
A Comprehensive Integration Infrastructure for

Embedded System DesignI
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Abstract

A System-on-a-Chip (SoC) is the most successful example of how the evo-
lution of the chip integration technology allows the manufacture of complex
embedded systems. However, the bulk of the design effort, to efficiently
combine the HW and SW components in a SoC, still resides in the HW/SW
interfacing architecture. A good HW/SW integration strategy has a positive
impact either in performance, efficiency, development times, productivity or
reutilization of platforms for future designs.

In this paper, we present an object-oriented approach to cope with the
HW/SW integration problem in SoCs. The Object-Oriented Communication
Engine (OOCE) is a system-level middleware particularly designed for SoCs
which provides a high-level and homogeneous view of the system compo-
nents based on the Distributed Object paradigm. Communication between
components is abstracted by means of a HW implementation of the Remote
Method Invocation semantics and all the SW and HW adapters are auto-
matically generated from functional descriptions of the components interface.
The resulting communication infrastructure simplifies the integration effort
required and makes the embedded software more resilient to changes in the
HW platform.

To prove the viability and efficiency of our proposal a prototype imple-
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mentation on the Xilinx ML505 evaluation platform has been performed.
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methodology for embedded systems, HW/SW interfacing

1. Introduction

Lately, the ever increasing complexity of electronics systems has presented
ever greater challenges for hardware architects and embedded software engi-
neers. The ultimate goal in SoC (System-on-a-Chip) design would be very
close to what happens in a software engineering project where the program-
mer takes everything he needs from a component library, writes some lines
of glue code and has it up and running almost without effort. But the devel-
opment of systems and applications on embedded platforms is trickier than
the ideal scenario described above. Some of the problems are stated below:

a) The heterogeneity and the large number of the components to be assem-
bled. Some of them might not even have been developed yet, as in the
case of functionality to be implemented as core hardware after a profile
analysis of the target application.

b) The variety of communication infrastructures to be used and the varying
nature of the communication protocols (e.g., buses or Networks-on-Chip).

c) First hardware, then software workflow [1]. Hardware dependent soft-
ware is quite sensitive to changes in the physical platform, becoming a
bottleneck in embedded system projects. The alternatives are to delay
embedded software development or assume the risk of unforeseen changes
in the platform.

The magic formula, which has been widely adopted by academia and the
CAD industry, to address the above mentioned problems consists of raising
the abstraction level of the specifications that will drive the design and im-
plementation processes of a SoC. Together with a proposal for a common
system model, a path to implementation must be provided if it is intended
to be useful and attractive to designers and, of course, productive.

In this scenario, we come up with a novel and comprehensive solution to
the recurrent problems present in SoC design: the Object-Oriented Commu-
nication Engine (OOCE from now on). OOCE makes several contributions
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to the state of the art in embedded system design from different points of
view:

a) Hardware. OOCE facilitates component integration and promotes the
reuse of legacy IPs (Intellectual Property), shortening the development
times.

b) Software. OOCE offers a unified and high-level communication interface
for both HW and SW components which simplifies the programming task.

c) Methodology. OOCE becomes an enabler for concurrent HW/SW design.
OOCE also automates the generation of the solution without the need
for detailed or formal specifications which means an increment of the
designer’s productivity.

The rest of the paper is organized as follows. First, we present the re-
lated work. In Section 3 we introduce the design philosophy behind OOCE
and its advantages before describing the main guidelines that drive the real-
ization of the Distributed Object Paradigm in SoCs (Section 4). Section 5
depicts the design flow and tools supporting the OOCE approach. In Sec-
tion 6 the OOCE architecture is outlined before ending in Section 7 with the
experimental results. We draw our conclusions in the last section.

2. Related Work

HW/SW interfacing has been a subject of great interest for decades under
a variety of different names (e.g. System Level Design, Co-design or Elec-
tronic System Level). However, the problem remains a hot topic nowadays,
fed by the need for new tools, methodologies and design techniques in order
to deal with the market requirements.

The quest for the most suitable model to abstract embedded platforms
has opened three main research lines: integration through Operating System
(OS), object models and component models. The tag OS-based models groups
those techniques using the task, process or thread [2, 3] concepts.

