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Abstract—Automatic  generation  of  executable  models  from 
high-level system specifications has demonstrated to be a quite 
helpful tool for embedded system designers. Productivity boosts 
with  the  use  of  standard  specification  languages  and  design 
methodologies that settle common foundations for requirements 
capture, system definition, exploration of design space and early 
verification (functional and not  functional  parameters).  In this 
context,  this  work  presents  a  specification  methodology  and 
design  flow  for  multimedia  embedded  system  using 
UML/MARTE standards.

First,  system modeling  is  performed  through  a  technology 
independent  MARTE  profile  that  captures  application 
functionality.  Then,  the  corresponding  SystemC  executable 
model is generated after a mapping transformation to a HW/SW 
platform  description  that  includes  reconfigurable  hardware, 
software and bus resources.

Keywords—UML;  MARTE;  multimedia  embedded  system  
design; SystemC; HW/SW codesign; FPGA

I.  INTRODUCTION

Embedded  system  design  is  an  increasingly  challenging 
task since their complexity seems not to reach the top ever. 
Integration  of  more  functionality  and  applications  in   truly 
reduced time budgets, is the current way for companies to get 
success with their products; being the first in the market with 
the last technology.

Lately, this trend is even more intensive in the multimedia 
embedded platforms ecosystem with a cannibal scenario that 
includes  consumer  electronic  devices  such  as  smartphones, 
tablets,  smartTVs,  set-up-boxes,  etc.  In  this  case,  the  new 
systems must work under strict performance constraints, which 
add  extra  development  work  to  verify  non-functional 
requirements.  Also,  the use  of  hardware  accelerators  in  this 
kind of platforms is becoming a must to cope with the real time 
requirements of multimedia application.

Therefore,  the  scenario  depicted  above  is  hard  to  be 
managed  properly  with  conventional  design  methodologies. 
Heterogeneity,  HW/SW  integration,  complexity,  verification 
and  short  time-to-market  windows  is  a  dangerous,  unstable 
cocktail.

In  this  work,  we  focus  on  the  description  of  a  design 
methodology that enables an easy specification of a multimedia 
system  and  a  fast  translation  towards  a  real  product  or 
prototype. To this end, we make it use of an ESL (Electronic 
System-Level)  design  strategy  [1]  and  MDD (Model-Driven 
Development) techniques [2]. Our proposal grounds in the use 

of  standard  specification  languages  such  as  UML  [3]  and 
MARTE  [4]  which  is  also  a  standard  profile  conceived  to 
model and analyze embedded and real-time systems.

Following the philosophy established by MDD, a platform-
independent model must be specified in first place, which must 
capture  the  functionality  of  the  system.  A UML profile  for 
multimedia  heterogeneous  platforms  specification  has  been 
developed, reusing the design artifacts already present in the 
above mentioned standards.  The goal was not to create a new 
profile  but  to  make  the  most  of  the  existent,  widely  used 
standards to ease the adoption of our solution. 

The proposed  profile  enables  the  designer  to  completely 
specify the most relevant multimedia system attributes to: (a) 
define  an  application model  that  could be easily  mapped to 
current  standardization  efforts  and;  (b)  to  obtain,  in  an 
automatic  way,  the  SystemC  [5]  executable  specification  to 
explore the solution space.

Regarding to (a), it is worth mentioning that our proposal 
effectively  integrates  the  major  abstractions  present  in  the 
OpenMax [6]  and  GStreamer [7]  initiatives  that  can  be 
summarized  as:  a  component  architecture  that  implements 
synchronous and asynchronous data exchanging mechanisms 
based on the producer-consumer paradigm. 

Although specificity has been avoided as much as possible 
in the profile definition, a special consideration has been taken 
to the OpenMax standard. One of the reasons of this decision is 
the  rapid  adoption  OpenMax  is  experiencing  in  many 
commercial  products  of  leading companies:  NVIDIA  [8][9], 
Texas  Instrument  [10]  or  Adaptive  Digital  [11].  This  is 
attractive to us since it  is  an opportunity to demonstrate the 
viability of this work. The aim is to extend and complete the 
work  initiated  with  the  implementation  of  a  HW OpenMax 
Integration  Layer  infrastructure [12]  providing  the  designer 
with the capability to design, explore and generate OpenMax 
based applications that will run on a heterogeneous platform. 

