Sensor network integration by means of a
Virtual Private Network protocol

D.Villa, F. Moya, F.J. Villanueva, 0. Acefia, and J.C. Lépez

School of Computer Science, University of Castilla-La Mancha
Paseo Universidad 4, 13071 Ciudad Real, Spain,
david.villaQuclm.es
WWW home page: http://arco.esi.uclm.es

Abstract. Sensor networks are becoming an essential part of smart en-
vironments. However, most previous systems rely on ad-hoc mechanisms
to access the sensor network from the enterprise information system. We
propose the use of object oriented middlewares to provide a Virtual Pri-
vate Network in which all involved elements (sensor nodes or computer
applications) will able to communicate as if they all were in a single
uniform network.

Keywords: network integration, virtual networks, sensor networks, smart
objects

1 Introduction

Integration of sensor networks! in enterprise information systems is still trouble-
some. The interaction among applications and sensor services usually requires
specific mechanisms often centralized on application-level gateways. Sensor data
comes through a single node with two interfaces, one for the sensor data (e.g
802.15.4 wireless interface) and another for the enterprise information network
(e.g Ethernet). In many situations this gateway runs custom software to adapt
the protocol stack from the sensor domain to the enterprise domain. However
this kind of infrastructure implies a single point of failure. From an engineering
point of view, a single gateway implies a single point of failure, attending to
specific application, it could make difficult and inefficient network topology, etc.
i.e. the network topology between domains could be arbitrary and not dependent
on integration logical infrastructure.

At logical level, it is inconvenient for actor/actuator nodes and complicates,
or just makes impossible, free interaction among applications and sensor nodes
and particularly interaction among sensor nodes.

! This research was supported by the Spanish Ministry of Science and Innovation
and CDTI through projects DREAMS (TEC2011-28666-C04-03), ENERGOS (CEN-
20091048), PROMETEO (CEN-20101010), by the Regional Government of Castilla-
La Mancha and ERDF under project SAND (PEII11-0227-0070), and by Céatedra
Indra UCLM.



This paper introduces a novel approach to achieve a more flexible and de-
coupled way to provide and request sensor services supporting several gateways
among sensor and enterprise domains (sometimes called multi-sink). By means
of a common application-level protocol, sensor nodes and applications can in-
teract in any scenario, even among sensor nodes belonging to remote networks.
Instead of designing a new application protocol from scratch, we focus our atten-
tion in the protocols used by object-oriented middlewares (i.e CORBA or ZeroC
Ice). These middlewares has been traditionally used in scalable and efficient dis-
tributed heterogeneous applications so we start with well-known and tested pro-
tocols. The application protocol used in these middlewares really marshall/un-
marshall invocation messages between distributed objects. We already integrate
these type of protocols in wireless sensor networks [9] but always inside of the
same sensor network domain. Of course, that allows to use an object oriented
middleware, which transforms the sensor network integration in a case of dis-
tributed heterogeneous programming.

2 Related Work

In a way [1] aims at similar goals: “Unlike application-level gateway, that re-
quire semantic knowledge of each application in order to make a routing deci-
sion, the overlay gateway routes based on sensor network layer information”.
They propose an overlay network to interconnect applications with sensor nodes
extending the sensor network internal protocol over Internet. It works as a wir-
tual sensor network thanks to overlay gateways. In their words: “It is a sensor
network overlaying IP”. The gateway encapsulates the sensor network protocol
packets (including network, transport and application headers) on TCP or UDP
segments. As the sensor network stack is preserved, components at hosts (virtual
sensors) need to process all of these strange headers at the application layer in
order to maintain the illusion of a single flat network.

SenseWrap [3] takes the other way. They refer to virtual sensors as the
wrapped versions of the actual sensors. They focus on self-configuration pro-
viding standard Zeroconf to discover and find sensor services. It is a middleware
to get IP overlaying to the sensor network. SensorWrap uses a single application-
level gateway, the model that we try to avoid. Tenet [10] is a more sophisticated
network architecture that divides the sensor network in a set of tiers. Each tier
has a master and several nodes. Most of processing and application specific tasks
run in the masters. Hence it is a multi gateway approach that avoids a single
point of failure but may significantly degrade the network performance if some
of the masters fail.

The “all over IP” approach could solve the problem but introduces overhead
even in low-footprint implementations (i.e ulP [2]) and may not be affordable for
some sensor domains. Other protocols like Message Queue Telemetry Transport
protocol [5] (MQTT) from IBM are for telemetry applications so it does not
support actuators and individual sensor-to-actuator interactions. Qur approach
uses the network and transport protocol stack most appropriate at each domain,



only at application level we use a common protocol. As far as we know, none
of existent approaches provide an integration mechanism with such a flexibility
and transparency.

