
Civitas: The Smart City Middleware, from Sensors
to Big Data

Félix J. Villanueva, Maria J. Santofimia, David Villa, Jesús Barba, Juan Carlos López
Department of Information Technologies and Systems

School of Computer Science
Ciudad Real, Spain

{felix.villanueva, mariajose.santofimia, david.villa, jesus.barba, juancarlos.lopez}@uclm.es

Abstract—Software development for smart cities bring into
light new concerns, such as how to deal with scalability, hetero-
geneity (sensors, actuators, high performance computing devices,
etc.), geolocation information or privacy issues, among some.
Traditional approaches to distributed systems fail to address
these challenges, because they were mainly devoted to enterprise
IT environments. This paper proposes a middleware frame-
work, called Civitas, specially devoted to support the task of
service development for the Smart City paradigm. This paper
also analyzes the main drawbacks of traditional approaches to
middleware service development and how these are overcome in
the middleware framework proposed here.

I. INTRODUCTION

The concept of Smart City has lately been adopted by
the research community, companies and public gobernants to
summarize a set of advanced services devoted to make current
cities more citizien friendly, efficient and sustainable. Traffic
management, public transport scheduling, waste management,
pollution control, or preventing and avoiding security threats
are, among some of the most relevant, examples of problems
that the Smart City has to deal with [1].

The Smart City paradigm can therefore be seen as a dis-
tributed system in which different sources of information pro-
vide data to a set of applications that use these data to elaborate
responses at strategic and tactical level. Distributed systems are
normally supported in an abstraction layer platform, known
as middleware. Ideally, middleware provides a set of tools
and software libraries that make transparent to developers
the heterogenety in operating systems, programming language,
devices, etc., while abstracting them from the different network
features (technology, topology, protocol stack, etc.).

The role therefore played by the middleware is essential
for the success of the future smart city. Specially relevant is
how the smart city service development could be benefit from
the abstraction layer provided by a middleware. Productivity in
terms of services developed and deployed could be consider-
ably increased. On the contrary, the lack of this comprehensive
approach for smart cities would result in the formation of
“information island” phenomenon, making synergy of services
impossible.

This paper presents the first distributed object-oriented
middleware, called Civitas, specifically designed for smart
cities. This middleware provides services that range from
environmental sensor deployment to the necessary hardware
for high performance algorithms devoted to extract information

from raw data. Additionally, in order to cope with the smart
facet of the smart city paradigm, Civitas has also be enhanced
with reasoning capabilities. Leveraging reasoning capabilities
enables the middleware to have few hard-coded features that
are rather deduced from the available data. In this sense,
Civitas is able to adapt to the deployed city, without requiring
important modifications or adaption works. The main intention
of this work is to promote tightly integrated systems and
managed smart cities to simplify the IT environment for service
developers.

II. STATE OF ART

So far, most of the literature concerning Smart Cities, as
to the solutions for the challenges that arise in this field, is
mainly oriented to specific applications for certain city do-
mains. Therefore, it is recurrent to see a reinventing-the-wheel
approach rather than an holistic one. The later would need of
a thorough analysis, isolating the common requirements that
would lead to a shared technological platform. This work aims
to fill this void detected in the revised related work.

Some of the works focus at the data-acquisition level,
describing how the abstraction of the different sources and
their integration into the system is performed. In this sense, it
is worth mentioning the OpenIoT EU co-funded FP7 project
[2]. The OpenIoT architecture enables the development of
cloud-based applications using Internet of Things services. The
bulk of the OpenIoT framework resides in the virtualization
infrastructure used to integrate different sensor networks tech-
nologies into the cloud. OpenIoT defines a series of extensions
to well known standards such as SSN-XG ontolgy for sensor
network definition or RESTful services for sensor access.

The work of Fazio et al. [3] also makes it use of standard
specifications and protocols, such as Sensor Web Enablement,
to tackle the heterogeneity problems in smart sensor platforms.
Three levels of incompatibility are identified in complex sens-
ing infrastructures: device technology, communication and data
levels. At the end, sensors are accessed via a REST API which
relies on a Sensor Observation Service Agent that abstracts the
observations and the sensor system.