Therefore,  the  specification  of  the  other  two  platform 
models,  required  by  MDD  methodology  (definition  and 
specific), are also influenced by this approach. 



After  successive  refinements,  a  SystemC  executable 
specification  is  obtained  from  the  platform-specific  model. 
SystemC is used in this work since it is a modeling language 
that  can be applied to architectural  exploration, performance 
estimation, functional verification and HW and SW generation. 
SystemC model generation is accomplished, unlike many other 
approaches, using a correct by construction strategy instead of 
annotating  or  using  specific  profiles  in  the  source  UML 
diagram  [13,14,15].  This  focus  keeps  clean  and  simple  the 
platform models.

The  design  space  exploration  is  performed  feeding  the 
SystemC  executable  with  a  set  of  test-benches  that  are 
generated  as  well  using  another  UML  standard,  the  UML 
Testing Profile [16]. 

Paper is organized as follows. After the presentation of the 
motivations  and  objectives  of  this  work,  the  proposed 
UML/MARTE profile is described in section II. In section  III  
the   design  flow  is  described  and  section  IV  details  the 
SystemC component  specification  that  has  been  followed in 
this  paper.  Finally,  section   V provides  an  overview of  the 
execution  model  and  how  the  design  space  exploration  is 
carried out.

II. UML/MARTE PROFILE

In this section, we are going to sketch the main modeling 
artifacts that have been captured in a UML/MARTE profile for 
multimedia embedded systems specification.

As  in  the  standard,  the  information  of  the  model  is 
organized  in  separate  concerns.  Each  concern  has  its 
correspondence  with  a  model  view  with  the  appropriate 
graphical representation. MDA principles define three different 
points of view:

• Platform Independent Model (PIM). The PIM captures 
system functionality and, in this case,  the component-
oriented architecture of our platform.

• Platform Description Model (PDM). The PDM details 
the  PIM  view  with  information  about:  HW  or  SW 
implementation of the application components, specific 
data exchange mechanism, etc.

• Platform Specific Model (PSM). The PSM describes 
the mapping to a specific technological platform.

A. PIM: describing the application structure

The reference model adopted in our proposal envisions a 
multimedia  system  topology  as  a  chain  of  components. 
Components connect with each other through ports that define 
a  communication  channel  with  specific  semantics  for  data 
buffer exchange. These, briefly, are the main model concepts 
that are defined at this level. Figure 1 shows a simple example 
of an application PIM.

Figura 1.- Example of a application PIM.

Application  components  are  defined  using the  «RtUnit» 
MARTE  stereotype.  There  are  three  different  types  of 
components, depending on the number and direction of their 
communication  ports:  sources,  filters  and  sinks.  Ports  are 
specified by the MARTE stereotype «FlowPort». 

The  behavior  of  each  component  is  characterized  at  this 
level  by  the  following  characteristics:  (a)  latency,  the  time 
needed by the component to process a buffer; (b) input rate, the 
minimum time between buffer arrival; (c) data ratio, the factor 
input  data  is  multiplied  (i.e.  decoders)  or  reduced  (i.e. 
encoders);  and  (d)  output  rate,  which  is  derived  from  the 
previous parameters. To model these attributes, two MARTE 
stereotypes  are  used:  «RtSpecification» and 
«GaLatencyObs».  There  is  only  one  feature  left  in  this 
«ConcurrencyView», the size of the internal memories that the 
components owns to store temporary data.  In  this case,  it  is 
used the memorySize attribute of the RtUnit stereotype.

Just  with  this  information,  we  could  only  be  able  to 
generate a model of the component’s behavior. An application 
also depends on the communication mechanisms implemented 
to  interconnect  components.  This  is  the  goal  of  the 
specifications  gathered  in  the  «CommunicationView» UML 
package. Communication is determined by: (a) the data buffers 
exchanged  by  the  components  which  can  overwhelm  the 
processing capabilities of the components and cause congestion 
in  the  communication  channels  (e.g.  not  enough  memory 
capacity);  and  (b)  the  semantics  of  the  communication,  the 
specific mechanisms used to exchange buffers.

