
Off-the-shelf Embedded Middleware Solution for
UAVs HW-SW Platform Development
J. Barba, F.J. Villanueva, M. J. Abaldea, D. Villa, O. Acena and J. Carlos López

ARCO Research Group. School of Computer Science.
University of Castilla la Mancha. Ciudad Real (Spain)

Email: jesus.barba@uclm.es

Abstract—In this paper a Commercial-off-the-Self (COTS)
platform for Unmanned Aerial Vehicles (UAV) is presented. The
goal of this work is to provide the industry with a flexible and
efficient solution to smooth the integration and heterogeneous de-
velopment challenges in this scenario. On one hand, the proposed
platform enables transparent and efficient interaction with the
control station implemented in ZeroC Ice. On the other hand,
the proposed approach abstracts both embedded and desktop
software developers from the platform details. A customized
hardware-software layer assures a high-level, efficient reliable
communication while a complete tool-chain automatizes the
generation of application specific code, reducing the development
time.

Index Terms—Middleware; UAV; ZeroC-Ice; Hw-Sw Integra-
tion;

I. INTRODUCTION

Unmanned Aerial Vehicles (UAV) are extending its appli-
cation field from military scenarios to civil applications [1].
The domain of civil UAV applications is dominated by low-
cost vehicles which are devoted to specific tasks like smart
agriculture [2], smart city [3], rescue tasks [4], etc. These
type of UAVs usually rely on an embedded board with key
features such as low-weight and low power consumption so
as to extend UAV operation lifetime.

One of the most promising approaches for next-generation
UAV on-board platforms is the use of hybrid systems where
micro-controller and reconfigurable logic come together, for
example. These type of boards are flexible enough to support
a wide range of application fields, ranging from vision-
based applications - where FPGAs (Field-Programmable Gate
Array) can apply their computing power to avoid sending raw
multimedia data through the wireless link - to sensor-based
applications, cryptography, etc.

In this paper an object-oriented software platform for UAV
application development is introduced.

The main contributions of our work are:
• Seamless integration of application specific hardware and

software components which eases the development of
hybrid systems. This is achieved because of the use of a
common, high-level model which abstracts our platform
functionality (either hardware or software) as a series of
objects.

• Reduction of the development time. The developer is
provided with a toolchain (interface definition language

and interface compiler) which automatizes the generation
of the integration infrastructure.

• Optimal and efficient implementation of the middleware
engine. Traditional distributed object-oriented frame-
works require excessive resources for most of the UAV
HW platforms. As it will be shown later, the footprint of
the core components is minimized in order to fit in the
smallest embedded boards.

The remainder of this article is organized as follows.
Next section describes the state of art in UAV application
development and also establishes a set of requirements for a
software platform in this application field. Section III and IV
thoroughly describes the proposed architecture along with in-
terface specification and development process. In section V the
communication engine called IceC is described. Finally, some
of the most relevant quantitative and qualitative aspects of the
prototype are described, along with the main conclusions.

II. PREVIOUS WORKS

There are a great market opportunity and a lot of companies
are setting up their own platforms to support UAV applications.
As consequence of this great expansion of these type of
vehicles, there is a lack of embedded standard computing
platforms for UAV app development.

Already in 2001, Boeing realized the need of a middleware
for this type of vehicles, in [5] Boeing proposes an Open
Control Platform (OCP) in order to deal with UAV control
tasks. OCP uses ACE (Adaptive Communication Environment)
an TAO (an ACE ORB) for flight control tasks modeling
following the CORBA model. A similar approach is followed
in [6]. We agree in this object-oriented vision but we extend
to HW components in order to deal with HW implemented
algorithms (e.g a vision-processing VHDL algorithm) like any
other software object in a transparent way.

The component model also has been applied to UAV market.
In [7] a C++ component-based middleware is developed
providing with components related mainly with flight mission.
Again there is a lack of a toolchain in order to automate the
work in application specific components or any reference to
HW component integration.

The service-oriented middleware (SOM) has been proposed
for UAV development, in [8] an exhaustive listing of needed
services for UAV application development is elaborated. In



spite of the well-know set of benefits of SOM (quite similar
to object-oriented middleware) in terms of software reuse and
time-to-market reduction, there is no specific proposal in this
work about toolchain or specific interfaces so it is about a
top-level design exercise.

