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This paper presents a novel method that leverages reasoning capabilities in a computer vision system
dedicated to human action recognition. The proposed methodology is decomposed into two stages. First,
a machine learning based algorithm – known as bag of words – gives a first estimate of action classifica-
tion from video sequences, by performing an image feature analysis. Those results are afterward passed
to a common-sense reasoning system, which analyses, selects and corrects the initial estimation yielded
by the machine learning algorithm. This second stage resorts to the knowledge implicit in the rationality
that motivates human behaviour. Experiments are performed in realistic conditions, where poor recog-
nition rates by the machine learning techniques are significantly improved by the second stage in which
common-sense knowledge and reasoning capabilities have been leveraged. This demonstrates the value
of integrating common-sense capabilities into a computer vision pipeline.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction 1 and 2 datasets (Laptev et al., 2008) and Human Motion DataBase
In the last decade, the automated recognition of human actions
from video sequences has become an essential field of research in
computer vision. Not only does it have applications in video surveil-
lance, but also in indexing of film archives, sports video analysis and
human-computer interactions. However, the task of action recogni-
tion from a single video remains extremely challenging due to the
huge variability in human shape, appearance, posture, the individ-
ual style in performing some actions, and external contextual
factors, such as camera view, perspective and scene environment.

During the last few years, thanks to the availability of many
datasets suitable for training action recognition algorithms, the
field has made enormous progress to the point that the automatic
annotation of the KTH (Schuldt et al., 2004) and Weizzman (Blank
et al., 2005) databases is now considered solved. For more complex
data, i.e. IXMAS (Weinland et al., 2006) and UT-Interaction (Ryoo
and Aggarwal, 2009), accuracy rates around 80% are now claimed
by state-of-the-art approaches (Waltisberg et al., 2010; Weinland
et al., 2010; Nebel et al., 2011). Unfortunately, all those action rec-
ognition experiments are conducted with videos that are not rep-
resentative of real life data, which led a recent review to
conclude that none of existing techniques would be currently suit-
able for real visual surveillance applications (Nebel et al., 2011).
This is further confirmed by the poor performance, obtained on
videos captured in uncontrolled environments, such as Hollywood
ll rights reserved.
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(HMDB51) (Kuehne et al., 2011), where accuracies are 32%, 51%
and 20% respectively (Kuehne et al., 2011). In addition, these chal-
lenging datasets only display a fraction of the complexity exhibited
by the real world, e.g. at most 51 different actions are considered.
Consequently, usage of video-based action recognition remains a
very distant aspiration for most actual applications.

On the other hand, the human brain seems to have perfected the
ability to recognize human actions despite their high variability.
This capability relies not only on acquired knowledge, but also on
the aptitude of extracting information relevant to a given context
and logical reasoning. In contrast, machine learning based action
recognition methodologies tend to learn isolated actions from a
set of examples. Although only a few and limited attempts to intro-
duce contextual information have been made (Waltisberg et al.,
2010; Chen and Nugent, 2009; Akdemir et al., 2008; Vu et al.,
2002; Ivano and Bobick, 2000), their performance supports the idea
that action recognition can benefit greatly from combining tradi-
tional computer vision based algorithms with knowledge based
approaches.

In this paper, we propose a novel method relying on common-
sense reasoning and contextual and common-sense knowledge
which allows analysing, selecting and correcting annotation pre-
dictions made by a video-based action recognition framework.
The presented approach is decomposed into two stages. First, a
classic action recognition algorithm classifies actions indepen-
dently according to similarity to the training set. Secondly, results
are refined using common-sense knowledge and reasoning. More
specifically, contextual information is exploited using common
sense reasoning.
reasoning for human action recognition. Pattern Recognition Lett. (2012),
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2. Relevant work

2.1. Video-based human action recognition

Video-based activity recognition algorithms can be classified
into two different classes: those that train from examples and
those that provide descriptions of general types. The first and main
category includes action descriptors based on Hidden Markov
models (Vezzani et al., 2010; Kellokumpu et al,. 2008; Martinez
et al., 2009; Ahmad and Lee, 2008; Weinland et al., 2007), Condi-
tional random field (Zhang and Gong, 2010; Natarajan and Nevatia,
2008; Wang and Suter, 2007a), Bag of words (Laptev et al., 2008;
Liu and Shah, 2008; Matikainen et al., 2010; Ta et al., 2010; Liu
et al., 2008; Kovashka and Grauman, 2010) and low dimension
manifolds (Wang and Suter, 2007b, 2008; Fang et al., 2009; Jia
and Yeung, 2008; Blackburn and Ribeiro, 2007; Richard and Kyle,
2009; Turaga et al., 2008; Lewandowski et al., 2010, 2011). Since
those approaches do not include any reasoning capability, their
efficiency relies on a training set which is supposed to cover the
variability of all actions present in the target videos. Given that this
condition can only be valid in the most controlled scenarios, it has
been proposed to extend these techniques by adding some form of
reasoning based on either rules or logic.

The inclusion of reasoning has been sparsely used and mostly for
specific applications. It should be noted it is particularly popular in
intelligent surveillance for the detection of unusual events (Makris
et al., 2008). Since training data do not exist to define those events,
rules and reasoning are the only available tools. Usually, activities
which do not match those present in the training set are classified
as unusual. In the most specific field of action recognition, reason-
ing rules have proved particularly successful when dealing with
interactions between subjects (Waltisberg et al., 2010). Indeed, fol-
lowing initial action recognition on each character individually
using a Random Forest framework, analysis of those actions allows
inferring the nature of their interaction. As reported by Waltisberg
et al., (2010), this scheme outperforms the standard approach
which deals with all characters at once and is the current state of
the art on the UT-interaction dataset (Ryoo and Aggarwal, 2009).
These results support our hypothesis that additional knowledge
and reasoning will lead to better performance.