Network interconnection (among sensors, trunk networks or whatever) is fea-
sible when both use the same protocol, at least at network layer. However in
practice there are many scenarios and applications which impose proprietary or
non-compatible protocols in the sensor network. There are many reasons (i.e
energy efficiency, real time characteristics, etc.) but we will not analyze them
here. In these circumstances application-level gateways are used. Our concept is
quite similar to the conventional virtual private network. That is: hosts suitable
to interchange information have identifiers in the same address space, creat-
ing the illusion that they are all neighbors although part of them are remotely
connected through other networks. Note that our work is not related with the
Virtual Sensor Network (VSN) concept. VSN [6] is a mechanism to select (some-
times dynamically) a subset of sensors and provide them to the user/task as a
different (virtual) network, so that the focus is on providing sensor node logical
aggregation. Neither to be confused with VPSN (Virtual Private Sensor Net-
work 2) which is wirtual in other sense. It provides a per-user sensor network
vision. Neither of them are related to network interconnection.

3 UVPN for sensor networks

UVPN (Ubiquitous Virtual Private Network) uses the same VPN concept avail-
able in TCP/IP networks although implemented at a higher abstraction layer.
Each host may have one or more object adapters. An object adapter is respon-
sible to expose local objects to the network. Each object adapter is accessible
through endpoints, i.e. logical network connection points. Emulating the con-
ventional VPN model, we assign homogeneous addresses to all involved compo-
nents, regardless of whether they are physical sensor nodes or PC applications.
To achieve this, we need a new kind of endpoint (UVPN endpoint). The UVPN
endpoint, as the conventional VPN counterpart, uses the same underlying trans-
ports, ie. TCP, UDP or SSL in the Internet case. We are using ZeroC Ice [4] in
our current prototypes, although any other object-oriented middleware could be
used instead. Sensor nodes with minimal footprint are able to process applica-
tion messages using the underlying protocol [9]. Of course, those virtual logic
addresses need to be mapped to the corresponding underlying address (equiva-
lent to neighbor discovery in conventional protocols). Because this kind of trans-
lation may be expensive and complex for a sensor network, our approach here
uses identifiers which may be directly mapped to the node physical addresses.
UVPN endpoints encapsulate their own communication details. An example of
proxy to a remote sensor object using the UVPN endpoint would be “OBJ2
-d:uvpn -h 0x01” where “0x01” is the native sensor node address. These virtual
nodes may hold sensors and actuators fully indistinguishable from their actual

? GENI Project http://www.geni.net/



counterparts. Contrary to [1] we do not need a common network layer protocol,
just a common application layer protocol.

The main component of the UVPN architecture is the UVPN switch, a service
that should reside in a host having physical interfaces to both networks: sensor
and trunk. Its goal is similar to a conventional VPN switch. The switch is aware
of any compatible remote object adapter, those which have endpoints supporting
UVPN addressing. The switch is a conventional distributed object implementing
the UVPN: :Switch interface shown below:

module UVPN { interface Switch extends Transceiver {
class Address {}; void add(Address addr, Transceiver* prx);
void remove(Address addr);
interface Transceiver { Transceiver* find(Address addr);
void send(Address addr, ByteSeq payload); };
}; };

For better transparency the UVPN endpoint (in a the conventional computer
side) performs the registration on behalf of the adapter. When an endpoint
is instantiated, it invokes the Switch.add() method in the designated remote
switch to bind a sensor network address (addr) to a callback object provided by
the UVPN endpoint. Later, the switch can resolve remote wvirtual sensor nodes
using these associations between addresses and endpoints. This mechanism is
functionally equivalent to creation of a tunnel in an conventional VPN.

3.1 Use cases

This section discusses the different communication scenarios among node services
and applications, or among nodes themselves.

Application to node. In the simplest scenario, a client application requests the
status of a remote sensor. In the application-level bridge-based approaches [7,11,
8], the sensor network specific protocols store last measured sensor values in the
bridge. Later the client explicitly query the bridge giving some sensor identifier.
That was the cause of many important problems: bridge complexity, lack of node
autonomy, single point of failure, etc.

With UVPN, the client (in the trunk network) performs a conventional re-
mote object invocation on a proxy representing the remote sensor. Under the
scene, the UVPN endpoint knows (by configuration) where is the switch and
invokes Transceiver.send() passing the whole client invocation message as ar-
gument. The switch receives the message and tries to find (by means of the
Switch.find() method) a transceiver (virtual node) for the node address spec-
ified as the first argument in the send() invocation. In this case, the address is
not found, the message is sent to the sensor network physical interface, directly
connected to the computer running the switch service. The message goes to the
air and should be received by the target node.