Data Distribution Service (DDS) from Object Management
Group (OMG) [9] is used in the UAV field. When commu-
nications or interaction between components are stateless is a
good approach however when we have to model more complex
interactions with state, this approach doesn’t fit with this type
of applications.

Specific middlewares have been developed for specific tasks
(coordination functions [10], avionics subsystems [11], etc.),
we are more devoted to design a generic middleware providing
guidelines and tools for implement any type of functionality.

None of the middlewares presented in this section have
considered hybrid platforms or how to integrate HW com-
ponents. We consider that there is a lack of solutions for this
type of platforms which will play a key role in future UAV
development.

Our motivation is to build a middleware with:
• Focus on hybrid platforms e.g. support hardware compo-

nents and with transparent integration with the rest of the
infrastructure.

• A well-defined set of interfaces as guideline for develop-
ers but providing the flexible reusability to adapt to each
specific application.

• A toolchain for automatic stub and skeleton generation to
reduce the error-prone tasks of communication between
components of the system (e.g UAV to ground station)
and for interaction between SW and HW components.

• Support for a efficient, commercial, legacy object-
oriented middleware. In order to avoid reinventing the
wheel effect, ZeroC Ice [12] is used as the starting point.
The idea is to integrate the UAV control and communi-
cation operations as another remote object in the system.
Thus, the application running in the ground station, could
access the services provided by the UAV in a transparent
way, using the standard middleware mechanisms.

How to fit all these requirements is a cross-layer challenge
that it has not been addressed by previous works.

III. UAV EMBEDDED PLATFORM

Although many of the concepts and modules developed in
our solution are platform agnostic, we set the Silica Xynergy
board as the initial target for our solution. The reasons behind
this election stem from lessons learned in a former versions
of the UAV-platform and the evolution of the application re-
quirements. Among this requirements, it is worth noting: cost-
reduction, high-performance computing capabilities, a lower
power budget to increase flying time and a reduction of the
overall weight of the solution.

The Xynergy board is a heterogeneous platform which
consists of a ARM Cortex-M3 based STMicroelectronics
controller and a low-cost FPGA from Xilinx. Due to a rich
collection of dedicated and general I/O ports and built-in

protocol interfaces, the Xynergy board is suitable for a wide
range of applications.

The FPGA fabric, a Spartan-6 chip, is tightly coupled to
the ARM controller and is intended to hold Hw accelerating
blocks for computing intensive applications: video, digital
filtering, cryptography, etc. FPGA technology provides a close
to custom hardware performance while being able to change
their behavior through time.

The development of applications and custom IP (Intellectual
Property) cores for the Xynergy board can be accomplished
by means of off-the-shelf tools freely available for multiple
platforms.

A. Hardware support

In this section, a description of the System-on-a-Chip de-
ployed in the FPGA fabric is presented. The role of the
reconfigurable device is multiple and comprises:

• Interface between the DDR3 RAM memory and the ARM
controller which has no other mechanism to access the
data.

• Accelerator of computing intensive functions by means
of dedicated hardware.

• Communication manager through a tailored hardware
controller.

Fig. 1. Architecture of the SoC deployed in the Spartan-6 FPGA to support
UAV embedded operations.

Figure 1 graphically represents the main modules and the
architecture of the hardware infrastructure which supports the
above-mentioned functionality.

The FSMC (Flexible Static Memory Controller) bridge
implements a translator between the NOR/SRAM memory
access protocol and the in-house internal bus protocol.

The DDR3 access has been implemented using the Xilinxs
Multi Port Memory Controller core, configuring a minimum
of two 64-bit NPI ports depending on the number of cores that
must have access to the RAM memory.

The modem controller abstracts the access to the radio/wifi
modem providing the same low-level operations for modem
configuration and data transmission/reception (i.e. source and
target MAC addresses, reset, baud-rate, memory map, etc.).



The controller logic generates the corresponding AT com-
mands to the network modem which is connected to the FPGA
via a serial link.

Finally, several IP cores can be instantiate whenever there
were available resources in the FPGA. The functionality of
each core may vary depending on the application, but the
interface to the rest of the system remains unaltered.

Low-level Hw-Sw interfacing: Communication between the
software routines and the hardware components is imple-
mented through a register-based interface and an interrupt
mechanism. First, 16 memory words are assigned to the
control and configuration registers for each processing IP core.
Then, one or more memory blocks are assigned to the hard-
ware cores. The number and the size of the blocks is defined
by the application developer at design time. These memory
blocks are used as input/output buffers where processing cores
will write the data produced as the result of their operation or
read the input data to be processed. Thus, it is established
a producer-consumer integration pattern between the involved
pairs in the communication process.