The second class of video-based activity recognition algorithms
exploits a common knowledge-base or ontology of human activities
to perform logical reasoning. Since ontology design is empirical in
nature and labour intensive – symbolic action definitions are based
on manual specification of a set of rules – current ontologies are only
suitable for very specific scenarios. In the field of video surveillance,
ontologies have been proposed for analysis of social interaction in
nursing homes (Chen et al., 2004), classification of meeting videos
(Hakeem and Shah, 2004) and recognition of activities occurring
in a bank (Georis et al., 2004). However, there is a need for an explicit
commonly agreed representation of activity definitions indepen-
dently of domain and/or algorithmic choice. Such common knowl-
edge base and its exploitation through rules would facilitate
portability, interoperability and sharing of reasoning methodologies
applied to activity recognition. Several attempts have been made to
design ontologies for visual activity recognition in a more system-
atic manner (Akdemir et al., 2008; Hobbs et al., 2004; Francois
et al, 2005) so that they can cover different scenarios, e.g. both bank
and car park monitoring (Akdemir et al., 2008). However, they re-
main limited to a few domains – up to 6 (Hobbs et al., 2004).
2.2. Common sense reasoning

Within the artificial intelligence (AI) community, the usage of vi-
deo as information source for reasoning has not been extensively
Please cite this article in press as: Martínez del Rincón, J., et al. Common-sense
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applied (Moore et al., 1999; Duong et al., 2005). This is due to the
lack of robustness and consistency of video features in real world
scenarios, where the huge variability of the conditions impact con-
siderably on activity recognition. As a consequence, AI researchers
have focused on using sensors which are more reliable and consis-
tent, but more intrusive, sensors to gather an actor’s behavioural
information (Wang et al., 2007c). They include wearable sensors
based on inertial measurement units (e.g. accelerometers, gyro-
scopes, magnetometers) and RFID tags attached to the actors and/
or to objects. In such set-up, complex reasoning is possible and suc-
cessful artificial intelligence approaches have flourished (Wang
et al., 2007c; Philipose et al., 2004; Tapia et al., 2004). However,
most of these sensors are not suitable in most real life applications
due to either their intrusive nature, e.g. subjects may refuse to wear
them, or technical factors, such as size, ease of use and battery life.

Among the AI approaches which could be considered for video
based human action recognition, common-sense, probabilistic
and ontological reasoning, as described in the previous subsection,
are of particular interest. Ontological languages such as OWL (Dean
and Schreiber, 2011a) and RDF (Dean and Schreiber, 2011b) use a
syntax that imposes severe restrictions in the type of information
that can be represented. First, relationships involving more than
two entities cannot be considered since they may lead to hold a-
priori inconsistent information, which is not allowed in this meth-
odology. Secondly, since reasoning is limited to checking the con-
sistency of the knowledge base, new information cannot be
inferred. Both common-sense and probabilistic reasoning are able
to address those limitations. However, their nature is very different
since they can be classified as techniques based on either qualita-
tive or quantitative reasoning. A weakness of quantitative reason-
ing comes from the complexity of estimating accurate probabilities
for activities of interest: in practice it is unfeasible when dealing
with unconstrained and realistic scenarios (Kuipers, 1994). On
the other hand, qualitative reasoning has the ability of considering
causality and expected behaviour based on logics, i.e. reasoning
can provide explanations rationalising or motivating a given ac-
tion, whereas probabilistic reason can only support decisions
according to probability associated to actions.

As a consequence, common-sense reasoning (McCarthy, 1968,
1979; Minsky, 1986; Lenat and Guha, 1989; Lenat et al., 1990) ap-
pears particularly suited to video based human action recognition.
It provides the capability of understanding the context situation, gi-
ven the general knowledge that dictates how the world works,
which allows correcting mistakes made by the video analysis sys-
tem. McCarthy proposes an approach to build a system with the
capability to solve problems in the form of an ‘‘advice taker’’
(McCarthy, 1968). In order to do so, he reckons that such an attempt
should be founded in the knowledge of the logical consequences of
anything that could be told, as well as the knowledge that precedes
it. In that work, he postulates that ‘‘a program has common sense if
it automatically deduces from itself a sufficiently wide class of
immediate consequences of anything it is told and what it already
knows’’. Following McCarthy and Minsky’s studies (McCarthy,
1968; Minsky, 1986), it appears a way of enhancing systems with
the capability to understand and reason about the context is by
introducing commonsense knowledge similar to that humans hold.

In this work, we propose the integration of common-sense
knowledge and reasoning within a video human activity recognition
framework in order to improve accuracy. First, a machine learning
based action recognition algorithm processes videos to generate
data appropriate for logical inferences. Consequently, video data be-
come a suitable information source for reasoning. Secondly, com-
mon-sense reasoning increases accuracy of the computer vision
algorithm by introducing general, so called common-sense, and
context-independent knowledge. This addition should allow usage
of video based systems within real life applications.
reasoning for human action recognition. Pattern Recognition Lett. (2012),
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3. Novel action recognition framework

3.1. Principles

We propose a novel two-stage framework where initial action
predictions made by a machine learning approach are analysed, re-
fined and, possibly, corrected by the second layer common-sense
reasoning system.

