPC API: User access domain of
the Cluster Architecture are the main client of the management
node services. The management node must offer four services:
application repository service, application deployment service,
invocation service and auto-discovery service. The application
repository and application deployment services are accessed
by this methods:

−−A p p l i c a t i o n R e p o s i t o r y S e r v i c e
vo id addApp ( App app ) ;
App [ ] getApp ( ) ;
App getApp ( s t r i n g name ) ;
vo id removeApp ( s t r i n g name ) ;
vo id addBina ry ( s t r i n g appName ,

s t r i n g taskName ,
s t r i n g v e r s i o n ,
s t r i n g model ,
b y t e [ ] b y t e s ) ;

b y t e [ ] g e t B i n a r y L i s t ( s t r i n g appName ) ;
vo id removeBinary ( s t r i n g appName ,

s t r i n g taskName ,
s t r i n g v e r s i o n ,
s t r i n g model ) ;

−−A p p l i c a t i o n Deployment S e r v i c e
boo l s t a r t T a s k ( s t r i n g appName ,

s t r i n g taskName ) ;
boo l s t o p T a s k ( s t r i n g appName ,

s t r i n g taskName ) ;

The application repository services has CRUD methodology
(CreateReadUpdateDelete). addApp, getApp and removeApp
allows to register, read an remove an user application descrip-
tion, and addBinary, getBinaryList and removeBinary allows
to register, read and remove user applications binaries.

The deployment service has two methods, startTask and
stopTask, that deploy or stop task application in the system.

The invocation service works such a router, it waits for a
externals call over task, and it redirect the call to the final task
location.

Auto-discovery service needs a simple protocol. This pro-
tocol require two actors: the computational node that sends
periodic discovery messages, and the management node that
receives broadcast discovery message. This protocol allows
discover new computational nodes or detect network or node
failures.

2) Computational node RPC API: A computational node
must offer five services: partial reconfiguration service,
task location service, transparent messages service, auto-
announcement service and local memory service. These ser-
vices create an abstraction layer that allows for the manage-
ment of different FPGA models in the same way, or any other
accelerator type like GPUs. The location and reconfiguration
services are accessed as methods:
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−−A p p l i c a t i o n Deployment S e r v i c e−−
i n t dep lo y ( b y t e [ ] b i n a r y ) ;
i n t runTask ( i n t a r e a ) ;
i n t s t o p T a s k ( i n t a r e a ) ;

b y t e [ ] g e t S t a t e ( i n t a r e a ) ;
i n t s e t S t a t e ( i n t a r ea ,

b y t e [ ] s t a t e )
vo id c l e a n ( i n t a r e a ) ;

−−A p p l i c a t i o n L o c a t i o n S e r v i c e−−
Addr l o c a t e ( s t r i n g name ) ;
vo id r e g i s t e r T a s k ( s t r i n g name ,

Addr add r ) ;
vo id u n r e g i s t e r T a s k ( s t r i n g name ) ;

The Application Deployment service method allows loading
a binary in a free resource. For this, a deploy method is
used, this method return the resource identification for location
issues. runTask send to the task a signal to indicate that it is
ready to start its functionality.

In FPGA environment, deploy method isolates dynamic
reconfiguration from resource location providing transparent
dynamic relocation mechanism, that modifies the bitstream to
place it in free resources independently of their locations.

To stop a task stopTask halt functionality, and cleanTask
unlock the resource for next use.

getState and setState allow state task persistence, only when
the task is in halted state.

The transparent messages, auto-announcement and local
memory services are accessed by defined signal interface
specified in a non-blocking packet based protocol.

In table I we can observe the summary of resources required
for the kernel service implementation in a Virtex 5 FX110T
FPGA.

Component Slices Slices FFs LUTs IOs
Location Service 281 159 528 104

Deployment Service 190 167 359 211

TABLE I
RESOURCES

B. Application development domain - Programming models

To exploit the parallelism, the proposed architecture is
based on the SPMD (single process, multiple data) parallel
programming technique. In the SPMD way, application is split
into tasks. These tasks are replicated (if needed) and running
at the same time in multiple processing nodes.

From the developers point of view, the first step is to
choose a programming model. The concepts and artifacts
that offers the programming model allows the user to design
the application in accordance with it. Once model has been
chosen, the application has been split into tasks in the second
step. The intercommunication between tasks is also determined
by the programming model. For example, a Remote Procedure
Call (RPC) programming model uses method call for the com-
munication process, and the task must expose its functionality
by method interface.

Our approach support different programming models
through a toolkit, and specific library layers (fig. 2). These
layers are built over the same interface and allow to integrate
programming models with heterogeneous FPGA devices. To
achieve this, each FPGA is managed by a common kernel
deployed in a static area as mentioned previously.