The core bus wrapper decodes the addresses only within
the control and configuration memory range. The content of
the buffer memory can be accessed through the memory con-
troller by the software routines but not through the individual
core wrappers. Processing IPs are configured with the base
addresses for their respective input/output buffers.

The modem controller is an example of processing core.
Configuration and control operations are done by means of
regular write and read FSMC primitives. The FSMC bridge
translates them into bus transactions and the register content
is written or read. To send a data packet via the radio interface,
the processor writes the content of the packet in RAM memory
and then signals the core via a write operation that the packet
is ready to be sent. The value to write indicates the modem
controller the total size in bytes of the packet. Once the packet
has been sent, the modem controller triggers an interrupt that
wakes up a service routine responsible for checking error
conditions.

The receive operation for a data packet works conversely;
first the modem controller signals the processor via an interrupt
that a new packet is ready to be processed. The modem
controller will have written the content of the packet in main
memory, into the output buffer region assigned. The service
routine will, finally, process the incoming packet.

IV. SOFTWARE PLATFORM

The FPGA SoC, previously described, provides the UAV
platform with hardware support for essential services such as
external data storage and efficient radio packet management.
Also, a placeholder for UAV hardware-accelerated functions
and a protocol to access them and manage the movement of
the data is available to developers.

Based on a traditional register/memory mapped approach,
a layered software infrastructure has been built firstly. The
ultimate goal is to abstract all the communication details to
the application level so that the embedded software developer

will only have to deal with a set of high-level, automatically
generated software routines.

The µC/OS-II operating system is at the basis of the
software stack due to its low footprint, real-time and task
model features.

In figure 2, the reader can find a representation of the whole
software architecture for the middleware infrastructure.

Focusing on the physical and transport layers, a customized
FSMC driver has been coded in order to be compliant with
the functional specification of the FSMC bridge; providing
read and write primitives to access the DDR3 and radio IPs.
The radio driver is a standalone task in charge of transferring
packet fragments from/to the DDR3 memory and provides the
next layer in the hierarchy (reliable network layer) with send
and receive primitives.

A send operation copies the packet fragment in the output
buffer assigned to the radio controller and then signals the
hardware to read it from memory and transfer to the radio
interface. The radio driver manages the DDR3 output buffer
as a circular buffer using a fixed size vector with all the
necessary control information. A receive operation exposes
a bit more complex behavior. Once the radio controller has
finished writing a packet fragment in its DDR3 input buffer, it
raises/triggers an interrupt that is trapped by the radio driver.
Depending on the nature of the packet, the radio driver must
generate either the acknowledge messages (a new fragment has
been received) or update the sending status of a packet (when
an acknowledge has been received) which will be interpreted
by the reliable network protocol layer later on.

The network layer implements a reliable transmission pro-
tocol since it is foreseen the use of restrictive wireless links
for UAV to ground communication. The IEEE 802.15.4 RFC
[13] has been considered for its use in the implementation
of the first prototype of the UAV platform. This standard is
suitable for low-cost and low-power wireless communications
at the price of a low-bandwidth and small MTU (Maximum
Transmission Unit). The overhead per fragment is small (just
4 or 5 bytes) together with an acknowledge message that is
generated by the receiver when a fragment is processed.

Although µC/OS-II comes with a implementation of the
TCP/IP protocol stack, the requirements for the envisioned
UAV platform open the door to the usage of a simpler and less
resource demanding network protocol. So far, only point-to-
point communication is required so it is only needed a reliable
mechanism to fragment and reassemble application packets,
which are likely not to fit into the physical MTU, leaving out
all aspects regarding the routing of packets.

A. IceC and application layers

From the application’s point of view, the embedded software
developer might make use of the reliable send and reliable
receive primitives which are part of the API exposed by the
reliable network layer. However, in order to ease the integra-
tion and access of functionality from ground to UAV and vice
verse, the UAV programmer is provided with the same system
abstractions, work-flow and tools as the ones already available



IceC Runtime

Radio Driver

uC/OS-II

Client

Task
Server

Task

Proxy Skeleton

IceP

messages

FSMC

Driver

FPGA SOC 

S
T
M

3
2

 A
R

M
 C

O
R
T
E
X

-M
3

Fig. 2. Functional decomposition of the developed layered middleware
infrastructure.

in communication middlewares for networked systems. As a
result, no special training nor skills are needed, leveraging
previous background on distributed system application devel-
opment.