Given a video, V, which can be divided into a sequence of T ac-
tions and a computer vision system (CVS) trained to recognise N
types of actions, each action, Vt, is processed independently and
is associated to an action estimation vector, At, which ranks the N
types of actions according to their similarity to Vt. Eventually, the
CVS generates an action estimation matrix, A, of dimensions
(T � N), where Aj

t represents the ith most likely type of the tth ac-
tion occurring in the video. Each action estimate generated by the
CVS is passed as input to the AI reasoning system (AIRS) which pro-
duces, in an online manner, J stories, Sj. These stories are generated
and updated according to every new estimate At.

In this paper, we define a ‘story’ as a coherent list of action types
describing a video of interest. Coherence is defined by respect to
both world and domain specific knowledge, WK and DSK respec-
tively. Selection of action types relies on common-sense reasoning
applied to the action estimations A, and possible recognition of
activities defined in the expectation knowledge, EXP. Note that a
story may contain ‘unknown action’ labels when, for a given action,
none of the estimations allows coherent annotation. Stories are or-
dered by the AIRS and the most likely one is always first, in the same
way that actions have been ordered and prioritised by the CVS.

The AIRS processes every action estimation vector, At, according
to the J stories Sj existing at t � 1. First, the validity of each action
estimates Ai

t is verified within the context of each story Sj using
knowledge contained in WK and DSK. This is done inside the block
Action validation/correction depicted in Fig. 1. Secondly, if the se-
quence of previous actions stored in Sj led to the recognition by
EXP of an activity (Fig. 1, block activity recognition) which expected
a specific action type in order to be completed, and if that type is not
present in At, a correction of At is performed, i.e. the expected type is
added to the story Sj instead of At. Finally, each valid action of At up-
dates an existing story (Fig. 1, block story update/swap). If a valid
action cannot be allocated to a story, a new story is created. Since
during the process, the most likely action estimates have priority
Fig. 1. Action recogn

Please cite this article in press as: Martínez del Rincón, J., et al. Common-sense
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to be allocated to the first stories, S1 is the story which is the most
likely to describe accurately the video of interest. However, if any
other Sj shows a more likely storyline, the position of S1 as ‘main
story’ may be swapped with Sj (Fig. 1, block story update/swap).

We illustrate some of the reasoning performed by AIRS with an
example, see Fig. 2: an activity (‘getting up’) incompatible with the
current story (S1) is rejected according to the world and domain
specific knowledge; valid actions (‘Throwing’ & ‘Sitting down’)
are assigned to parallel stories (S2 and S3); an activity (‘Reading’)
is recognised based on expectations, consequently the expected ac-
tion (‘Sitting down’) is prioritised.

3.2. Common sense reasoning algorithm

The AIRS assigns and evaluates correspondences between ac-
tion estimations in vector At and the stories S existing at t � 1.
The validity of each action estimate Ai

t is verified sequentially
within the context of the main story S1 using knowledge contained
in WK and DSK. Once action allocation, if any, has been completed
for the main story, the same process is followed for all the other
stories Sj using the remaining action estimates. This double
sequentiality in the assignment of actions to stories deals with
the fact that both stories and actions are ordered, where the first
actions/stories are always the most likely.

The n first action estimates are all considered as possible alter-
natives. Therefore, new stories are created if they do not fit any of
the existing ones. The rationale behind this is that, although the
first estimate provided by the CVS is not always correct, the CVS
is quite robust since the correct action is likely to be present among
the first n estimates (see ‘experimental results’ section). During the
allocation process of a given time step, some stories may not be
allocated to any action, if none of the available action estimates
is valid in their context according to WK and DSK.

A second level of reasoning is introduced by exploiting the con-
cept of activity recognition. This is modelled in our system through
the expectation knowledge, EXP. For each story Sj, if the sequence
of previous actions leads to the recognition of an activity by EXP,
the next action assigned to the story Sj must match the expected
one, eA. In case where the expected action type is not present in
At, At is corrected by including eA in the estimate vector so that
eA can be assigned to story Sj. This mechanism provides a higher
level of reasoning, going further than the validation mechanism
ition framework.

reasoning for human action recognition. Pattern Recognition Lett. (2012),
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Fig. 2. Example of reasoning performed by AIRS. Blue and red arrows represent, respectively, valid and invalid actions. Green box depicts the sequence of action which led to
the recognition of an activity (reading) based on expectations. Blue box shows the expected action (sitting down). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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provided by the DSK and WK, which allows correcting estimate
failures of the CVS. However, in order to avoid over-reasoning er-
rors, corrections are introduced only when, in addition to valida-
tion, a unique activity is recognised, i.e. when there is no doubt
regarding the type of the expected action.

Through the previously described process, the AIRS gives prior-
ity to the most likely action estimates in their allocations to the
first stories. As a consequence, the AIRS output is an ordered set
of stories, where S1 is the story which is the most likely to describe
accurately the video of interest.

However, the accuracy of the CVS may depend of the nature of
the action and vary over time during video processing, which may
lead to the correct estimates to be lower in the action estimation
vectors. Consequently, after a while S1 may not contain the most
likely story. The AIRS addresses this issue using a story swapping
mechanism. When the AIRS is able to allocate systematically ac-
tions to a given story Sj and activities kept being recognised accord-
ing to the expectations, this story is accepted as the main story and
swapped with S1. Empirical experimentations have shown that the
story swapping mechanism should be triggered when a story dis-
plays two consecutive activity recognitions, TH = 2.