However, the use of web (text) based protocols for sensor
integration has two major drawbacks: (a) limits the kind and
type of devices to use, since text based communication de-
mands of a fair amount of CPU processing to parse the protocol
messages; (b) battery life of the sensors shrinks considerably;
and (3) is not very suitable for low bit rate communications



(e.g. 802.15.4) even in compressed forms (RESTFul, CoAP,
etc.).

Whereas some of the works make a strong point at the
physical/sensing layer (putting aside how the data is gathered
at this level), others tip-toe around this topic and directly start
to define the architecture and mechanisms to store, access,
process or represent such information. The cloud proposal
made by Khan and Kiani [4] emphasizes the contextual-aware
data processing, aimed to deliver the right information to
applications, citizens or any other agent. First, data is classified
into specific thematic categories, then a service composition
layer builds the necessary paths between processing compo-
nents to feed the application service layer which is in charge
of representing such outcomes or perform further contextual
processing for decision-making, for example. Nevertheless, the
intelligence of the platform claimed by the authors is quite
restricted and static since the raw data classification process
seems to be drove by a predefined set of application domains
and no automatic nor run-time service composition means are
referenced, hampering its applicability to dynamic scenarios.

The SOFIA (Smart Objects for Intelligent Applications)
project [5] proposes a service oriented architecture that process
the information coming from the embedded world (as a stream
of events). The architecture for smart city has two main
building blocks: the KBPs (Knowledge-Based Processors) that
process the events and SIBs (Semantic Information Brokers)
that play the role of event channels. There exits a cooperation
between KBs and SIBs and among SIBs in order to build the
necessary semantic net.

As mentioned in the beginning of this section, it is nec-
essary to move to specific application domains to find an
exhaustive analysis of requisites on what a middleware for
smart cities should look like. For example in [6], An agent-
oriented middlewares for distributed smart cameras is pre-
sented. Two aspects are introduced in this work that were not
considered above: dynamic loading/migration of processing
tasks and collaborative work between nodes at the physical
layer. In Civitas, the deployment and operational services [7]
are key since they are tightly related with the dynamics of
the system, its adaptability and maintainability in the the ever
changing smart city environment. It is worth noticing that the
Civitas approach allows spanning the kind and type of sensing
devices that can implement these features due to its minimal
footprint.

Very few approaches for Smart City solutions focus on the
concerns of service developers. In our view, we share with [8]
that this is one of the main challenges, and Civitas is working
for. Service interoperability and deployment mechanisms, for
example, should be open, standard and easy-going, facilitating
the development of smart applications. If the master lines
for smart city software are not devised taking into account
these principles, we will incur in the same mistakes that, for
example, are described by Lee et al. in [8] for the U-Cities
initiative: islands of services that must be later integrated using
a centralized approach.

III. SMART CITY ECOSYSTEM

The ecosystem notion of a smart city is an abstraction that
comprises the IT infrastructure deployed by governmental in-

Fig. 1. Smart city ecosystem

stitutions all over the city, such as semaphores, traffic sensors,
cameras, public wifi networks, etc. The Civitas platform counts
on all these sources of information and actuation as its raw
elements from which smart city operations can be articulated.

In order to fulfill the vision of the future smart city, govern-
ments have to start considering investment in IT infrastructure
as relevant as providing other public services such as street
pavement, public lighting, supply networks, etc. In this sense,
IT infrastructures should be scheduled, designed and deployed
as a basic service.