OS abstractions are present in a majority of projects concerning HW/SW
interfacing. For example OS4RS [4] provides a uniform communication scheme
for hardware and software tasks. However, wrapping a hardware core in a
task shell is not straightforward and needs modifications in the OS internals,
compilers or linkers as in IRES [5], which tend to increase HW/SW data
transfer times. On top of that, hardware resources are accessible through
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file-system primitives, exporting a low-level interface in form of memory or
register accesses [6, 7]. Although the kernel interface simplifies the develop-
ment of applications (since it is familiar to programmers), it is not clear that
such interface facilitates the reuse of hardware. To avoid the high latency
and low interface abstraction limitations present in previous OS based ap-
proaches, Lange et al. [8] propose a fine-grained HW/SW execution model
and an architecture that supports it.

Contrary to the OS based approaches, object-oriented and component
based solutions are conceived as a virtualization layer usually built on top
of the OS. Objects and components provide an interface of a higher level of
abstraction than the previous solutions.

For example, the work of Paulin et al. in Multiflex [9] is an example
of a complete middleware for embedded systems based on the distributed
object-oriented paradigm. Other approaches use the same principles but
aimed at offering solutions to more restrictive scenarios. Klingauf et al.
present the concept of Hardware Procedure Call (HPC) [10] as a high-level
mechanism to access HW functions in a service oriented manner. HPC can be
considered as a HW implementation of the Remote Procedure Call semantics,
the precursor of the Remote Method Invocation and basis of many non-object
based middlewares.

The work of Gailliard et al. [11] defines a mapping of the CORBA (an
object-oriented middleware for networked computers) semantics (Interface
Definition Language and General Inter-ORB Protocol) to OCP semantics.
The goal is to provide an interoperability and integration framework for
hardware components. A shift from object-based to component- based can
be also found in [12, 13]. In [12] a bridge component is used to abstract
processors, buses, embedded OS, etc. from embedded platforms. The bridge
is specified for every platform and is responsible for propagating events across
the HW/SW boundary.

Lately, components have gained increasing importance in HW/SW co-
design claiming to be an evolution of objects with enhanced features for a
better reutilization of the building blocks [13]. However, from our point of
view, there is not a favorite regarding the use of components or objects in a
design. Indeed, any component model could be realized using object-oriented
artifacts (i.e. CORBA Component Model).
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3. A Distributed Object Model for SoCs

In this work, we propose the use of the Distributed Object Model (DOM)
as the modelling framework for SoC applications. Under this philosophy,
every component in a SoC is view as an object and communication is accom-
plished by means of Remote Method Invocations (RMI). The object providing
the method or service to be invoked is called server and the one requesting
such service is called client. Servers are passive whilst clients are active
entities.

The concept of object is a powerful abstraction that effectively unifies the
communication interfaces for both HW and SW elements in a SoC. Contrary
to what is believed, objects do not impose any restriction on the way com-
munication and synchronization can be modelled; message-passing, shared-
memory, rendezvous and even threads and locks are artifacts that can be
easily implemented in an object-oriented fashion [14]. To sum up, objects do
not represent a design limitation at all.

3.1. Proxies and Skeletons: Efficient Decoupling of Behaviour and Commu-
nication

As mentioned before, client objects communicate with server objects by
means of method invocations. A method is the access point to the object’s
functionality. A method consists of an operation name and, optionally, some
parameters and/or a return value. The remote interface specifies the methods
that are externally accessible for an object.

The distributed nature of the model considered in this work assumes that
method invocation does not take place locally (which means point-to-point
connections in a SoC) but through the use of some short of communication
infrastructure. This assumption fits properly for SoCs platforms where com-
munication between processing elements uses buses or Networks-on-Chip.

RMI relies on two simple constructions to make the object implementa-
tion independent of the communication infrastructure to be used: proxies
and skeletons.

A proxy, which is placed between the client and the transport layer, im-
plements exactly the same interface as the server does, providing the client
with the illusion it is interacting with the actual server. The client invokes
the proxy (figure 1, step 1) which builds a request message and sends it ac-
cordingly to the physical layer protocol (figure 1, step 2). Then, the skeleton

5



Figure 1: Four steps to remotely invoke a method in DOM.

receives the request message, interprets it (figure 1, step 3) and, finally, per-
forms the real method invocation on the server (figure 1, step 4). Optionally,
after the method of execution, a response message to communicate results or
error conditions back to the client may take place.

