
Easy Modeling and Fast Exploration of Multimedia
Heterogeneous Applications with UML/MARTE

Authors omitted for blind review Authors omitted for blind review

Abstract—Automatic generation of executable models from
high-level system specifications has demonstrated to be a quite
helpful tool for embedded system designers. Productivity boosts
with the use of standard specification languages and design
methodologies that settle common foundations for requirements
capture, system definition, exploration of design space and early
verification (functional and not functional parameters). In this
context, this work presents a specification methodology and
design flow for multimedia embedded system using
UML/MARTE standards.

First, system modeling is performed through a technology
independent MARTE profile that captures application
functionality. Then, the corresponding SystemC executable
model is generated after a mapping transformation to a HW/SW
platform description that includes reconfigurable hardware,
software and bus resources.

Keywords—UML; MARTE; multimedia embedded system
design; SystemC; HW/SW codesign; FPGA

I. INTRODUCTION

Embedded system design is an increasingly challenging
task since their complexity seems not to reach the top ever.
Integration of more functionality and applications in truly
reduced time budgets, is the current way for companies to get
success with their products; being the first in the market with
the last technology.

Lately, this trend is even more intensive in the multimedia
embedded platforms ecosystem with a cannibal scenario that
includes consumer electronic devices such as smartphones,
tablets, smartTVs, set-up-boxes, etc. In this case, the new
systems must work under strict performance constraints, which
add extra development work to verify non-functional
requirements. Also, the use of hardware accelerators in this
kind of platforms is becoming a must to cope with the real time
requirements of multimedia application.

Therefore, the scenario depicted above is hard to be
managed properly with conventional design methodologies.
Heterogeneity, HW/SW integration, complexity, verification
and short time-to-market windows is a dangerous, unstable
cocktail.

In this work, we focus on the description of a design
methodology that enables an easy specification of a multimedia
system and a fast translation towards a real product or
prototype. To this end, we make it use of an ESL (Electronic
System-Level) design strategy [1] and MDD (Model-Driven
Development) techniques [2]. Our proposal grounds in the use

of standard specification languages such as UML [3] and
MARTE [4] which is also a standard profile conceived to
model and analyze embedded and real-time systems.

Following the philosophy established by MDD, a platform-
independent model must be specified in first place, which must
capture the functionality of the system. A UML profile for
multimedia heterogeneous platforms specification has been
developed, reusing the design artifacts already present in the
above mentioned standards. The goal was not to create a new
profile but to make the most of the existent, widely used
standards to ease the adoption of our solution.

The proposed profile enables the designer to completely
specify the most relevant multimedia system attributes to: (a)
define an application model that could be easily mapped to
current standardization efforts and; (b) to obtain, in an
automatic way, the SystemC [5] executable specification to
explore the solution space.

Regarding to (a), it is worth mentioning that our proposal
effectively integrates the major abstractions present in the
OpenMax [6] and GStreamer [7] initiatives that can be
summarized as: a component architecture that implements
synchronous and asynchronous data exchanging mechanisms
based on the producer-consumer paradigm.

Although specificity has been avoided as much as possible
in the profile definition, a special consideration has been taken
to the OpenMax standard. One of the reasons of this decision is
the rapid adoption OpenMax is experiencing in many
commercial products of leading companies: NVIDIA [8][9],
Texas Instrument [10] or Adaptive Digital [11]. This is
attractive to us since it is an opportunity to demonstrate the
viability of this work. The aim is to extend and complete the
work initiated with the implementation of a HW OpenMax
Integration Layer infrastructure [12] providing the designer
with the capability to design, explore and generate OpenMax
based applications that will run on a heterogeneous platform.

Therefore, the specification of the other two platform
models, required by MDD methodology (definition and
specific), are also influenced by this approach.

After successive refinements, a SystemC executable
specification is obtained from the platform-specific model.
SystemC is used in this work since it is a modeling language
that can be applied to architectural exploration, performance
estimation, functional verification and HW and SW generation.
SystemC model generation is accomplished, unlike many other
approaches, using a correct by construction strategy instead of
annotating or using specific profiles in the source UML
diagram [13,14,15]. This focus keeps clean and simple the
platform models.