The picture envisioned in this article sees the Civitas
platform at the core of the IT infrastructure deployed in the
smart city. In this sense, the Civitas platform orchestrates
the different entities connected to the platform such as cit-
izens, companies, homeowners associations, or even public
institutions. The way how any of these entities can connect
to the Civitas platform, and therefore be part of the overall
platform, is through an element known as Civitas plug. A
Civitas plug is a device, properly certified to provide and to
consume information to/from the smart city. The Civitas plug
can therefore be seen as a way of certifying that all consumers
and producers of the smart city hold the appropriate credentials
to do so. Examples of devices that can work as Civitas
plugs include smart phones, residential gateways, company
servers, etc. Depending on the type of device, its conversion
into a Civitas plug can vary from simply installing an smart
phone app to installing a Civitas software manager that enable
additional services to be deployed in that device. In any case,
it is important to highlight that whenever a device is connected
to the Civitas platform, part of the device becomes part of the
smart city platform, as depicted in Fig. 1. More specifically,
from the software layer point of view all these devices have
installed a small run-time middleware application that turns
them into objects of a general object-oriented middleware.

Fig. 1 depicts a simplified version of the envisioned smart
city ecosystem in which the Civitas platform is found at
the core. The Civitas platform is not only fed with external
entities but it also counts on its own entities, referred as
Civitas core nodes. The Civitas core nodes work as servers,



Fig. 2. Smart City district-based infrastructure

generally supported by governmental and public institutions,
in which a wide range of services are deployed, such as
security strategies, public data services, city layout modeling
services, or the platform for deploying services running in
these nodes. More specifically, these nodes provide useful
services to any of the smart city entities. However, the offered
services are not only limited to those provided by public
institutions but, on the contrary, any private company can
also contribute to this core infrastructure according to the
service they provide/require to/from the city. Nonetheless, an
arising issue turns up regarding how communication among
heterogeneous devices and services is supported.

This issue is easily resolved thanks to the abstraction
provided by the middleware layer. From the service developers
point of view, any platform entity is seen as a distributed
object of the object-oriented middleware. In this sense, from
the physical layer point of view, how different devices commu-
nicate each other depends on the specific city communication
network infrastructure. This aspect is however standardized
and made transparent to final service developers, who delegate
that responsibility to the middleware layer.

An additional arising issue is how to deploy the different
Civitas core nodes all over the platform. In this sense, the core
infrastructure should be deployed according to criteria such as
city population distribution, business centers situation, critical
infrastructure, etc. For example, a good criterion could be
dividing the core infrastructure according to the administrative
districts. Fig. 2 represents the layout of a small city, in
which Civitas core nodes have been deployed according to
administrative districts.

Therefore, the Civitas platform is used to communicate,
deploy and manage services from government and companies.
Always keeping in mind the object-oriented model, we will
manage this platform as an IT cloud.

IV. CIVITAS DESIGN PRINCIPLES

This section describes the main design principles and char-
acteristics exhibited by Civitas, as response to the weaknesses
identified in current middleware solutions for Smart Cities,
pointed out in Section II: (1) unsuitability of generic middle-
wares for resource-constrained devices; (2) heavy communica-
tion protocols that, despite being compliant with standards, eats
up an important part of the computing and battery resources
in autonomous systems; (3) limited flexibility, and run-time
management of the platform; (4) absence of intelligence; an
undefined development model and (6) lack of integration of
high performance computing devices (e.g. FPGAs)

These design principles and major characteristics are de-
scribed underneath:

Everything is a software object, from a sensor attached
to a 8-bit processor to a powerful algorithm implemented in
a FPGA. All objects are accessed by an interface which is
invoked throught an efficient binary protocol.

Low footprint of the middleware stack to make it fea-
sible the in-place implementation of Civitas plugs in low-
cost resource-limited devices such as sensors, actuators, WSN
nodes, etc. The functionality of these tailored Civitas plugs do
not differ from other devices or platforms, allowing: direct
communication from/to the Civitas cores or other Civitas
plugs; and hot deployment of service software. Details about
this low-footprint integration can be found in our previous
work [9].