In RMI, method invocations are translated into messages that must be
delivered to the destination objects. To assure compatibility, data items
must be packed following a predefined coding rules; this process is called
marshalling. On the contrary, the unmarshalling process comprises the op-
posite steps to convert a planar data representation into one that can be
understood by the target of the message.

To deliver a message to its destinations correctly, each object in the sys-
tem has its own, unique object identification (OID) which is indispensable
to address messages to servers.

3.2. Benefits of DOM to SoC Design

The application of the ideas, techniques, principles and architecture be-
hind the DOM has been especially fruitful in the domain of networked com-
puter systems. As in SoC design, heterogeneity and interoperability prob-
lems have been recurrent in networked systems for decades. However, the
appearance of middlewares changed the way distributed applications were
developed.

A middleware is an abstraction layer that hides the implementation de-
tails of the underlying platform so that communication can be managed in
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a transparent way. Transparency in SoCs would mean more freedom to the
developers who could concentrate their effort on the essential facets of the
solution so that better results could be obtained.

Table 1: Main types of transparency and their application to SoC design.

Type Description SoC application
• Access The way remote and lo-

cal resources are accessed is
identical

HW/SW interfacing, system
co-design, unified view of the SoC,
model reutilization, IP integration
and replacement, robustness
against changes, remote access

• Location It is not necessary to know
where the resource resides

• Replica-
tion

Programmers do not have
knowledge of the multiple
instances of a resource

Enhances the reliability and the
productivity, mechanism to bal-
ance the traffic

• Failure Users and applications can
complete their duties in
spite of the hardware, net-
work or software errors that
may occur

Component replacement, in-
creases the dependability

• Migra-
tion

Users and applications are
not affected although clients
and resources may be reallo-
cated

Implementation of quality of ser-
vice mechanisms, reconfiguration
is easier, bug fix

Table 1 summarizes the most important types of transparency that it
would be desirable to incorporate into a SoC. Table 1 also relates each type
of transparency to the application and potential benefits in SoC design. As it
can be seen, the most important types are access transparency and location
transparency, both making the most relevant contributions. Ideally, the SoC
designers should not worry about questions such as ’where the functionality
will be located or implemented (HW or SW)’ nor ’what on-chip communi-
cation infrastructure is going to be used’. Therefore, transparency is a key
factor in OOCE and an enabler for a truly and uniform HW-SW interface
abstraction.

DOM is a simple, well structured model that allows the automatic gen-
eration of the application-dependent parts which has also contributed to a
quicker adoption of the middlewares based on this model. Automation is a
must in SoC design because of the narrower market windows. Productivity
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levels would increase not only because of generation of the communication
stubs but from less time spent in system verification (generation techniques
use a correct by construction approach).

4. OOCE: The DOM Realization for SoCs

Although many analogies can be found between SoCs and networking dis-
tributed systems, not all the concepts and definitions used in current software
middlewares can directly be applied to SoC design: a think again process is
needed in which some of basic middleware ideas have to be revisited to make
them valid in the new context (e.g. not all the implementation mechanisms
used in SW are valid in HW since the design requirements, such as power
or area, are stricter). OOCE is the result of such process, a system-level
middleware for SoCs based on DOM and RMI to seamlessly integrate the
HW and the SW SoC components.

The DOM defined by OOCE includes:

a) A recommendation of implementation of objects as hardware modules.
This is necessary since there is not a clear correlation between the concept
of object and a hardware implementation.

b) A specification of how invocations between objects within a SoC are
mapped to read and write transactions over the interconnection infras-
tructure.

OOCE presents a hybrid communication infrastructure specially tailored
for SoCs where many of the entities that conform the platform are imple-
mented in HW so that maximum efficiency and low overhead can be guaran-
teed. On top of this, a set of tools have been developed to allow the automatic
generation of most of the infrastructure from a high-level specification of the
system.

4.1. OOCE Hardware Objects

The concept of hardware object is used to reduce the gap between system
specification and the final implementation. The aim of OOCE is not to con-
strain how an object in the model must be implemented, but to recommend
a common way to interact with the cores in order to help the generators of
the OOCE communication adapters. This includes:

a) A standardized and simple interface to model point-to-point connections
with the IP that implements the object behaviour.
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Figure 2: Hardware objects: (a) definition, (b,d) synchronous point-to-point protocol, (c)
asynchronous protocol with the corresponding control signals for feeding data.

b) A local method invocation protocol. Basically, the interface signal ac-
tivation sequence and temporization used to initiate an operation in a
component and data transfer.