The design space exploration is performed feeding the
SystemC executable with a set of test-benches that are
generated as well using another UML standard, the UML
Testing Profile [16].

Paper is organized as follows. After the presentation of the
motivations and objectives of this work, the proposed
UML/MARTE profile is described in section II. In section III
the design flow is described and section IV details the
SystemC component specification that has been followed in
this paper. Finally, section V provides an overview of the
execution model and how the design space exploration is
carried out.

II. UML/MARTE PROFILE

In this section, we are going to sketch the main modeling
artifacts that have been captured in a UML/MARTE profile for
multimedia embedded systems specification.

As in the standard, the information of the model is
organized in separate concerns. Each concern has its
correspondence with a model view with the appropriate
graphical representation. MDA principles define three different
points of view:

• Platform Independent Model (PIM). The PIM captures
system functionality and, in this case, the component-
oriented architecture of our platform.

• Platform Description Model (PDM). The PDM details
the PIM view with information about: HW or SW
implementation of the application components, specific
data exchange mechanism, etc.

• Platform Specific Model (PSM). The PSM describes
the mapping to a specific technological platform.

A. PIM: describing the application structure

The reference model adopted in our proposal envisions a
multimedia system topology as a chain of components.
Components connect with each other through ports that define
a communication channel with specific semantics for data
buffer exchange. These, briefly, are the main model concepts
that are defined at this level. Figure 1 shows a simple example
of an application PIM.

Figura 1.- Example of a application PIM.

Application components are defined using the «RtUnit»
MARTE stereotype. There are three different types of
components, depending on the number and direction of their
communication ports: sources, filters and sinks. Ports are
specified by the MARTE stereotype «FlowPort».

The behavior of each component is characterized at this
level by the following characteristics: (a) latency, the time
needed by the component to process a buffer; (b) input rate, the
minimum time between buffer arrival; (c) data ratio, the factor
input data is multiplied (i.e. decoders) or reduced (i.e.
encoders); and (d) output rate, which is derived from the
previous parameters. To model these attributes, two MARTE
stereotypes are used: «RtSpecification» and
«GaLatencyObs». There is only one feature left in this
«ConcurrencyView», the size of the internal memories that the
components owns to store temporary data. In this case, it is
used the memorySize attribute of the RtUnit stereotype.

Just with this information, we could only be able to
generate a model of the component’s behavior. An application
also depends on the communication mechanisms implemented
to interconnect components. This is the goal of the
specifications gathered in the «CommunicationView» UML
package. Communication is determined by: (a) the data buffers
exchanged by the components which can overwhelm the
processing capabilities of the components and cause congestion
in the communication channels (e.g. not enough memory
capacity); and (b) the semantics of the communication, the
specific mechanisms used to exchange buffers.

A port supports only one type of buffer. A buffer is
modeled by means of the stereotype «StorageResource» in the
MARTE standard. A buffer is defined by the type of data it
holds (attribute elementSize) and its capacity (result attribute).
A component port is a «CommunicationEndPoint»
stereotyped UML component. Recall that the component
FlowPorts are typed by a CommunicationEndPoint. Fig. 2
represents how buffer and port communication endpoints are
modeled in the profile.

Figure 2.- Communication view definitions

Finally, to specify the communication semantics associated
to the channels that bind two ports (represented as the UML
connectors, see figure 1), the «CommSemantics» stereotype is

applied. Two different pairs of communication parameters are
considered at this level: (a) tunneled or not; and (b)
synchronous (blocking) or asynchronous (non-blocking). To
this end, the «CommunicationMedia» MARTE stereotype has
been extended.

B. PDM and PSM: heterogeneous platform description

At this level, new information related with the
implementation details of the PIM are introduced. First, we
consider the specification of the HW or SW nature of the
application components.

On one hand, the «SWPlatformView» includes the UML
components specified by the MARTE stereotype
«SWResource». On the other hand, the «HWPlatformView»
relies principally on the use of the «OpenMaxComponent»
stereotype. We now focus on the attributes that define an
application component that is going to be implemented in the
reconfigurable logic fabric of our prototyping platform.