A  port  supports  only  one  type  of  buffer.  A  buffer  is 
modeled by means of the stereotype «StorageResource» in the 
MARTE standard. A buffer is defined by the type of data it 
holds (attribute elementSize) and its capacity (result attribute). 
A  component  port  is  a  «CommunicationEndPoint» 
stereotyped  UML  component.  Recall  that  the  component 
FlowPorts are  typed  by   a  CommunicationEndPoint.  Fig.  2 
represents how buffer and port communication endpoints are 
modeled in the profile.

Figure 2.- Communication view definitions

Finally, to specify the communication semantics associated 
to the channels that bind two ports (represented as the UML 
connectors, see figure 1), the «CommSemantics» stereotype is 



applied. Two different pairs of communication parameters are 
considered  at  this  level:  (a)  tunneled  or  not;  and  (b) 
synchronous  (blocking)  or  asynchronous  (non-blocking).  To 
this end, the «CommunicationMedia» MARTE stereotype has 
been extended.

B. PDM and PSM: heterogeneous platform description

At  this  level,  new  information  related  with  the 
implementation details  of  the  PIM are  introduced.  First,  we 
consider  the  specification  of  the  HW  or  SW  nature  of  the 
application components. 

On one hand, the  «SWPlatformView» includes the UML 
components  specified  by  the  MARTE  stereotype 
«SWResource».  On the other hand, the «HWPlatformView» 
relies  principally  on  the  use  of  the  «OpenMaxComponent» 
stereotype.  We  now  focus  on  the  attributes  that  define  an 
application component that is going to be implemented in the 
reconfigurable logic fabric of our prototyping platform.

Resource  usage  and  performance  features  are  modeled 
using  the  standard  «HwResource»  and «ResourceUsage» 
MARTE  stereotypes  together  with  the  UML  standard 
stereotype  «File» (see figure 3). A bitstream is a binary file 
that  is used to program the FPGA in order to configure the 
logic gates to implement a hardware component. The bitstream 
file provides data about how much resources will be needed: 
LUTs, Flip-Flops and Slices.

Figure 3.- Hw component modeling

The  «OpenMaxComponent» defines  the  following 
attributes  regarding  the  so far  unknown internal  architecture 
details  of  the  hardware  application  component: 
intervalInitiation,  nbStages,  baseAddress,  etc.  It  is  worth 
noticing that some of the attributes defined at the PIM level 
still applies (for example, the compression factor). This makes 
the model  to  remain  simple and reuse  as  much information 
from other stages of the specification methodology.

As  to  the  communication  semantics,  the 
OpenMaxComponent adds information about the size of bus 
transactions  to  transmit  the  data  (burstLength)  or  the 
optimizations applied to the bus-based communication (mode).

Once the SW and HW resources have been defined, the 
RtUnit components are mapped onto these HW/SW resources. 
In  the package  «ArchitecturalView» a  UML component  is 
included where application instances defined in the PIM are 
allocated onto HW/SW resources. 

By  using  UML  abstractions  specified  by  the  MARTE 
stereotype  «Allocate» this  application-HW/SW  resource 
mapping is modelled (figure 4).

Figure 4.- HW/SW resource mapping

III. DESIGN FLOW

In  the  early  stages  of  design,  the  behavior  of  the 
heterogeneous  system  and  its  performance  are  difficult  to 
quantify.  The help of a system model can be very useful in 
order to evaluate the different design alternatives, reducing the 
development costs. SystemC is the modeling language that has 
been  used  to  develop  the  system  model  in  this  work.  The 
strength of SystemC is its applicability to almost every stage 
in  the  design  and  implementation  flow:  system-level 
specification,  architectural  exploration,  performance 
modeling, software development, functional verification, and 
high-level synthesis,

Starting  from  the  UML/MARTE  model  of  the 
component-based system, the proposed design (figure 5) flow 
generates all the SystemC code required for the simulation and 
evaluation  of  the  system.  Papyrus  [17]  is  a  graphical 
modelling  open  source  UML2  tool  based  on  Eclipse 
environment that has been used to create the UML/MARTE 
model.   A  code  generator  has  been  developed  as  a  set  of 
generation  templates  written  in  the  standard  MTL language 
[18]. The development has been done through Acceleo [19], a 
code generation framework fully integrated in Eclipse.