One of the main features of the hardware object model is the flexibility
to define how values are fed to/retrieved from the IP and to define the size
of the data ports. This makes it easier to fit the final implementation to
particular design constraints and also to adapt existing IPs.

To illustrate the concept of hardware object, consider the example of
Figure 2. A special memory buffer capable of storing pixels of an image
is modelled in (a). Three implementations of the equivalent hardware core
are depicted. The modules (b) and (d) implement a synchronous invocation
scheme whereas in (c) an asynchronous one was chosen. A 24-bit port means
the three pixel components are expected in one cycle whilst an 8-bit port will
need three cycle or protocol steps to complete a pixel transaction.

4.2. OOCE Remote Method Invocation

OOCE defines a method invocation as a structure (see Figure 3) that
contains the following items:

• A header with all the information needed for message addressing and
delivering. The Target OID serves for component addressing and the
Operation Code selects the method to be triggered in the server. A
Source OID is needed only when the execution of the method produces
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Figure 3: Mapping of an OOCE RMI message to an address-data pair.

a result or it may communicate an error condition. A Request ID
is embedded for response reordering at the client side if out-of-order
processing is allowed in the server.

• A body, which codifies the method arguments and the context according
the OOCE data encoding rules. These rules are quite simple and com-
patible with ICE1 (a CORBA-like middleware) protocol. Such compat-
ibility enables easy and standard off-chip communication and system
integration.

In a SoC, an invocation maps to a bus transaction targeting the object
implementing the required functionality. The header fields are combined to
form an address and the rest of the fields and body map to a bit-stream
packed in words of the size of the data line width. Then a sequence of write
operations on the destination delivers the message.

SW objects have their own address space in order to keep the communi-
cation model homogeneous and simple. OOCE infrastructure is responsible
to make the SW invocation semantics compatible with the transaction base
nature of the interconnection infrastructure (see 6.2). The format of the
messages remains unchanged, what ever the nature of the communicating
objects which means that a target object is not able to distinguish whether
the source of the invocation is a SW or a HW object. This is essential to
offer access and location transparency.

The OOCE RMI protocol defines the number and type of messages that
the client object must exchange with the server object to complete a method

1http://www.zeroc.com/
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invocation in the latter. The signature of a method determines the type
of invocation to be performed: one-way or two-way. One-way invocations
are only possible when there are neither outputs nor return values in the
method definition; in this case, a sole request message flows from client to
server. When a two-way invocation takes place, the client expects, after the
execution of the method, a response message from the server with the results.

In OOCE, there are no restrictions about the number of parameters a
method may have or the number of output arguments. The supported data
types in OOCE are: basic types (e.g. Boolean, byte, char, integer, long,
float, etc.), user-defined types (structures with a combination of basic types),
sequences (i.e. a string is a sequence of characters) and buffers. A buffer is a
structure composed by a reference to a region in memory space, where data
can be read or written, and a length.

OOCE can manage the invocation process both asynchronously or syn-
chronously. The latter is indicated for low-latency one-way or two-way invo-
cations whereas the former is intended only for two-way high latency meth-
ods. The asynchronous invocation semantics support provided by OOCE
is an opportunity to easily develop high-performance computing techniques
such as parallel method invocations in a pool of servers.

5. System Specification and Platform generation in OOCE

To offer a complete support to SoC design based on OOCE, a design
workflow has been proposed. The starting point is an object model of the
application to be implemented.

We use the Unified Modelling Language (UML) to capture the static view
of the application. The designer annotates the UML entities with the stereo-
types defined in an OOCE UML profile in order to specify (among many
other aspects): (1) whether an object is going to be a SW or a HW object;
(2) whether the object’s functionality can move from the SW to the HW
domain or vice versa; (3) a specific communication scheme (synchronous or
asynchronous); (4) whether the object belongs to a replica group or not
(OOCE feature to enhance system reliability); or (5) whether the object is a
static object or dynamic object (OOCE reconfiguration service). We wrote
a code analysis tool that, from a C++ application, does get its object model.
The designer can also write such an object model if the reference software
application is not available.
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Figure 4: Example of a UML OOCE annotated diagram.