Resource usage and performance features are modeled
using the standard «HwResource» and «ResourceUsage»
MARTE stereotypes together with the UML standard
stereotype «File» (see figure 3). A bitstream is a binary file
that is used to program the FPGA in order to configure the
logic gates to implement a hardware component. The bitstream
file provides data about how much resources will be needed:
LUTs, Flip-Flops and Slices.

Figure 3.- Hw component modeling

The «OpenMaxComponent» defines the following
attributes regarding the so far unknown internal architecture
details of the hardware application component:
intervalInitiation, nbStages, baseAddress, etc. It is worth
noticing that some of the attributes defined at the PIM level
still applies (for example, the compression factor). This makes
the model to remain simple and reuse as much information
from other stages of the specification methodology.

As to the communication semantics, the
OpenMaxComponent adds information about the size of bus
transactions to transmit the data (burstLength) or the
optimizations applied to the bus-based communication (mode).

Once the SW and HW resources have been defined, the
RtUnit components are mapped onto these HW/SW resources.
In the package «ArchitecturalView» a UML component is
included where application instances defined in the PIM are
allocated onto HW/SW resources.

By using UML abstractions specified by the MARTE
stereotype «Allocate» this application-HW/SW resource
mapping is modelled (figure 4).

Figure 4.- HW/SW resource mapping

III. DESIGN FLOW

In the early stages of design, the behavior of the
heterogeneous system and its performance are difficult to
quantify. The help of a system model can be very useful in
order to evaluate the different design alternatives, reducing the
development costs. SystemC is the modeling language that has
been used to develop the system model in this work. The
strength of SystemC is its applicability to almost every stage
in the design and implementation flow: system-level
specification, architectural exploration, performance
modeling, software development, functional verification, and
high-level synthesis,

Starting from the UML/MARTE model of the
component-based system, the proposed design (figure 5) flow
generates all the SystemC code required for the simulation and
evaluation of the system. Papyrus [17] is a graphical
modelling open source UML2 tool based on Eclipse
environment that has been used to create the UML/MARTE
model. A code generator has been developed as a set of
generation templates written in the standard MTL language
[18]. The development has been done through Acceleo [19], a
code generation framework fully integrated in Eclipse.

Figure 5.- Proposed OpenMAX Flow

The main goal is to know, through the automatic
generation of the SystemC specification, the temporal

behavior of the system, keeping the different design
alternatives in mind. In order to select the most adequate
alternative for the components configurations, this SystemC
specification is simulated in the proposed simulation platform.

The characteristics of each component in the system
are registered in the model UML/MARTE, as it has been
explained in the previous section. The code generation process
produces a SystemC specification for each component (HW or
SW). Next, we provide the reader with a more detailed
explanation of the application component modeling using
SystemC.

IV. SYSTEMC COMPONENT SPECIFICATION

Each component (figure 6) in the system integrates
two main parts. In one hand, the implementation of the
multimedia function called Media Core (MC), and in the other
hand a placeholder for this MC called System Adapter (SA).

Internally, the MC has a parametrized multi-stage
pipeline making the temporal behaviour of the MC flexible
and configurable since the number of stages and the cycle time
can be set. This pipeline reads media data in its inputs and
generates new data in its outputs. The MC should be
independent of the data communication mechanisms and the
memories technologies in order to improve its reuse
opportunities. Such independence is provided by the SA that
contains two local memories, from which the MC reads and
writes buffers (minimum amount of media data exchange
between two components), and provides the connectivity to
the rest of the system. A simple fixed interface is provided
between the MC and the SA, mainly based on a memory
interface.

Figure 6.- Component Model

Besides the memory interfaces, the SA implements
the control logic that governs the MC execution (start or stop

signals between others). Also, the MC provides information to
the SA about its execution status, for example read_done
signal indicates that an input buffer has been consumed (not
necessary processed) and write_done tells the SA that the MC
has written the last word of the output buffer. Both signals are
interpreted by the Data Transmission Engine (DTE) to overlap
memory operations with the data transmission process. The
DTE behavior is customized with the PIM attributes described
in the CommunicationView.