Ad-hoc hardware processing platforms can be used in
Civitas. Special Civitas plugs and cores have been developed
in order to integrate reconfigurable hardware platforms such as
FPGAs (Field Programmable Gate Arrays) in our smart city
middleware. FPGAs adds high performance capabilities to the
Civitas infrastructure. It is then viable in-platform processing
of huge amount of data without a centralized infrastructure
(i.e. data-centers), saving in investments and electricity bill
costs due to the excellent operation per watt and dollar
ratio. Moreover, reconfigurable hardware is flexible and the
algorithms running in it can be replaced in the future, making
it the most of the initial inversion. Hardware in-depth details
about how to integrate a FPGA in a object-oriented middleware
is shown in our previous work [10].

Native support of audio and video sensing platforms
and applications. In this regard, Civitas adds stream-based
communications and a component model to transmit and
process audio/video dataflows.

True intelligence, common sense reasoning. Context-
aware applications and services for smarter cities need a higher
degree of intelligence than the one currently offered by rule-
based systems. Moreover, the latter solutions lacks of the
adaptability to unforeseen situations since it relies on a set
of static, hard coded premises. In Civitas, common sense
reasoning [11] is introduced in some of its services in order
to provide the most appropriate response.

Independence from the city layout. The main goal of con-
ventional middleware is usually to abstract communications,
networks, operating systems, in brief, the platform details in
order to offer a homogeneous view of the IT infrastructure. In



TABLE I. STANDARS AND GUIDELINES USED IN CIVITAS

Format Used for Defined by
Slice language Service interface definition Ice middleware

Mobile Location Protocol Position, areas, polygons, etc. Open Mobile Alliance
ISO 8601 Date and Time ISO

AV-Streams Audio & Video sources Object Management Group
OSM format City layout Community

Civitas, it is introduced a new level of transparency that we
called city layout transparency, which has not been considered
before. City services should not be exposed to the city layout
in order to be deployed or operate in the right geographical
context.

Standarization. Civitas considers the use of existent pro-
tocols and tools whenever its utilization does not break any
of the previous design principles. For example, for all related
with geographic data representation we are based on Mobile
Location Protocol (MLP) from Open Mobile Alliance [12].
However, the aim of Civitas is to define a set of standarized
interfaces and processes for Smart City application develop-
ment. Table I shows some of the standars and guidelines used
in Civitas.

The concept of object is at the foundations of the Civitas
middleware and it has been used to model:

• Functional interfaces. Every entity in Civitas exposes
its functionality as a set of methods regardless its
nature. The access to sensors, actuators, cameras, per-
sons or hardware components in a FPGA is performed
through the invocation of such methods.The interfaces
defined in Civitas are expressed in Slice language.
Slice is an interface description language used in
ZeroC ice [13], a generic object-oriented distributed
middleware.

• Events and channels. Civitas also supports event-
based communication. Event channels are objects that
implements the publish- subscribe pattern. It is worth
noticing that every event is tagged with geopositional
and time information that is used by the brokerage
system for synchronization and delivery optimization
purposes.

• Data-flow processing and composition. In Civitas,
a component infrastructure has been developed to
ease the implementation of data-flow applications or
services such as multimedia streamming or complex
event processing. A component is a stateless objects
with an standarized interface in a certain domain. Data
delivery and synchronization between components is
responsibility of Civitas, freeing the developer of
such task. Therefore, it is easy to build complex and
scalable solutions by means of composition.

• Services. This is the principal developer’s view. A
service is a bundle composed by either a Civitas
component or object, Civitas development process is
explained in detail in section V.

A. Addressing objects and layout representation

From the software developers point of view, any object in
Civitas is identified by an IPv6 address plus object ID. This

Fig. 3. Smart City layer vision

UID is used to locally instantiate a proxy object representing
any distributed object.

In a Smart City, a service is almost always related to a
location and the environment that surrounds it. The description
of space and location is therefore a relevant feature of Civitas.
In this sense, Civitas complies with the OSM format, already
employed in numerous open projects like OpenStreetMap.
Using the same standards as projects as OpenStreets enables
Civitas to get richer information about locations. For example,
in OpenStreetMap project the community agrees on certain key
and value combinations for tags that are informal standards.
This tags allows Civitas to get additional information about
uses of the spaces in the city, type of buildings, limits, etc.