The mapping of the objects to platform resources is implicit in the anno-
tating process since stereotype attributes are used to link application objects
to entities in the platform. For the experimental prototypes, we have mod-
elled the Xilinx ML505 board in a separate UML component diagram using
the MARTE standard [15]. The XilML505 profile extends some of the basic
MARTE stereotypes in order to facilitate the platform generation as a Xilinx
XPS project.

As an example, Figure 4 shows an application with five objects where
Object #3 is tagged to run on processor instance XilPPC 0 by means of
the ProcInstance stereotype attribute. For objects tagged with the �HW�
stereotype the bus instance where it will be connected is indicated. In this
example, for the sake of simplicity, method signatures for every object have
been removed in figure 4 and object relations have been tagged with the
oneway or twoway stereotypes. In an actual specification diagram, such in-
formation is derived from the method signatures that each object implements
(with or without return/output parameters, respectively).

The textual representation of the object diagram feeds: (1) a HW inter-
face compiler which generates the OOCE HW adapters; (2) a SW interface
compiler which generates the OOCE software adapters; (3) an OOCE plat-
form generator which selects, from a component template library, the com-
munication engine components required by the application; and finally, (4) a
program that combines all the above mentioned elements and generates the
XPS project.

At this point, the designer obtains a complete prototyping platform which
is ready to be synthesized using Xilinx EDK standards tools. Figure 6
sketches the derived HW and SW infrastructure from the OOCE UML an-
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Figure 5: Example of a UML OOCE annotated diagram.

notated diagram of Figure 4. The designer should only: (a) connect the HW
cores implementing the OOCE hardware objects #3 and #2, following the
standard module interface and activation protocol. These components could
also be retrieved from an existing OOCE compliant IP library, or a legacy
one may be easily adapted; and (b) re-write the behavior of the client ap-
plication using the generated OOCE SW drivers. This process is simple and
does not require complex changes in the original code.

To help the designer in the exploration of the design space, a SystemC
model of the platform is generated for simulation and verification purposes.
The goal is to provide the designer with a quick tool to detect potential
communication bottlenecks, and estimate the required bandwidth. The pro-
filing information obtained from the running of the model is used to help in
the deployment process and the selection of a HW or SW implementation
for a given object. This configures an iterative design framework (Figure 5)
that progressively reaches a heterogeneous implementation. This is possi-
ble thanks to the access and location transparency principles supported by
OOCE. In brief, the steps followed in the whole process can be summarized
as follows:

• Code Analysis and profiling (automatic). The goals in this stage are:
(a) obtain the UML diagram of the static view of the application (ob-
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jects and relations); and (b) characterization of execution times for the
application that will be incorporate to the SystemC model later.

• Analysis and annotations (manual). Performed by the designer. It
is possible here to adjust some of the parameters obtained from pro-
filing and assign objects to functional units (hardware-software) and
configure the communication methods between them.

• Generation of the SystemC model (automatic).

• Generation of the prototyping platform (automatic). Only interface
synthesis.

The current version of the SystemC models is intended to provide fast
results rather than accurate ones. Nevertheless, the simulation numbers ob-
tained are quite close to the actual ones. This is mainly due to the simplicity,
determinism and regularity of, for example, the hardware state machines that
implement the proxies, skeletons and the point-to-point invocation. Also, the
SystemC version of the proxies and skeletons is almost the same as that ob-
tained using the platform interface compilers. All this together makes it easy
to know the number of cycles the processing/generation of an OOCE RMI
message takes in advance. To simulate the bus infrastructure, the GreenBus2

SystemC framework has been used whereas the OOCE HW/SW interfacing
infrastructure has been modelled partially in SystemC, skipping the OS de-
pendent layers.

6. The Object-Oriented Communication Engine in Detail

Besides the introduction of the proxies and the skeletons, the OOCE
architecture needs additional elements and a hybrid infrastructure to support
the three communication scenarios. All of them are depicted in Figure 6.

It is worth emphasising the fact that automatic generation is available
both for hardware and software versions of proxies and skeletons. The rest
of the OOCE components are platform dependent and must be written just
once for every new platform. For example, the Kernel Local Object Adapter
(KLOA) which is OS dependent or the Local Network Interface (LNI) that
depends on the connection with the processor.