The main idea of the data transmission process is to
transfer as soon as possible a buffer content between two
components, that are connected through a shared bus, without
the intervention of Sw routines. The communication meets the
producer/consumer pattern and the components involved in
the communication exchange “FillBuffer” and “EmptyBuffer”
message types. These messages are translated into bus
requests by the Bus Adapters.

A SystemC component template (figure [7]) based on
the above model has been developed. This component
template is flexible and allows a high degree of configurability
to obtain a temporal behavior similar to any candidate
component that can be instantiated in a real system. This helps
the designer to get a close performance profile of the target
system.

Figure 7.- SystemC OpenMAX Component specification.

As it is required by SystemC, each part of the
component is instantiated as a module. Communication
between modules is performed through channels and ports.
The channels are associated with a parameter of time to
characterize the communication delay between modules.

The main difference between a SW component model
and HW component model, in terms of behavior, is the
temporal variation for the same task. In our concept of SW

component, this variation happens because: (a) a SW
component uses the global memory system as buffer storage;
(b) the processing time is higher than in HW; (c) I/O delays;
and (d) the operating system stack. Therefore SystemC
channels definitions support these temporal parameter
variations.

Different templates for HW and SW components
have been taken from a component library according to their
temporal requirements. Besides, the memory access time of
the local memories present in the SA and their capacities are
parametrized too.

The chain composed by HW and SW components
will be evaluated in the SystemC simulation platform that has
been generated automatically from UML/MARTE model.

V. SYSTEMC SIMULATION PLATFORM

The simulation platform (figure 8), developed in
SystemC as well, is made up of a chain of SystemC
components (HW and SW) connected through a generic model
bus. This generic model can be easily customized to emulate
specific or commercial protocols at transaction level. For
example, in our prototypes we use a configuration that targets
the AHB requirements. The simulation starts by injecting
media data into the first component in the chain. These data
will go through components and will be collected at the end of
the chain where a comparison with the golden model results is
done.

During the test execution, the different SystemC
modules gather statistical information that is relevant for them.
This information is registered for further analysis in order to
obtain meaningful conclusions about the performance of the
system configuration under evaluation. The report presented to
the designer includes: total application time, final throughput,
average processing time per buffer and per component,
average waiting times due to bus congestion, total number of
transactions, overload due to synchronization messages, actual
input and output buffer rates per component and average
waiting time per component due to local memory saturation
(not ready to received or not ready to write).

A data generator has been included in the platform
that apart from providing the input data, configures and
activates all the SystemC components in the system. The
generator will be connected to the communication bus as well
as the collector, whose mission is to receive the data that have
been processed in the chain and to compare them with the
expected result.

Figure 8.- Simulation Scenario

In the platform, each component is accompanied by
at least two adapters (one master and one slave) that allow the
connection between the component and the bus. In this way,
the model of the communication bus can be replaced
effortlessly, keeping the rest of the system intact. Once all the
components have been instantiated, the binding to the shared
bus takes place and the simulation process can start (as shown
in the following source code).

Figure 9.- Example of HW/SW Components and Bus instantiation Source
Code

As it is seen in the source code of figure 9 , each
component can be configured by a set of parameters that are
registered in the (SW/HW) Parameters structure. The
parameters that have been taken into account for the
simulation and components are represented in the table 1.

Table1 .- Set of simulation parameters

In order to automate the process of running different
simulations with different configurations, we have been
developed a factory of test cases. A XML file is used as input
to the factory and it is generated from the UML/MARTE
«VerificationView» which has not been covered in this
article due to space constraints. All the possible combinations
to be evaluated (each one is considered a test case) are
captured into the XML file. Last, for each test case a
simulation is launched with the intention of recording its
performance and comparing it with other simulations results.

As it has been mentioned in the introduction,
OpenMAX standard support is fully integrated from the
beginning in the specification methodology and tools
developed in this work. Therefore, it is worth mentioning the
advantage that represents the simulation of component-based
scenarios that are compliant with OpenMAX. Also, this
platform allows the simulation of sub-chains of components
over the same bus system or systems that require a bus
hierarchy.