B. Interfaces and service description

As previously stated, a set of simple interfaces are defined
to play the same role that POSIX interfaces play in operating
system market, that is, to homogenize basic service design,
improve the portability and maintainability. We can see an
example of this interface specification:
module Civitas{
module Traffic{

enum State {Red, Yellow, Green};
interface Semaphore{
void setState(State st);

};
...

}

In this sense, any object devoted to control a traffic
semaphore should implement the interface listed above. It is
important to highlight that implementation and communication
details are hidden behind the interface.

Similarly to the interfaces designed for the traffic
semaphore control, Civitas considers additional profiles de-
voted to monitor and manage certain aspects, such as
semaphores, barriers, and sensors for the traffic monitoring
profile. Any manufacturer of semaphores (Civitas compliant)
should implement, embedded in the semaphore, a software
object according to semaphore interface defined in the traffic
management profile. For legacy devices and/or protocols, a
wrapper can be defined in order to integrate in a seamless way,
any device already deployed. Currently, interfaces are being
designed for the following profiles: smart grid, traffic manage-
ment, water flow, environment control, structural monitoring
and security. These profiles will represent different views of a
city (fig 3).

Along with the functional interfaces defined in the profiles
there are two additional common interfaces that have to be



implemented by each relevant object in Civitas. First, a prop-
erty manager interface for accessing the general properties of
the service (e.g manufacturer, version, geographical position,
covered area, etc.). The interface defines methods to access
to the name of the property, its type, its value and security
properties (who has access to consult and/or to modify the
property). Each profile, along with the functional interfaces,
defines a minimum set of characteristics to be defined.

The other interface to be implemented is a Listener one.
Any object interested in a change of the status of a specific
Civitas object which control a, for example, semaphore must
implement its Listener. Additionally, the semaphore object
should implement the SemaphoreAdmin interface to manage
listeners. Both interfaces are defined in the appropriate profile.

Continuing with semaphore example, in the Traffic profile
we can find1:

interface SemaphoreListener{
void Status(State st);

};
interface SemaphoreAdmin {
void addListener(SemaphoreListener* listener);
void removeListener(SemaphoreListener* listener);

};

The idea behind this subscription mechanism is to pro-
vide developers with a generic mechanism to ”listen” what
happens in each object of Civitas. For example, any change
in a semaphore object should be communicated to all objects
subscribed invoking the method Status with the new status.
With this mechanism we also enable a powerful mechanism
for information federation, filter, processing, composition, etc.

V. SERVICE DEVELOPMENT

This section guides the reader through a trip around the
Civitas architecture, and more specifically through a homeland
security related service development.

Figure 4 provides an overview of Civitas under a specific
service development process. The proposed case study con-
siders a scenario in which a service for license plate based
vehicle tracking is required. First, a source of digital images
is required in order to undertake the tracking operation. To
this end, the traffic surveillance cameras are going to be used
as video providers. Once the video images are available, a
hardware version of the image analysis module is employed in
order to determine whether the tracked license plate is present
or no in the analyzed video sequence. Finally, those sequences
in which the tracked license plate is recognized conforms the
video stream sent back to a user device, in which the tracking
is being followed in real time.

From the software developers point of view, the traffic
surveillance cameras belong to the city an therefore any service
intended to access them have to use a universal ID (UID),
currently formed by IPv6 plus object ID. This UID is used to
locally instantiate a the proxy object representing a distributed
object, in this case a camera. In the instantiating process, a set
of credentials have to be provided so that the middleware per-
mits the object instantiating with the appropriate permissions

1For the shake of readability, exception definitions and error management
code have been removed from the interface examples

Fig. 4. General overview of Civitas

based on the security level of the instantiating request. For
example, in this particular case, if the client accessing those
cameras would be the police, their security level would allow
them to change the configuration or properties of the camera.
On the contrary, other clients such as a company providing
traffic congestion free paths services, could not move and/or
zoom the camera.