2http://www.greenbus.com
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Figure 6: Main components of the OOCE architecture.

Throughout this section these components and their role in the different
communication scenarios will be the object of analysis.

6.1. HW to HW invocation

HW to HW invocations can take place between HW objects in OOCE. No
action from the OS is required, freeing the processor from control tasks. The
HW objects are isolated from the communication infrastructure by means
of the proxy and skeleton wrappers. Client and server HW objects are pro-
vided with the illusion they are still point-to-point connected whereas local
invocations are forwarded through the bus.

The general architecture of a proxy interface or skeleton (Figure 7 shows
the block diagram of a HW skeleton) comprises the following layers:

• The Adaptation Unit. It is the first level of isolation. To make the
proxy/skeleton architecture more portable and modularized, bus spe-
cific control signals are translated to a bus independent read/write
protocol.

• The Control Logic (CL) implements the Finite State Machine (FSM)
in charge of the local and remote protocol adaptation.
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Figure 7: The skeleton template for HW method invocation. Both synchronous and
asynchronous communications are considered.

• The marshalling and the unmarshalling processes are carried out by
the Port Acquisition Unit (PAU) and the Port Delivery Unit (PDU).
This modules are generated automatically from the description of the
method they serve.

• Two FIFOs are required to temporarily store input and output OOCE
RMI messages. All elements in this layer are customized according to
the signature of the methods offered, so the resulting implementation
is optimal. For example, a memory for pending requests would not be
included in the case of synchronous communication.

This modularity enables better opportunities for reutilization and porta-
bility of the solution. For example, a new proxy/skeleton for a different
interconnection technology is easily obtained exchanging the ”Adaptation
Unit”. Or the same proxy/skeleton template can serve a different method
only exchanging the PDA and PAU modules, that are generated by the in-
terface compilers.

Synchronous or asynchronous communication and direct or indirect com-
munication (see 6.3 for some considerations on indirect communication) is
supported in OOCE. As the result of the combination of these parameters,
several templates have been defined. These templates are the inputs to the
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Figure 8: OOCE software stack

OOCE HW generators.

6.2. HW/SW interfacing

The OOCE RMI protocol ensures that any method invocation involving
HW and SW objects uses exactly the same messages as those generated in
a HW to HW method call. Due to this the HW templates for proxies and
skeletons need no modifications. The OOCE infrastructure for transparently
handling HW/SW interfacing is minimal.

The Local Network Interface is the bridge between the system micropro-
cessor, where the SW application runs, and the HW cores. The main goal
of the LNI is to keep the HW interface and the activation protocol defined
in OOCE compatible with the SW invocation mechanisms. The LNI holds
a Translation Address Table (TAT) to route the relevant bus traffic to the
processor. If a SW object wants to be reachable from outside the processor,
it must register its object identifier in the TAT.

In order to abstract the access to the LNI a three layer software ar-
chitecture has been defined. Figure 8 represents such architecture. In our
prototypes only Linux based OS have been considered.
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6.2.1. Kernel Local Object Adapter

The KLOA is the first layer, implemented as a kernel module of the OS.
It can be considered LNI driver in the system. By means of the use of ioctl
primitives applications in user space can access the LNI to send or receive
messages and manage the TAT. Nonetheless, it is not accessed directly by
the user applications but through the next layer in the software stack.

KLOA main functionality consists in attending HW interruptions from
the LNI module. An interruption is fired when the LNI signals a message is
ready in the Rx FIFO or when a message pushed into the Tx FIFO has been
sent. Incoming messages are buffered until the Service Local Object Adapter,
the next level in the hierarchy, is ready to process them.

6.2.2. Service Local Object Adapter

The SLOA is implemented in user space and makes use of the KLOA
interface to manage the message traffic between applications and HW cores.
In the case of SW-to-HW messages, it implements the necessary contention
mechanisms to assure a fair and safe use of the LNI (which is unique in the
system) from the software objects running in the processor. Each HW-to-SW
message delivery is handled by a different thread to enhance reliability, avoid-
ing undesirable side effects due to misbehavior of the destination objects. In
few words, the SLOA multiplexes and demultiplexes the traffic between the
software objects and the hardware entities.

The proxies and skeletons in the user application use a message-passing
interface to communicate with the SLOA. The clients must be provided with
the port and protocol the SLOA is running at (as command line arguments
or using a system configuration file).