This reasoning algorithm is presented through the following
pseudo code. First, the main variables are defined. Then, the core
of the algorithm is detailed. Finally, the main functions are de-
scribed. Note that functions are colour-coded to allow better read-
ability of the algorithm.

/////////////////////////////////////////////////////////////////////////////
INPUT

///////////////////////////////////////////////////////////////////////////
// Expert systems
Expert DSK, WK, ExP;
//An action is a primitive
Action eA; // expected action
Action At[N]; // alternative actions predicted for time t,
// At are ranked according to CVS’s prediction confidence
Please cite this article in press as: Martínez del Rincón, J., et al. Common-sense re
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Int N; // number of alternative actions at time t
//A story is a list of actions
Story S[J]; // existing stories
Int J=1; // number of existing stories, one starts with 1 story
S[1]=null; // the initial story is empty
//Each story is associated to a list of possible activities

containing future actions for the next time t
Typedef Action[] Activity;
Activity PossibleActiv[] [J] = [ ALL ][J]; // set of activities,

initially all
// activities are possible
Int expect_fulfill[J] = zeros(1, J); // story counter for swapping

mechanism
///////////////////////////////////////////////////////////////////////////
// MAIN
///////////////////////////////////////////////////////////////////////////
for t=1:Inf // for each time step
N=length(At); // number of alternative actions

Bool assigned_action[N] = zeros(1,N);// no action is
assigned
J = length(S); // number of existing stories
Bool updated_story[J] = zeros(1, J); // no story has been
updated
for i = 1:N // for each alternative action

// integration of action i into an existing story
for j = 1:J // for each existing story
if (updated_story(j)==0) // if story j is available
// activity recognition process
eA = f_activity_recognition(PossibleActiv(j));//expected

activity
if (eA! = null) // if activity recognised // story updating

process
[PossibleActiv(j),S(j)] = f_story_update
(eA,PossibleActiv(j),S(j),ExP);

updated_story(j) = 1; // story j is updated
// action allocation process
asoning for human action recognition. Pattern Recognition Lett. (2012),
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assigned_action = f_action_allocation(assigned_action,eA,At);
// story swapping process
[S,expect_fulfill] = f_storySwapping(S,expect_fulfill,j);
else // no activity is recognised
if (assign_action(i)==0) // if action i is available
// action validation process
if f_action_validation(At(i),DSK,WK,S(j))//if At(i)valid
// story updating process
[PossibleActiv(j),S(j)] = f_story_update
(At(i),PossibleActiv(j),S(j),ExP);
updated_story(j) = 1; // story j is updated
// action allocation process
assign_action(i) = 1; // action i is allocated

end
end

end
end

end
// integration of non-assigned action i into a new story
if (assign_action(i)==0) // if action i is available
// action validation process
if f_action_validation(At(i),DSK,WK,S(j)) // if action i is valid
// story creation process
[PossibleActiv,S,expect_fulfill] = f_story_creation
(S,At(i),ExP,expect_fulfill);
J = length(S); // update number of stories
updated_story(J) = 1; // story J is updated
// action allocation process
assign_action(i) = 1; // action i is allocated

end
end

end
end

Expectations are checked at each given time t, for each current
story (function f_activity_recognition). If the number of current ex-
pected activities is only one, the nature of the ongoing activity is
known. Therefore, the function is able to return the expected type
of the next action, eA.

function [Action a] = f_activity_recognition(Activity pred)
if (size(pred)==1)

return pred(1);
else

return null;
end

If any of the n observed actions of At matches eA, this action is set as
allocated to avoid inclusion in any other story (function
f_action_allocation).

function [bool b] = f_ action_allocation(bool b, Action a,
Action[] v)

for i = 1:size(v)
if(v(i)==a)
b = 1;
end

end
return b;

When an action has been judged suitable to be added to a story, the
current story is updated (function f_story_update). This also in-
Please cite this article in press as: Martínez del Rincón, J., et al. Common-sense
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volves updating the list of possible ongoing activities, i.e. knowl-
edge about possible actions for time t + 1: PossibleActiv(j). This is
achieved by, first, retrieving all expected activities in the knowledge
of action a at time t, p2, (function retrieve_expected_activities) and,
then, by finding the intersection between this list and the one pre-
dicted for time t, p, (function intersection). If no intersection exists,
i.e. either CVS has failed or reasoning has been erroneous, since it is
not possible to distinguish the source of the failure, expected activ-
ities are reset to p2 to avoid propagating errors.

function [Activity p,Story s] = f_story_update
(Action a, Activity p, Story s, ExP e)
Activity p2 = null;
s = [s a]; // add action a to current story s
p2 = retrieve_expected_activities(e,a);
p=intersection(p,p2); // new list of expected activities
if (size(p)==0)
p = p2;

end;
return [p,s];

If the activity recognition algorithm was able to detect unequiv-
ocally the nature of an ongoing activity within a story, Sj, confi-
dence in that story is increased. This is stored in the variable
expect_fulfill. The valued of that variable is evaluated during the
story swapping mechanism (function f_storySwapping). If it shows
that the story Sj has consecutively recognised activities (in our case
twice TH = 2), the story Sj is swapped with S1 and becomes the
main story, i.e. the most likely one.