Figure 5.- Proposed OpenMAX Flow

The  main  goal  is  to  know,  through  the  automatic 
generation  of  the  SystemC  specification,  the  temporal 



behavior  of  the  system,  keeping   the  different  design 
alternatives  in  mind.  In  order  to  select  the  most  adequate 
alternative for  the components  configurations,  this  SystemC 
specification is simulated in the proposed simulation platform.

The characteristics of each component in the system 
are  registered  in  the  model  UML/MARTE,  as  it  has  been 
explained in the previous section. The code generation process 
produces a SystemC specification for each component (HW or 
SW).  Next,  we  provide  the  reader  with  a  more  detailed 
explanation  of  the  application  component  modeling  using 
SystemC.

IV. SYSTEMC COMPONENT SPECIFICATION

Each component (figure 6) in the system integrates 
two  main  parts.   In  one  hand,  the  implementation  of  the 
multimedia function called Media Core (MC), and in the other 
hand a placeholder for this MC called System Adapter (SA).

Internally,  the  MC  has  a  parametrized  multi-stage 
pipeline making the temporal  behaviour  of  the MC flexible 
and configurable since the number of stages and the cycle time 
can be set.  This pipeline reads media data in its inputs and 
generates  new  data  in  its  outputs.  The  MC  should  be 
independent of the data communication mechanisms and the 
memories  technologies  in  order  to  improve  its  reuse 
opportunities. Such independence is provided by the SA that 
contains two local memories, from which the MC reads and 
writes  buffers  (minimum  amount  of  media  data  exchange 
between two components),  and provides  the connectivity  to 
the rest  of the system. A simple fixed interface is  provided 
between  the  MC and  the  SA,  mainly  based  on  a  memory 
interface.

Figure 6.- Component Model

Besides  the memory interfaces,  the SA implements 
the control logic that governs the MC execution (start or stop 

signals between others). Also, the MC provides information to 
the  SA  about  its  execution  status,  for  example  read_done 
signal indicates that an input buffer has been consumed (not 
necessary processed) and write_done tells the SA that the MC 
has written the last word of the output buffer. Both signals are 
interpreted by the Data Transmission Engine (DTE) to overlap 
memory operations with the data  transmission process.  The 
DTE behavior is customized with the PIM attributes described 
in the CommunicationView. 

The main idea of the data transmission process is to 
transfer  as  soon  as  possible  a  buffer  content  between  two 
components,  that are connected through a shared bus, without 
the intervention of Sw routines. The communication meets the 
producer/consumer  pattern  and  the  components  involved  in 
the communication exchange “FillBuffer” and “EmptyBuffer” 
message  types.  These  messages  are  translated  into  bus 
requests by the Bus Adapters.

A SystemC component template (figure [7]) based on 
the  above  model  has  been  developed.  This  component 
template is flexible and allows a high degree of configurability 
to  obtain  a  temporal  behavior  similar  to  any  candidate 
component that can be instantiated in a real system. This helps 
the designer to get  a close performance profile of the target 
system.

 
Figure 7.- SystemC OpenMAX Component specification.

As  it  is  required  by  SystemC,  each  part  of  the 
component  is  instantiated  as  a  module.  Communication 
between  modules  is  performed  through  channels  and  ports. 
The  channels  are  associated  with  a  parameter  of  time  to 
characterize the communication delay between modules.

The main difference between a SW component model 
and  HW  component  model,  in  terms  of  behavior,  is  the 
temporal  variation for the same task. In  our concept of SW 



component,  this  variation  happens  because:  (a)  a  SW 
component uses the global memory system as buffer storage; 
(b) the processing time is higher than in HW; (c) I/O delays; 
and  (d)  the  operating  system  stack.  Therefore  SystemC 
channels  definitions  support  these  temporal  parameter 
variations. 

Different  templates  for  HW  and  SW  components 
have been taken from a component library according to their 
temporal requirements.   Besides,  the memory access time of 
the local memories present in the SA and their capacities are 
parametrized too.

The  chain  composed  by  HW  and  SW components 
will be evaluated in the SystemC simulation  platform that has 
been generated automatically from UML/MARTE model.

V. SYSTEMC SIMULATION PLATFORM

The  simulation  platform  (figure  8),  developed  in 
SystemC  as  well,  is  made  up  of  a  chain  of  SystemC 
components (HW and SW) connected through a generic model 
bus. This generic model can be easily customized to emulate 
specific  or  commercial  protocols  at  transaction  level.  For 
example, in our prototypes we use a configuration that targets 
the  AHB  requirements.  The  simulation  starts  by  injecting 
media data into the first component in the chain. These data 
will go through components and will be collected at the end of 
the chain where a comparison with the golden model results is 
done. 