Node to application. UVPN allows sensor nodes to behave as clients, that is,
nodes can transparently invoke remote objects in the trunk network. That is a
very rare feature in sensor network middlewares which was previously handled
with ad-hoc non-generic solutions.



In this case, the sensor node just sends a conventional invocation preceded
by the destination node address. The switch receives the message through the
radio interface and looks for the destination address (with Switch.find()). In
this scenario, the method returns a virtual node proxy. The switch uses it to
forward the invocation to the computer. The UVPN endpoint in the computer
application receives the message and gives it to the object adapter. Finally, the
corresponding servant method is executed.

Node to neighbor node. Any node may send method invocations to any other
neighbor in the same physical network using exactly the same mechanism de-
scribed in the previous section. This means the invocation mechanism is location
transparent, i.e. the is not aware of the exact location of the destination object
(sensor node or computer application).

In this case, the switch will not find a remote virtual node and it will send the
message to the radio interface again. This is also useful when the sensor network
does not implement multi-hop routing because the switch will forward messages
automatically. If destination nodes receive replicated messages through different
paths they are automatically discarded by just checking the sequence number in
the header.

Node to non-neighbor node. There is a more interesting use case, also very rare
in previous works. Two or more distant sensor networks (with their respective
UVPN switches) connected to the same trunk network (and this network may
be Internet). In this situation, a sensor node may invoke other remote sensor
node (in a different network) using switches to forward the message towards the
trunk network. As explained before, this requires that the local switch knows
whether the remote object is accessible through itself. It implies the registration
of all sensor nodes in a central switch (the the root switch). Obviously, were are
talking about a hierarchical switching protocol. Local switches have a fallback
switch (a default path) that knows where is each sensor node. Figure 1 illustrates
the described scenario.

root switch

(X)) .

" obj2.method(args)

Fig. 1. Invocation from a sensor node to a remote node using UVPN

Figure 1 makes clear that UVPN works like a tunneling protocol although
it is built on the application layer. The switch operation is a bit more complex



when more that one sensor network participates in the communication. When
a sensor node (as client) wants to send a message to another node, it builds
the message as if destination node were a neighbor, although it is in different
physical network. The local switch will receive the message, and check whether
the destination address is registered on its table. If so, it sends the message using
the associated Transceiver. Otherwise, it will use the fallback switch to send the
message (using the method Transceiver.send()).

When this fallback switch (or root switch as stated above) receives a message,
it will check if destination was already registered. If so, it sends the message
again, using the matching transceiver. If destination is unknown, then it will
deliver the message to the remaining transceivers configured, one on each port
(flooding). Only discards the arriving gate (in order to avoid loops).

When the last switch receives the message, it will check again its table. If it is
registered as a virtual node, it will send the message using the given transceiver.
If not, the message will be sent to the other interfaces (i.e. the radio interface,
or other registered switchs, as well as are different from the arrival one).

Application to application? It is also possible to communicate no-sensor
clients and objects using UVPN. However, given that the middleware supports
several transports at same time, it is more convenient to use TCP/IP endpoints.
Without any loss of generality this means that UVPN is used only when needed,
i.e. only when a sensor node is involved either as client or object.

4 Simulation and results

Several OMNet++ simulations are built to demonstrate the correct operation
of UVPN. An example smart-grid application monitors the total electrical con-
sumption of a house to avoid current overload. Each socket measures the current
through it and is able to interrupt power supply to turn on/off the load connected
to it.

Three load states are defined: NORMAL when the total consumption is less
than 70%, WARNING when the total consumption is between 70% and 90%,
and CRITICAL when the total consumption is greater than 90%.

When the user (up)plugs an appliance to a socket, the device itself sends a
message to a monitor service (loadMonitor) running in a server. The loadMon-
itor decides the new state and notifies changes in an event channel. Subscribers
of any kind (e.g. applications or sensors) are allowed since they all behave as
normal distributed objects.

We will describe in detail the event sequence occurring in the simulation: 1)
in the initial state (NORMAL) there are 4 unplugged sockets; 2) an appliance is
plugged to the socket node1, which measures the current and sends a message to
the loadMonitor service; 3) the loadMonitor service receives the message, esti-
mates that system load exceeded the WARNING threshold, and sets load state
to WARNING; 4) another appliance is plugged into socket node2, which sends
a message notifying it; the loadMonitor detects that load is above CRITICAL
threshold, so it sets load state to CRITICAL. The sockets (they are channel



subscribers) receive the message; those of them without any device plugged in
immediately cut the line and turn on a red LED to visually warn the users and
preventing overload condition; 5) when some of the appliances are unplugged
(or turned off) the loadMonitor can set load state to lower states allowing new
appliances to be plugged or activated.