function [Story s[], int[] f] = f_storySwapping(Story s[], int[] f,
int indx)
Story s_tmp;
f(indx)++;
if f(indx)> = TH
// s(index) is moved as top story and all the others are
shifted down

s = [s(indx) s(1: indx-1) s(indx-1:end)};
f = zeros(1, J);

end
return [s, f];

If the activity recognition mechanism does not detect any ongoing
activity or several activities are possible, action allocation only re-
lies on action validity. This is evaluated according to the action glo-
bal coherence with the world WK and the domain specific
knowledge DSK within the context of a story (function
f_action_validation).
re
function
bool = f_action_validation(Action a
asoning for human action recognition. Patter
DSK
d

n Recog
WK
w

nition Le
Story
s)
return validate(a
 d
 s
 w);
If an action is judged as valid, the action is assigned to the story and
expected activities are updated (function f_story_update). After the
assignment, boolean vectors, assigned_action and updated_story,
are updated to make sure that each action is assigned at most to
one story and that each story is not updated more than once for a
given time t.

Finally, if an action is valid but has not been assigned to any cur-
rent story, a new story is created (function f_story_creation).
tt. (2012),
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function [Activity p, Stories s, int[]
f] = f_story_creation(Stories s, Action a, EXP e, Activity p,
int[] f)
Activity Activnew = [All];
Story Snew = [];
[Activnew, Snew] = f_story_update(a,Activnew,Snew,e);
J = J+1;
s(J) = Snew;
p(J) = Activnew;
expect_fulfill(J) = 0;
return [p,s];
4. Implementation

4.1. Computer vision based action recognition

Although computer vision based action recognition has been a
very active field of research, only a few approaches have been eval-
uated on view independent scenarios. Accurate recognition has
been achieved using multi-view data with either 3D exemplar-
based HMMs (Weinland et al., 2007) or 4D action feature models
(Yan et al. 2008). But, in both cases performance dropped signifi-
cantly in a monocular setup. This was addressed successfully by
representing videos using self-similarity based descriptors (Junejo
et al., 2008). However, this technique assumes a rough localisation
Fig. 3. BoW framework: (a) Training
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of the individual of interest which is unrealistic in many applica-
tions. Similarly, the good performance of a SOM based approach
using motion history images is tempered by the requirement of
segmenting characters individually (Orrite et al., 2008). More re-
cently a few approaches have produced accurate action recognition
from simple extracted features: two of them rely on a classifier
trained on bags of words (Kaaniche and Bremond, 2010; Liu et
al., 2008) whereas the other one is based on a nonlinear dimen-
sionality reduction method designed for time series (Lewandowski
et al., 2010).

Among those approaches, the bag of words (BoW) framework is
particularly attractive since, not only it is one of the most accurate
methods for action recognition, but its computational cost is low.
Moreover, BoW can be applied directly on video data without the
need of any type of segmentation. The versatility of that frame-
work has been demonstrated on a large variety of datasets includ-
ing film-based ones (Laptev and Perez, 2007). Consequently, in this
study, we decided to base the computer vision system of our action
recognition framework on a BW methodology.

BoW is a learning method which was used initially for text clas-
sification (Joachims, 1998). It relies on, first, extracting salient fea-
tures from a training dataset of labelled data. Then, these features
are quantised to generate a code book which provides the vocabu-
lary in which data can be described and analysed. Here, we based
our implementation on that proposed by (Csurka et al., 2004).

The BoW training stage aims at, first, producing a codebook of
feature descriptors and, secondly, generating a descriptor for each
action video available in the training set, see Fig. 3(a). The training
and (b) classification pipelines.

reasoning for human action recognition. Pattern Recognition Lett. (2012),
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pipeline starts by detecting salient feature points in each video
using a spatio-temporal detector (Harris 3D) and describing each
individual point by a histogram of optical flow (STIP) (Laptev,
2005). Once feature points are extracted from all training videos,
the k-means algorithm is employed to cluster the salient point
descriptors into k groups, where their centres are chosen as group
representatives. These points define the codebook which is then
used to describe each video of the training set. Finally, those video
descriptors are used to train SVM classifiers – one per action of
interest – with a linear kernel.

In order to recognise the action performed in a video, Fig. 3(b),
salient feature points are first detected. Then, their descriptors are
quantified using the codebook in order to generate a video descrip-
tor. Finally, the video descriptor is fed into each SVM classifier,
which allows quantifying the fit between the video and each
trained action type. Therefore, an action estimation vector A can
be generated where action types are ranked according to their fit.
4.2. Knowledge-Base System for Common Sense Reasoning

Automating common-sense reasoning requires an expressive-
enough language, a knowledge base and a set of mechanisms capa-
ble of processing this knowledge to check consistency and infer
new information. A few knowledge-based approaches offer such
features, i.e. Scone (Chen and Fahlman, 2008; Fahlman, 2006),
Cyc (Lenat and Guha 1989; Lenat et al., 1990), WordNet (Fellbaum,
1998) or ConceptNet (Eagle, 2003). Among them, the open-source
Scone project is of particular interest since, instead of placing its
focus on collecting common-sense knowledge; it provides efficient
and advanced means for accomplishing search and inference
operations.