During  the  test  execution,  the  different  SystemC 
modules gather statistical information that is relevant for them. 
This information is registered for further analysis in order to 
obtain meaningful conclusions about the performance of the 
system configuration under evaluation. The report presented to 
the designer includes: total application time, final throughput, 
average  processing  time  per  buffer  and  per  component, 
average waiting times due to bus congestion, total number of 
transactions, overload due to synchronization messages, actual 
input  and  output  buffer  rates  per  component  and  average 
waiting time per component due to local memory saturation 
(not ready to received or not ready to write). 

A data generator has been included in the platform 
that  apart  from  providing  the  input  data,  configures  and 
activates  all  the  SystemC  components  in  the  system.  The 
generator will be connected to the communication bus as well 
as the collector, whose mission is to receive the data that have 
been  processed  in  the chain  and to  compare  them with the 
expected result. 

 
Figure 8.- Simulation Scenario

In the platform, each component is accompanied by 
at least two adapters (one master and one slave) that allow the 
connection between the component and the bus. In this way, 
the  model  of  the  communication  bus  can  be  replaced 
effortlessly, keeping the rest of the system intact. Once all the 
components have been instantiated, the binding to the  shared 
bus takes place and the simulation process can start (as shown 
in the following source code). 

  
Figure  9.-  Example  of  HW/SW Components  and Bus  instantiation  Source 
Code

As it  is  seen in the source code of  figure 9 ,  each 
component can be configured by a set of parameters that are 
registered  in  the  (SW/HW)  Parameters  structure.  The 
parameters  that  have  been  taken  into  account  for  the 
simulation and components are represented in the table 1.



Table1 .- Set of simulation parameters 

In order to automate the process of running different 
simulations  with  different  configurations,  we  have  been 
developed a factory of test cases. A XML file is used as input 
to  the  factory  and  it  is  generated  from  the  UML/MARTE 
«VerificationView»  which  has  not  been  covered  in  this 
article due to space constraints. All the possible combinations 
to  be  evaluated  (each  one  is  considered  a  test  case)  are 
captured  into  the  XML  file.  Last,  for  each  test  case  a 
simulation  is  launched  with  the  intention  of  recording  its 
performance and comparing it with other simulations results.

As  it  has  been  mentioned  in  the  introduction, 
OpenMAX  standard  support  is  fully  integrated  from  the 
beginning  in  the  specification  methodology  and  tools 
developed in this work. Therefore, it is worth mentioning the 
advantage that represents the simulation of component-based 
scenarios  that  are  compliant  with  OpenMAX.  Also,  this 
platform allows the simulation of sub-chains of components 
over  the  same  bus  system  or  systems  that  require  a  bus 
hierarchy.
 

VI. CONCLUSIONS

The paper  presents  an  UML/MARTE methodology 
with  sufficient  modeling  capabilities  in  order  to  enable  the 
design  of  current  multimedia  systems  according  to  the 
specification  requirements  that  the  standard  OpenMAX 
provides.  This  UML/MARTE  methodology  enables  the 
system application structure to be modelled, defining all the 
structural and communication semantics characteristics which 
completely  specify  an  application  component.  Then,  the 
UML/MARTE methodology establishes a mapping to HW or 
SW resources of the target board. In addition, the high-level 
modeling  methodology  enables  the  specification  of  test-
benches  which  are  used  to  establish  a  design  exploration 
process in order to find the best configuration of the system.

Then, from the UML/MARTE elements selected for 
this  methodology,  a  SystemC  mapping  is  produced.  This 
SystemC mapping enables the automatic code generation of a 
SystemC  executable  specification  in  order  to  obtain  the 

different  timing  execution  performances.  Depending  on  the 
values obtained, the best system configuration can be selected. 

From the on-going work presented in this paper, the 
code generator will be implemented. This code generator will 
be implemented by using MTL. Then, it will be included in an 
Eclipse infrastructure, which will enable the application of the 
UML/MARTE  OpenMAX  methodology  in  the  complete 
design of multimedia systems.    
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