Network
2 a 4
oot gwitch
— ode1 -
ode2 noded
= 3 o
switch_A Q)\)'} switch_B
wan
. ns
Q w2
— node5
node3
server

Fig. 2. UVPN simulation: direct remote communication among sensor nodes in distant
networks

This example illustrates UVPN direct and duplex communication among sen-
sor/actuator nodes and application objects running on conventional computers
in the trunk network. Communication may be initiated by any party and they
all may act as clients or objects. Besides, sensor nodes may act as publishers or
subscribers of event channels.

There is a more complete simulation involving 2 sensor networks connected to
the same IP network through their corresponding UVPN switches (see Figure 2).
It represents the same smart-grid application introducing bulbs and electrical
switches that are new electrical loads. To illustrate the communication among
remote sensor/actuator nodes, the switch node5 send messages set() true/false
to turn on/off the bulb nodeil. As in the previous case, nodes 1-4 send load
messages to the loadMonitor service and receive load state messages from the
event channel. There are other nodes (e.g. user) which receive notifications from
the loadMonitor service. In this case, user will alert people about an overload.

The simulations source code, brief documentation and screencasts are avail-
able for download at http://arco.esi.uclm.es/uvpn. UVPN has been imple-
mented with the ZeroC middleware in a demonstration kit called Moteboz. This
kit is used to show different features on access and interconnection among PC
applications, middleware services and sensor nodes. More information may be
found at http://arco.esi.uclm.es/motebox.

5 Conclusions and future work

It is interesting to analyze the differences in relation to [1]. It encapsulate the
whole sensor network protocol stack, thus requiring specific support for each



sensor network protocol stack at wvirtual nodes. With UVPN, it does not mat-
ter which protocol stack is used as long as all peers use the same inter-ORB
protocol (at application layer) and the same addressing scheme, that is, the typ-
ical requirements of a inter-network protocol. Furthermore the middleware also
provides valuable common services such as object persistence, indirect binding,
location transparency, server deployment and many other advanced features.

As far as we know UVPN is the first solution able to communicate sensor
or actuator nodes among themselves and with software objects running on con-
ventional computers in a transparent way, without application specific delegates,
application bridges or ad-hoc protocols. However, there is a constraint: all sensor
nodes must use the same physical addressing scheme. As ongoing work we are
interested in solving that limitation by generalizing the UVPN approach using
a global addressing scheme (see section 3) and providing homogeneous dynamic
routing mechanisms through massively heterogeneous networks.

References

1. H. Dai and R. Han. Unifying micro sensor networks with the internet via overlay
networking. In Intl. Conf. on Local Computer Networks, LCN’04’, 2004.

2. A. Dunkels, T. Voigt, J. Alonso, H. Ritter, and J. Schiller. Connecting Wireless
Sensornets with TCP/IP Networks. In Proceedings of WWIC 2004, Frankfurt
(Oder), Germany, February 2004.

3. P. Evensen and H. Meling. SenseWrap: A service oriented middleware with sensor
virtualization and self-configuration. In Intelligent Sensors, Sensor Networks and
Information Processing (ISSNIP), pages 261-266, December 2009.

4. M. Henning and M. Spruiell. Distributed Programming with Ice. ZeroC Inc., May
2008. Revision 3.3.0.

5. U. Hunkeler, H.L. Truong, and A. Stanford-Clark. MQTT-S - A publish/subscribe
protocol for wireless sensor networks. In COMSWARE, pages 791-798. IEEE, 2008.

6. A.P. Jayasumana, Q. Han, and T. Illangasekare. Virtual sensor networks a resource
efficient approach for concurrent applications. In In International Conference on
Information Technology: New Generations, 2007.

7. P. Levis and D. Culler. Mate: A tiny virtual machine for sensor networks. In
International Conference on Architectural Support for Programming Languages and
Operating Systems, San Jose, CA, USA, October 2002.

8. S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tinydb: an acqui-
sitional query processing system for sensor networks. ACM Trans. Database Syst.,
30(1):122-173, 2005.

9. F. Moya, D. Villa, F.J. Villanueva, J. Barba, F. Rincén, and J.C. Lépez. Embed-
ding standard distributed object-oriented middlewares in wireless sensor networks.
Wireless Communications and Mobile Computing, 9(3):335-345, 2009.

10. J. Paek, B. Greenstein, O. Gnawali, K.-Y. Jang, A. Joki, M. Vieira, J. Hicks,
D. Estrin, R. Govindan, and E. Kohler. The tenet architecture for tiered sensor
networks. ACM Transactions on Sensor Networks (TOSN), 6(4), 2010.

11. Y. Yao and J. Gehrke. The cougar approach to in-network query processing in
sensor networks. SIGMOD Record, 31:2002, 2002.