6.2.3. Proxies and Skeletons

Embedded software programmers only have to know about software prox-
ies and skeletons in order to interact with the middleware. The rest of the
infrastructure is hidden below these automatically generated software rou-
tines. A SW proxy links the object facade to the HW device (figure 9)
making applications more robust to unforeseen changes in the platform. A
SW skeleton is a callback function activated by the SLOA once it has been
selected as the target of an incoming request. To do this, the SLOA holds a
table that relates the object identifiers with the reference (a pointer) to the
skeleton that will attend the request.
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Figure 9: Example of a SW proxy for an encryption method (DES object).

6.3. Advanced middleware features

Now, we give a brief introduction to some OOCE advanced services and
applications which have been built upon the basic communication facilities.
A HW implementation of the mechanisms and components hereafter de-
scribed is provided so as to obtain the best performance.

a) System-to-System integration. OOCE provides transparent off-chip com-
munication with external components implementing the ICE (an object-
oriented commercial middleware widely used in the industry) protocol.
This allows OOCE SoCs to interact either with ICE servers running in
a PC or other OOCE SoCs in the same object-oriented approach. The
Remote Object Adapter (ROA) is the OOCE component responsible for
offering such functionality. Since in-chip packet format does not change,
in-chip middleware infrastructure does not have to be modified in order
to fit in the new scenario.

b) Location service (LS). OOCE allows the use of a logical reference to invoke
an object instead of its physical base address; indirect communication
(IC). IC is the basis for more complex services and applications (see later
in this section). The LS is used to translate the logical references into
in-chip access addresses.
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c) Group Communication (GC). OOCE can, with guarantees, deliver one
invocation message to several destination objects with only one bus trans-
action. Group invocations are regular OOCE RMI using a group identifier
as the destination. The implementation of a subsystem to communicate
exceptions (errors at the application level) or events and a service dis-
covery protocol (applied to reconfigurable objects) are the two GC main
applications.

d) Synchronization component library (SCL). We have developed a HW ver-
sion of mutexes, semaphores and mailboxes to easily adapt pre-existing
concurrent applications.

e) Reconfiguration Service. The use of IC in adaptive, dynamic applications
(using dynamic reconfigurable logic) can provide important advantages.
Details of a reconfiguration service based on this paradigm can be seen in
[16].

f) Run-time failure management. The LS may hold several physical refer-
ences for a set of objects that implement the same functionality. The
LS provides a new valid reference from that set if an error condition is
detected. The replacement object can be indistinctly implemented in SW
or HW.

g) Migration. It may be necessary that functionality ”crosses” the SW and
HW boundaries (even the chip boundaries) under certain conditions. The
system objects that are susceptible to be migrated must implement a
persistence interface to save their state and recover it later. IC along with
the HW/SW transparency offered by the LNI-LOA components enables
this scenario.

h) Quality of Service and load balancing. The LS can store statistics on how
often an object is accessed. If this object is replicated in the system, the
LS can decide if new accesses are forwarded to the less used replicas.

7. Experimental Validation

To provide evidence of the concept of our proposal, we have implemented
the OOCE architecture, methods and tools using the Xilinx ML505 proto-
typing platform. Two versions have been considered, one for each type of
processor supported by this board: Microblaze soft-processor running Petal-
inux v0.3-rc1 and PowerPC 405 running a Linux-2.6 kernel.

First, the Microblaze version was developed and the adaptation to the
PowerPC involved only two designers during two weeks. Only the platform
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dependent infrastructure needed changes, making the porting procedure eas-
ier. The work performed includes: (a) a new version of the LNI, (b) an ex-
tended version of the interface compilers in order to support PLB buses (in
addition to the already existing OPB generators) and (c) minimal changes in
the software stack due to slight differences between the two Linux platforms.