The main difference between this and other approaches lies in
the way in which search and inference are implemented. Scone
adopts a marker-passing algorithm (Fahlman, 2006), which is not
a general theorem-prover, but is much faster and supports most
of the search and inference operations required in common-sense
reasoning: inheritance of properties, roles, and relations in a multi-
ple-inheritance type hierarchy; default reasoning with exceptions;
detecting type violations; search based on set intersection; and
maintaining multiple, immediately overlapping world-views in
the same knowledge base. In addition, Scone provides a multiple-
context mechanism which emulates humans’ ability to store and
retrieve pieces of knowledge, along with matching and adjusting
existing knowledge to similar situations.

In our framework, the algorithm described in section 3b was
implemented using Scone in order to encode formal definitions
and their applications for WK, DSK and EXP. It is important to note
that, although we took advantage of the proposed multi-context
mechanism (Chen and Fahlman, 2008), we exploited it for a usage
it was not originally intended for, extending its application for a
wider purpose. In particular, we propose the usage of multi-con-
text for the management of alternative stories describing coherent
explanations of the video of interest.

The three sources of knowledge exploited in our implementa-
tion, i.e. WK, DSK and EXP, are described below:

1. World knowledge, WK, comprises all relevant common-sense
knowledge that describes ‘‘how the world works’’. This informa-
tion is independent of the application domain, in the sense that
it only considers general knowledge rather than specific or
expert knowledge about a specific field. As an example, we pro-
vide below the description of the implications of performing the
action of ‘scratching the head’.
Please cite this article in press as: Martínez del Rincón, J., et al. Common-sense
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(new-event-type {scratch} ‘({event})
:roles
((:type {scratcher} {animated thing})
(:type {scratched thing} {thing})))
(new-event-type {scratch head}
‘({scratch} {action})
:roles
((:rename {scratched thing} {scratched head})
(:rename {scratcher} {scratcher hand}))
:throughout
((new-is-a {scratcher hand} {hand}))
:before
((new-statement {scratcher hand} {approaches} {scratched

head})
(new-not-statement {scratcher hand} {is in direct contact to}
{scratched head}))
:after
((new-statement {scratcher hand} {is in direct contact to}
{scratched head})))
2. Domain specific knowledge, DSK, describes a given application
domain in terms of the entities that are relevant for that specific
context, as well as, the relationships established among those.
The description of an element ‘‘punching ball’’ as part of the lay-
out of a specific room is an example of domain specific
information.
(new-type {bouncing element} {thing})
(new-type {punching ball} {thing})
(new-is-a {punching ball} {bouncing element})
(new-indv-role {punching ball location} {punching ball}

{location})
(new-statement {punching ball} {is in} {test room})
(new-statement {punching ball} {rests upon} {test room

floor})
3. Expectations, EXP, consist in sequences of actions that are
expected to happen one after the other. It encapsulates logical
concepts such as causality, motivation and rationality, which
are expected in human action recognition. For example, in a
waiting room context, if a person picks up a magazine, that per-
son is expected to sit down and read the magazine. Expecta-
tions are part of the domain specific knowledge since
described behavioural patterns are context specific.
(new-indv {picking up a book for reading it} {expectations})
(the-x-of-y-is-z {has expectation} {picking up a book for

reading it} {walk towards})
(the-x-of-y-is-z {has expectation} {picking up a book for

reading it} {pick up})
(the-x-of-y-is-z {has expectation} {picking up a book for

reading it} {turn around})
(the-x-of-y-is-z {has expectation} {picking up a book for

reading it} {sit down})
(the-x-of-y-is-z {has expectation} {picking up a book for

reading it} {get up})
reasoning for human action recognition. Pattern Recognition Lett. (2012),
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Table 1
(a) Number of actions performed by each actor. (b) Number of instances of the trained
actions found in the WaRo11 dataset.

Sequence Age Sex Number of actions Actions Instances

Actor 1 34 M 31 Check watch 4
Actor 2 33 M 25 Cross arms 0
Actor 3 35 M 10 scratch head 2
Actor 4 57 F 12 Sit down 13
Actor 5 19 M 9 get up 12
Actor 6 19 M 18 Turn around 18
Actor 7 20 F 15 Walk 53
Actor 8 19 M 9 Wave hand 9
Actor 9 22 F 5 Punch 26
Actor 10 19 M 12 Kick 10
Actor 11 20 F 9 Point 3
Total 155 Pick up 13

Table 2
Average recognition rate for all the actions on the datasets obtained by the computer
vision system based on BoW.

IXMAS WaRo11

CVS: BoW 63.9% 29.4%
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5. Experimental results

5.1. Dataset and experimental setup

In order to perform action recognition experiments which are
relevant to real life applications, videos under study should display
realistic scenarios. In addition, a suitable training set must be avail-
able, i.e. it must be able to cover a variety of camera views so that
recognition is view-independent and the set should include a suf-
ficiently large amount of instances of the actions of interest. These
instances must be not only annotated but perfectly segmented and
organised to simplify the training.

The only suitable training sets which fulfill these requirements
are IXMAS (Weinland et al., 2006) and Hollywood (Laptev et al.,
2008), as stated in the introduction. Whereas the Hollywood data-
set is oriented towards event detection which includes significant
actions but largely independent from each other (drive car, eat,
kiss, run...), IXMAS is focused on standard indoor actions which al-
lows providing quite an exhaustive description of possible actions
in this limited scenario. Therefore, IXMAS actions may be com-
bined to describe simple activities, i.e. sit down-get up, pick up-
throw, punch-kick and walk-turn around, and eventually provide
complete representations of sets of actions performed by individ-
ual, i.e. recognition of whole stories.