VI. CONCLUSIONS

The paper presents an UML/MARTE methodology
with sufficient modeling capabilities in order to enable the
design of current multimedia systems according to the
specification requirements that the standard OpenMAX
provides. This UML/MARTE methodology enables the
system application structure to be modelled, defining all the
structural and communication semantics characteristics which
completely specify an application component. Then, the
UML/MARTE methodology establishes a mapping to HW or
SW resources of the target board. In addition, the high-level
modeling methodology enables the specification of test-
benches which are used to establish a design exploration
process in order to find the best configuration of the system.

Then, from the UML/MARTE elements selected for
this methodology, a SystemC mapping is produced. This
SystemC mapping enables the automatic code generation of a
SystemC executable specification in order to obtain the

different timing execution performances. Depending on the
values obtained, the best system configuration can be selected.

From the on-going work presented in this paper, the
code generator will be implemented. This code generator will
be implemented by using MTL. Then, it will be included in an
Eclipse infrastructure, which will enable the application of the
UML/MARTE OpenMAX methodology in the complete
design of multimedia systems.

REFERENCES

[1] G. Martin, B.Bailey, A. Piziali. ESL Design and Verification: A
Prescription for Electronic System Level Methodology (Systems on
Silicon). March 9, 2007. ISBN-10: 0123735513.

[2] H. Kopetz. The Complexity Challenge in Embedded System Design. In
11th IEEE ISORC.

[3] Y. Vanderperren, W. Mueller, and W. Dehaene, “UML for electronic
systems design: a comprehensive overview,” Design Automation for
Embedded Systems, vol. 12, no. 4, 2008

[4] OMG. MARTE Profile 1.1. http://www.omgmarte.org/

[5] SystemC website. http://www.accellera.org/

[6] OpenMax Khronos. http://www.khronos.org/openmax/

[7] The Institution of Electronics and Telecommunications Engineers. IETE
Technical Review. ISSN : 0256-4602. Mar-Apr 2011.

[8] NVIDIA Demonstrates High Definition Processor. Las Vegas, Nevada.
January 4, 2006

[9] NVIDIA Khronos Apps SDK, 2010. http://www.nvidia.com

[10] TI software makes development easy for DM8168 and DM8148
DaVinci™ digital media processors. Technology for Innovators 2011.
http://www.ti.com

[11] Adaptive Digital Technologies, Inc. Adaptive Digital OpenMAX IL
Implementation. 2012. http://www.adaptativedigital.com

[12] Barba, J.; De la Fuente, D.; Rincon, F.; Lopez, J.C., "OpenMax
Hardware Native Support for Efficient Multimedia Embedded Systems",
IEEE International Conference on Consumer Electronics, Las Vegas
(USA). Pages: 433-434. ISBN: 978-1-4244-4314-7

[13] F.Bruschi, E. Di Nitto, D. Sciuto. SystemC Code Generation from UML
Models. Forum on Specification and Design Languages ’02.

[14] S. Bocchio, E. Riccobene, A. Rosti,P. Scandurra. A SoC design flow
based on UML 2.0 and SystemC. In DAC, Workshop UML-Sock’05

[15] W.Muller et al. The SATURN approach to sysML-based HW/SW
codesign. IEEE Annual Symposium on VLSI, ISVLSI 2010.

[16] OMG. UML Testing Profile (UTP) 1.1. http://utp.omg.org/.

[17] http://www.papyrusuml.org/

[18] OMG. MOF Model To Text Language. Jan., 2008.

[19] Website. www.acceleo.org. Nov., 2010.

http://www.omgmarte.org/
http://www.acceleo.org/
http://www.papyrusuml.org/
http://utp.omg.org/
http://www.ti.com/
http://www.nvidia.com/
http://www.khronos.org/openmax/
http://www.accellera.org/

	I. Introduction
	II. UML/MARTE PROFILE
	A. PIM: describing the application structure
	B. PDM and PSM: heterogeneous platform description

	III. Design flow
	IV. SystemC Component Specification
	V. SystemC Simulation Platform
	VI. conclusions