Table 2: Synthesis of results (OPB only)

Metric DES AES CORDIC SOBEL PREWITT

IPIF FFs 1432 1245 404 734 888
OOCE FFs 844 896 230 609 613
FFs %Diff. -41% −28% −43% −17% −31%
IPIF LUTs 2312 2081 630 1093 1180
OOCE LUTs 1642 1706 498 1016 1026
LUTs %Diff. −29% −18% −21% −7% −13%
IPIF Dev. time
(hours)

24 22 27 38 35

OOCE Dev.
time (hours)

19 18.5 19.5 23 24.5

Dev. Time
Diff %

−21% −18% −33% −39% −30%

From Table 2, it can be observed that the evaluation of the extra HW
resources needed by the OOCE infrastructure is quite satisfactory. We have
compared the total amount of logic of five legacy cores and the development
time to make them usable as OPB peripherals. OOCE components show
a decrease in the resource demand against their equivalent solution using
Xilinx IPIF. The numbers in Table 2 for OOCE results do not include the
logic consumed by the LNI but, since it represents about 1% of the available
on board resources and it can be shared among all the cores in the system,
the actual variation is marginal. The number of development hours we are
referring in Table 2 comprises the time spent in: (a) writing the glue logic
to make the core compatible with the bus wrapper, (b) simulations for veri-
fication purposes, (c) writing the drivers and application tests and, (d) final
tests on the actual platform. The savings in development time are mainly
due to the fact that OOCE tool chain already provided the designer with the
drivers, reducing the time spent in this step and the related verification and
test cases to the minimum.
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Figure 10: On-chip transaction latency using Xilinx IPIF and OOCE.

To finish the revision of the experimental results regarding resource usage
and development times, it is worth mentioning that in both cases (IPIF and
OOCE) it was reached the target frequency expected for the system (125
Mhz). In regard to the overhead in area caused by the OOCE components
needed to provide in-chip and off-chip communication it is worth mentioning
that the LNI requires only 46 flip-flops, 148 LUTs and 83 Slices in a LX110T
Virtex5 chip (less than 1% of the available resources) and can work at a
frequency near to 340Mhz. The Remote Object Adapter represents (recall
it is only present if the off-chip invocation feature is requested) 10% of the
resources in board (1116 flip-flops, 3116 LUTs and 1692 Slices) and runs at
100 Mhz.

Since communication efficiency is crucial in typical mixed hardware-software
computation scenarios, we have measured the overhead introduced by the
proposed infrastructure and the software stack. Two scenarios have been
considered.

The first one is intended to compare the conventional memory mapped
communication for IPIF and OOCE. To this end, data is written in series of
1 to 256 words using a software routine for IPIF or a dummy software proxy
for OOCE. After completion, the processed result is read from the core. The
test platform comprises the Microblaze soft processor, a timer to accurately
measure the cycles spent in the process, a simple core that performs the sum
of the words written to it and the PLB bus. In figure 10 functions labeled
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Figure 11: On-chip transaction throughput using Xilinx IPIF and OOCE.

IPIF BASE and OOCE BASE represents the behaviour of the two alter-
natives for this scenario. For transactions above 16 words OOCE behaves
better reaching a gain between 40%-50% because the middleware handles
data movement between the LNI and the core by means of bursts instead
of the one word at a time scheme imposed by IPIF. Below 16 words, the
penalty introduced by the middleware infrastructure makes it the commu-
nication times comparable. Time is expressed in term of number of cycles
which actually means a precision of nanoseconds.

The second test case makes it use of the DMA facilities for IPIF and
the HW to HW semantics for OOCE. As in the first scenario, direct trans-
fers between two hardware cores have been programmed and only the time
spent in data transmission have been measured. Configuration routines and
preparation of data were not considered. The results depicted in 10 confirm
the good behavior of OOCE in this scenario as well. IPIF DMA wrappers
generated with the Xilinx tools cannot perform burst transfers of 32 words
or more which represents a clear limitation not present in OOCE wrappers.

Finally, figure 11 shows the maximum data transfer rate achievable for
each of the four tests. When the number of data to be exchanged is high
enough, OOCE mechanisms double the numbers obtained with IPIF.
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8. Conclusions

In this paper, a complete approach for SoC design based on a distributed
object model is presented. OOCE defines a light-weight, efficient communi-
cation architecture for systems that are modelled as communicating objects.

The principal features of OOCE are: (1) most of its components are gen-
erated in an automatic way; (2) it is flexible since it is extremely easy to
adapt it to new target technologies; (3) it provides the same programming
interface for HW and SW elements (which boost the productivity of the em-
bedded software developers); (4) it adds the necessary semantics to directly
translate invocations to an implementation level using elemental communica-
tion services; and (5) it supports advanced services to ease the management
of complex tasks such as synchronization, migration, replication, etc.
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