Thus, for training, the publicly available multi-view IXMAS
dataset is chosen (Weinland et al., 2006). It is comprised of 13 ac-
tions, performed by 12 different actors. Each activity instance was
recorded simultaneously by 5 different cameras.

Since no suitable standard videos are available in order to de-
scribe the complexity of a real life application with a significant
number of complex activities, we create a new dataset, called the
waiting room dataset ‘‘WaRo11’’ (Santofimia et al., 2012), that
we make available to the scientific community. In addition, using
very different datasets for training and testing allows us to show
the generality of our framework, its capabilities for real-world
applications and its performance under a challenging situation.

Since the ‘‘WaRo11’’ dataset has been designed for being repre-
sentative of the variability existing in a real life scenario, but also
for integrating most of the actions trained for the CVS, a specific
setup was configured to simulate a waiting room. In this setup, ac-
tions happen without giving any instructions to the subjects. They
are performed as natural part of their behaviour and motivation as
human beings. This is facilitated thanks to the presence of several
elements interrelated to each other, which may introduce causality
and sequentiality as it is found in a real situation. For instance, the
presence of a book and a chair could motivate a subject to first pick
up the book and then sit down to carry out the action reading.
Alternatively, a subject may pick up the book, realises its topic of
no interest and decides to throw it away.

This waiting room setup was implemented in a single room and
filmed by a single fixed camera. A book was positioned on the floor,
a chair was left in a corner and a punching ball was placed in an-
other corner. Eleven sequences were recorded with eleven differ-
ent actors of both genders comprising a wide range of ages (19–
57) and morphological differences. No instruction was given to
the actors further than ‘‘go to the room and wait for 5 minutes
and feel free to enjoy the facilities while you wait’’. The resulting
variability in the actions performed is depicted in Table 1.

Each of the recorded sequence was manually groundtruthed:
first, the video of interest was segmented into a set of independent
actions, then each action was labelled. Note that the segmentation
of a video into independent actions is outside the scope of this
study. Therefore, when testing our algorithms, we processed man-
ually segmented actions. Readers interested in automatic action
segmentation should refer to (Rui and Anandan, 2002; Black
Please cite this article in press as: Martínez del Rincón, J., et al. Common-sense
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et al., 1997; Ali and Aggarwal, 2001; Shimosaka et al., 2007; Shi
et al., 2011).

5.2. Results

5.2.1. Performance of the computer vision system
First the CVS was applied to IXMAS sequences using the leave-

one-out strategy followed by (Weinland et al., 2007; Yan et al.,
2008; Junejo et al., 2008; Richard and Kyle, 2009). In each run,
we select one actor for testing and all remaining subjects for train-
ing. Secondly, using the whole of the IXMAS dataset for training,
the CVS was applied to WaRo11. Accuracy performances for both
experiments are provided in Table 2.

The BoW based technique displays results comparable to those
of the state of the art on the IXMAS dataset (Nebel et al., 2011).
However, when applied to a more realistic environment, perfor-
mances decrease considerably. This shows the limitations of the
CVS methodology under real circumstances, when the testing con-
ditions differs significantly from the training. On the other hand,
when performance is analysed in terms of average cumulative rec-
ognition curve (ACR) – Fig. 4, blue – i.e. percentage that an action is
accurately recognised within a set of estimates,- one can see that
considering the first few ranks may improve significantly accuracy.
For example, accuracy would jump from 29 to 66% if the best solu-
tion could be detected within the 6 first estimates. This confirms
that additional information is contained within the action estima-
tion vector generated by BoW, and, therefore, there is scope to ex-
ploit it to improve the initial annotation. This is exactly what our
reasoning system intends to do.

5.2.2. Performance of the whole framework
The proposed framework integrating AIRS has been tested using

the 11 sequences of WaRo11. Experiments were conducted consid-
ering the N = {1,3,5,7} most likely actions estimates – as calculated
by CVS – for AIRS analysis. Performance results are evaluated
against the CVS only system in Table 3, where average and recog-
nition rates per sequence are provided. In addition, they are com-
pared with the CVS cumulative recognition rate, Fig. 4, red.

These results show a considerable increase of performance due
to the inclusion of the reasoning system, i.e. accuracy raises from
29% to 52%, in the best case. Our framework outperforms signifi-
reasoning for human action recognition. Pattern Recognition Lett. (2012),
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Fig. 4. Blue: average cumulative recognition curve for a number of estimations from 1 to 13. Red: recognition rate obtained by our approach depending on the number of
considered action estimates. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 3
Recognition rates obtained using either CVS or the combination of CVS and AIRS on WaRO11 dataset. Best results per sequence and in average has been highlighted in bold.

Actor 1 (%) 2 (%) 3 (%) 4 (%) 5 (%) 6 (%) 7 (%) 8 (%) 9 (%) 10 (%) 11 Average per action

CVS 35.5 16.0 30.0 58.3 44.4 22.2 40.0 15.4 40.0 16.7 33.3 29.4
CVS + AIRS (n = 1) 38.7 24.0 30.0 58.3 44.4 22.2 33.3 30.8 60.0 25.0 33.3 35.5
CVS + AIRS (n = 3) 41.9 28.0 40.0 66.7 44.4 38.9 20.0 30.8 60.0 25.0 33.3 38.7
CVS + AIRS (n = 5) 64.5 52.0 50.0 75.0 55.6 66.7 40.0 30.8 60.0 25.0 33.3 51.9
CVS + AIRS (n = 7) 61.3 40.0 60.0 75.0 55.6 66.7 33.3 30.8 40.0 25.0 33.3 51.0
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cantly the CVS system, even for the case where only 1 action pre-
diction is considered by the AIRS. Moreover, it can be noticed that
accuracy is only rarely deteriorated by reasoning: the system does
not seem to suffer from either reasoning errors or over reasoning.
Only in sequences 7 and 11 performance are either deteriorated or
unaffected by the inclusion of the AIRS. Detailed analysis of these
two sequences permits to identify, first, absence of continuity or
causality between their composing actions and, secondly, a high
percentage of unconstrained actions, i.e. actions that are not linked
to any other and that can be performed at any instant (‘cross arms’,
‘check watch’, ‘scratch head’). These two factors explain why no
effective reasoning can be performed to improve recognition.