The interface for controlling the camera is predefined and
compliant with the AV/Stream specification from OMG. The
next issue to take care of is how to integrate the camera video
stream with the algorithm that performs license plate recogni-
tion, for the sake of performance implemented in VHDL. The
developer of the VHDL algorithm is responsible for providing
an interface that abstract the implementation details from those
using the algorithm. This interface is specified using Slice.
This interface is provided to a compiler which automatically
generates a VHDL wrapper for the algorithm. Additionally,
the Slice definition can be used to obtain the proxy object2 to
the license plate recognition algorithm running in the FPGA.
By means of the UID of the algorithm, this can be used as
any other software object.

Finally, it is necessary to implement a visualization tool
to show the tracking video stream in the mobile device used
in this service. Once again, the Sink interface, defined in the
streaming specification as guideline for my viewer, can be
used.

VI. INJECTING COMMON SENSE IN THE MIDDLEWARE

The proposed Civitas framework does not only cope with
service developer issues but it also provides a set of high level
services that can be combined among themselves resulting in
new services with new functionality.

This section describes the process of combining mid-
dleware basic services into more elaborated ones. In this
sense, the proposed approach overcomes the limited classic
approaches for service composition such as web services,
service input/output pattern matching, or rule-based systems.
On the contrary, it advocates for a more flexible and intelligent
strategy based on a common-sense knowledge strategy to
drive the composition process. The work in [14] provides a
thorough description of the employed solution. For the sake of

2In java, python, C++, etc.



simplicity, this section focuses in describing how a common-
sense knowledge supports the service composition process.
In order to do so, a case study is employed to drive the
explanation.

The case study describes the same scenario presented in
previous section, in which a license plate tracking service is
required and no specific basic service exists to do so. However,
the Smart City counts with enough resources to undertake such
task, such as video cameras and a license plate recognizer
system. The combination of both services can give rise to a
new service to fulfill the license plate tracking service. It is
tempting to think that this type of situation can be addressed
by providing the middleware with a list of basic service that
when combined provide new functionality. This solution would
suffice to recognize license plates in video streams, but it will
fail to track a specific subject. To do so, a more intelligent
solution has to be worked out.

It has to be highlighted that the proposed solutions resorts
to a reasoning engine capable of combining information about
the city, such as sensor locations and capabilities or street
maps, with high level information about how the work works,
so called common sense. This combination of information
enables the reasoning engine to devise a solution to track
license plates based on the knowledge it holds about the video
camera locations and how a car movement is ruled.

The common-sense law of inertia is an example of rule
that describes how the world works. This rule states that
objects tend to remain in the same state until affected by
an external action. In this sense, if the car is moving in one
direction it tends to continue moving in the same direction.
This rule is combined with the rule that relates movement,
space and time so that the location of a moving object can
be calculated based on its speed, direction and its original
location. These and similar rules are generally referred as
common-sense knowledge. These rules enable the system to
identify the specific video camera in which range the license
plate is going to appear. If the car makes a turn, the system
is still able of figuring out the new location. When the
license plate is not recognized in the video stream in which
it was expected, the system recalculates the possible locations
given the last known position, the possible street directions,
and the car speed. However, these operations are not hard-
coded in the middleware. On the contrary, the common-sense
reasoning engine counts on a description of how physical
systems behaves and evolves. This information is what entitle
the reasoning engine to track a moving object through the
camera network or CCTV that populates the city.

VII. CONCLUSION

In this paper we presented our ongoing work achieved to
design a middleware for smart cities. In summary, Civitas:

• integrates devices ranging from small footprint devices
to flexible hardware devices (e.j FPGA).

• develops a set of profiles to create common POSIX-
like interfaces for developers

• proposes a set of standards and tools that can be the
vertebral column of the future smart cities ecosystems.

• includes common sense reasoning services in the
middleware simplifying developers design.