The toolkit allows the creation of adapters and stubs of
the task interface according to the programming model arti-
facts. For example, a RPC programming model generates the
proxy and skeletons artifacts to provide a method invocation
semantic. As it currently stands, the toolkit only support RPC
programming model. In next version, we plan to offer MPI and
MapReduce programming models. In figure 5 we can observe
how the application layer is over different programing models
and service platforms.

Fig. 5. Programming model

Another advantage of the programing model flexibility is
that it allows to use of more than one programming model
in the same applications and in the same task. In this way,
the developer can choose, task by task, the more adequate
programming model.

Development flow

The application developers have a lot of freedom in model-
ing their application architecture. For example, in our Cluster
Architecture hardware tasks can intercommunicate each other
without the action of a host; this avoids host-coprocessor
architecture bottleneck presents in tightly coupled HRPC such
CHRECs Novo-G and EPCCs Maxwell systems.

In figure 6 we can see briefly the application development
workflow proposed. It has five phases from the applications
analysis to the execution. During Phase 1 the developer
will choose the programming model that better suited to
his application domain. In Phase 2 according to selected
programming model the application will be modeled as a
set of related task graph. This graph shows the relations,
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the dependencies and the parallelism between tasks. Dur-
ing Phase 3 the implementation is performed: each task is
described using High Level Languages, the corresponding
communication adapters are automatically generated through
programming model dependent toolkit, and the described task
plus the communication adapters are synthesized. Finally, the
computational node model is selected and the corresponding
binary files are generated. In the Phase 4 the developed
application is registered into the cluster repository. Finally,
during Phase 5 the application is deployed from the repository
and are executed.

Fig. 6. Application development flow

Figure 7 exemplifies the hardware mapping of an appli-
cation architecture from the task model. In this example the
application architecture is formed by nine tasks based on five
roles: two for data partitioning and result storage, and three
to pipeline computation. The nine task were deployed in three
FPGAs.

C. User access domain - Services
All the facilities described in precedent paragraphs wont be

useful if the system does not provided a simple way to end
user to exploit all platform resources. For this reason, in the
user access domain it is necessary that an external access point
for clients and system administrators is provided, that include
a graphical client application. This application provides client
access to system services.

The main functionalities in the user access domain are the
processing of external connections, user identification and au-

Fig. 7. Application architecture mapping example

thentication, application registry and deployment, accounting,
and security. These functionalities are obtained from services
provided by the management node as detailed in section
III-A1.

In this domain the external services offered to the clients:
• Clients

– Application repository service
– Application deployment service
– Programmatically external access to internal de-

ployed applications
• Administrator

– System status services
– System admin services
– Errors awareness services

IV. EXAMPLES

Grid Services have demonstrated over the years that can
be helpful in high-performance computing multi-node ex-
ploitation. From end-users point of view, our proposal offers
the same services provided in traditional cluster and grid
system plus the benefits obtained from the incorporation of
reconfigurable computing resources. Nonetheless, the facility
of cluster use perceived by user will depend on the quality of
final implementation of the described services.

A matrix multiply application was chosen to be accelerated
using our approach.

The experiment consists in the implementation of a matrix
multiplier in our Cluster Architecture platform to analyze the
viability of the proposal, evaluating if the models are correctly
defined and the benefits obtained in the complete application
deployment process.
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The programming model selected is RPC. With this model
we split the applications in three tasks: partitioning, compu-
tation and storage. Figure 8 shows the architecture with the
compute task replicated five times. To implement this example
we chose two Virtex 5 VLX110T with 512 MB of RAM,
Rocket-IO and Ethernet 1 Gbps.

Fig. 8. Logical matrix multiplication architecture

Figure 9 shows time table for different solutions. The hard-
ware has four different configurations: 1x1, 2x2, 3x3 and 4x4.
Each one represents a fine-grained parallelism implemented
with matrix multiplication array. The solution selected is the
4x4 with five replicated task.

Fig. 9. Matrix multiplication time

The computation time to solve a 5000x5000 matrix mul-
tiplication using this reconfigurable infrastructure with five
4x4 computational kernels was reduced from 1340 seconds
using software (dualcore Intel Core2 6420 2.13GHz) until 16
seconds, which means 83.75 times faster.

V. CONCLUSION

Our approach offers an architectural model that allows to
exploit heterogeneous cluster of FPGAs. The solution supports

the cluster building process, its management, and it simplifies
application development and execution.

This complete workflow simplifies the incorporation and
exploitation of distributed hardware resources for high-
performance computing environment, offering flexible and
integrated platform domains to facilitate platform use.

The future work focus in the programming model’s library
and toolkit support, the development of service kernels for
different FPGA models, and a repository of general-purpose
tasks.
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