A more detailed analysis of the AIRS can be obtained by compar-
ing the performance of our approach when varying the number of
predictions considered in the action estimate vector. When only
considering the most likely action estimate (N = 1), the reasoning
system is already able to improve on the CVS. This demonstrates
the value of one of the AIRS reasoning mechanisms, i.e. activity rec-
ognition based on expectations. In this context, the AIRS is compa-
rable to the state-of-art techniques in video-based systems based
on simple ontologies and rules.

When several action estimates are available, the AIRS’s second
mechanism, i.e. common sense action validation and the coherent
assignation of actions to stories, can be exploited, which leads to
deeper reasoning. Performance of the total system – i.e. 38% and
52% for N = 3 and 5 estimates, respectively - compared with those
displayed by the ACR – 40% and 57% – shows that the complete
reasoning system is quite efficient at selecting an action among
the N best estimates (see Fig. 4, red). Finally, when more estimates
Please cite this article in press as: Martínez del Rincón, J., et al. Common-sense
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are considered, it seems that the added noise prevents the reason-
ing system to further improve accuracy, i.e. 51% for N = 7.

Fig. 5 provides confusion matrices with (CVS+AIRS for the best
case, i.e. N = 5) and without reasoning (CVS only) to visualise
improvement on the recognition rate per action. For many actions,
such as ‘sitting down’, ‘getting up’, ‘turn around’, ‘check watch’ or
‘kick’, the system is able to move from a recognition rate of almost
0% to a situation where the action is recognised correctly in a
majority of instances. This is particularly remarkable in the case
of ‘sitting down’ where the CVS was trained using sequences of
individuals sitting on the floor, whereas in WaRO11, they sit on a
chair. Such achievement could not have been reached without
usage of world and contextual information. As discussed earlier,
recognition rate of an unconstrained action such as ‘scratch head’
does not benefit from reasoning.

Table 4 illustrates the importance of reasoning to improve per-
formance by showing outputs of CVS (N = 5) and AIRS for the first
10 actions of sequence 1. When CVS failed to identify the correct
actions as its first estimate, AIRS was able to choose the correct
annotations among the other 4 estimates, i.e. ‘turn around’ and
‘sit down’ actions. Moreover, when none of the CVS outputs was
suitable, AIRS managed to correct those estimates by inferring a
new action consistent with common sense reasoning – ‘get up’ ac-
tions. An error of reasoning occurred in the 6th action, where the
AIRS contradicted the correct CVS estimation. This error is ex-
plained by the unexpected presence of a second object on the floor,
i.e. a pen, which was not known by the DSK. Consequently, the rule
imposing that a second object could be picked only after releasing
the first one proved invalid.
reasoning for human action recognition. Pattern Recognition Lett. (2012),
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Fig. 5. Confusion matrices obtained with CVS (left) and CVS+AIRS (right).

Table 4
Outputs of CVS (N = 5) and AIRS for the first 10 actions of WaRo11 seq. 1.

Frames 220-271 271-310 310-344 344-373 373-394
Ground 

truth Walk Pick up Turn around Sit down Get up

CVS 1 Walk Pick up Kick Sit down Check watch

CVS 2 Kick Point Point Throw Throw

CVS 3 Point Throw Turn around Check watch Kick

CVS 4 Wave hand Scratch head Pick up Pick up Point

CVS 5 Sit down Sit down Cross arms Cross arms Pick up

AIRS main 

story
Walk Pick up Turn around Sit down Get up

Frames 394-432 432-1243 1243-1276 1276-1326 1326-1533 
Ground 

truth Pick up Sit down Get up Pick up Punch 
CVS 1 Pick up Cross arms Punch Pick up Punch
CVS 2 Get up Point Point Throw Kick 

CVS 3 Throw Check watch Kick Get up Throw 

CVS 4 Scratch head Scratch head Pick up Point Point 

CVS 5 Turn around Sit down Throw Check watch Check watch 

AIRS main 
story

Turn around Sit down Get up Pick up Punch 
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6. Conclusions

We present a novel approach for action recognition based on
the combination of statistical and knowledge based reasoning.
The inclusion of artificial intelligence strategies, based on common
sense, allows outperforming significantly the state of the art tech-
nique in computer vision when dealing with realistic datasets. Our
main contributions are the creation of the first integrated frame-
work combining computer-vision-based and artificial-intelli-
gence-based action recognition techniques which is fully context
and scenario independent, and the implementation of a common
sense reasoning schema which outperforms machine learning
methodologies.

Results are highly encouraging and confirm the validity of our
hypothesis: the computer vision community should not focus
exclusively on classical statistical reasoning, but should integrate
ideas and methodologies from artificial intelligence in order to
overcome the limitations of current applications under real-life
conditions.
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