The current effort is focused on creates a sandbox to
provide developers a safe environment for developing and
testing services. Also the security model has to be designed
since, privacy issues regarding citizens, has to be considered
carefully.

ACKNOWLEDGMENT

This research was supported by the Spanish Ministry of
Science and Innovation and CDTI through projects DREAMS
(TEC2011-28666-C04-03), ENERGOS (CEN- 20091048) and
PROMETEO (CEN-20101010).

REFERENCES

[1] M. Naphade, G. Banavar, C. Harrison, J. Paraszczak, and R. Morris,
“Smarter cities and their innovation challenges,” Computer, vol. 44,
no. 6, pp. 32–39, June.

[2] A. L. Tu”n, H. Quoc, M. Serrano, M. Hauswirth, J. Soldatos, T. Pa-
paioannou, and K. Aberer, “Global sensor modeling and constrained
application methods enabling cloud-based open space smart services,”
in Ubiquitous Intelligence Computing and 9th International Conference
on Autonomic Trusted Computing (UIC/ATC), 2012 9th International
Conference on, Sept., pp. 196–203.

[3] M. Fazio, M. Paone, A. Puliafito, and M. Villari, “Heterogeneous
sensors become homogeneous things in smart cities,” in Innovative
Mobile and Internet Services in Ubiquitous Computing (IMIS), 2012
Sixth International Conference on, July, pp. 775–780.

[4] Z. Khan and S. Kiani, “A cloud-based architecture for citizen services
in smart cities,” in Utility and Cloud Computing (UCC), 2012 IEEE
Fifth International Conference on, Nov., pp. 315–320.

[5] J. Wan, D. Li, C. Zou, and K. Zhou, “M2m communications for
smart city: An event-based architecture,” in Computer and Information
Technology (CIT), 2012 IEEE 12th International Conference on, Oct.,
pp. 895–900.

[6] M. Quaritsch, B. Rinner, and B. Strobl, “Improved agent-oriented mid-
dleware for distributed smart cameras,” in Distributed Smart Cameras,
2007. ICDSC ’07. First ACM/IEEE International Conference on, Sept.,
pp. 297–304.

[7] B. Rinner, M. Jovanovic, and M. Quaritsch, “Embedded middleware on
distributed smart cameras,” in Acoustics, Speech and Signal Processing,
2007. ICASSP 2007. IEEE International Conference on, vol. 4, April,
pp. IV–1381–IV–1384.

[8] C. Lee, S. Baik, and C. Lee, “Building an integrated service man-
agement platform for ubiquitous cities,” Computer, vol. 44, no. 6, pp.
56–63, June.

[9] F. Moya, D. Villa, F. J. Villanueva, J. Barba, F. Rincn, and J. C.
Lpez, “Embedding standard distributed object-oriented middlewares
in wireless sensor networks,” Wireless Communications and Mobile
Computing, vol. 9, no. 3, pp. 335–345, 2009.

[10] J. D. Dondo, J. Barba, F. Rincn, F. Moya, and J. C.
Lpez, “Dynamic objects: Supporting fast and easy run-time
reconfiguration in fpgas,” Journal of Systems Architecture,
vol. 59, no. 1, pp. 1 – 15, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1383762112000860

[11] S. Fahlman, “Marker-passing inference in the scone knowledge-base
system,” in First International Conference on Knowledge Science,
Engineering and Management (KSEM’06). Springer-Verlag (Lecture
Notes in AI), 2006.

[12] O. M. Alliance, “Mobile location protocol,” Open Mobile Alliance,
Tech. Rep., 2011.

[13] M. Henning, “A new approach to object-oriented middleware,” IEEE
Internet Computing, vol. 8, no. 1, pp. 66–75, 2004.

[14] M. J. Santofimia, S. E. Fahlman, X. del Toro, F. Moya, and J. C. López,
“A semantic model for actions and events in ambient intelligence,” Eng.
Appl. of AI, vol. 24, no. 8, pp. 1432–1445, 2011.