The embedded IceC 1 layer is the key element to make the
magic happen. IceC is a lightweight implementation of IceP,
the standard protocol of ZeroC Ice middleware2. Therefore,
our UAV embedded platform is fully compatible with other
ZeroC compliant systems.

The only requirement is to reach an agreement on the
definition of the services to be implemented. Since ZeroC Ice
features an object-oriented model, the service declaration con-
sists in a list of method and user-defined data type definitions.
To this end, the developer uses a straightforward Interface
Definition Language called Slice.

As an example, Figure 3 shows a fragment of a simplified
Slice definition of the communication interface used between
the Ground Station (Station interface) and the UAV (Vehicle
and HwProcessingEngine interface). When it comes to the
specification of functionality which is going to be implemented
as a hardware module, the interface specification must be
tagged with the [”:hw”] meta-data directive.

At this point, the Slice definition is processed by a home-
made interface compiler which generates a set of functions
providing the high-level, object-oriented stylish API to the
application programmer. This functions or communication
stubs (namely, proxies and skeletons) interact both with the
client, server tasks and the IceC runtime so as to progressively
translate the invocations into Ice Protocol messages to be sent
through the radio interface.

1IceC source code is available at:
https://bitbucket.org/arco_group/icec

2http://www.zeroc.com

module Autopilot {
enum TypeCode {
boolT, intT, uintT, floatT, timevalT, byteseqT, stringT

};
[...]
sequence<byte> ByteSeq;
struct Param {

ParamId id;
TypeCode type;
ByteSeq data;

};
sequence<Param> ParamSeq;

[":hw"] interface HwProcessingEngine {
void setParameterA(short value);
void startProcessing(void);
void getResult(ResultType *res);

};

interface Vehicle {
bool isAlive(short sessionId);

};

interface Station {
void vehicleState(Vehicle* uav, ParamSeq params);

};
};

Fig. 3. Example of Slice specification for IceC.

V. DEEPLY EMBEDDED MIDDLEWARE

This section aims to provide an insight into the architecture
and implementation details of the IceC engine. The IceC
runtime layer is a minimal realization of the ZeroC Ice
middleware, optimized for our UAV platform needs. In order to
keep the compatibility with ZeroC Ice PC-based applications
(the target platform for the Ground Station logic) and maintain
the same philosophy and work-flow in the UAV side, several
extensions and engineering works has had to be carried out.

First and foremost, the development of the main architec-
tural components of the commercial version following a low-
footprint policy. The layer IceC comprises the core elements
such as Communicator, Object Adapter, Servant Management,
Connections and other helper functions. As a result, a complete
static ad-hoc implementation of the principal ZeroC features
has been obtained using ANSI C (C90 standard) which allows:

• An impressive reduction of the memory requirements.
• Being supported by Keil compiler for ARM, the IDE used

to develop the embedded software.
• The resulting application to be potentially certificated

when real-time restrictions apply.
Second, the implementation of a transport specific config-

urable plugin (PC and UAV) for the xbee connection: the
xbee-at endpoint. This was necessary due to the following
reasons: (a) Xbee is the choice for UAV-Ground Station
radio link; and (b) is a necessary step in order to make it
usable conventional ZeroC Ice vendor-libraries, tools and C++
bindings over GNU/Linux.

And last but not least, the definition of a mapping of the
ZeroC Ice Protocol for ANSI C language which did not exist
before. This step comprises a set of rules and languages
equivalences to transform Slice grammar and semantics into
C structures. As a starting point, CORBA C language Map-
ping Specification [14] and conventions used in the Ice C++



mapping were taken into account. The result of all this work
is a fully new language binding together with a interface
compiler which generates the middleware stubs responsible
for the marshalling and unmarshalling processes.

As mentioned in the previous section, these communication
stubs depend upon the Slice definition and they are produced
specifically for an application in an automatic way.

static void Autopilot_Vehicle_vehicleState(
Autopilot_StationPrxPtr this,
Autopilot_VehiclePrxPtr uav,
Autopilot_ParamSeq params){

Ptr_check(this);

Ice_ObjectPrx_connect(this);
Ice_OutputStreamPtr os = &(this->stream);

/* request header */
Ice_OutputStream_writeBlob(os, Ice_header,

sizeof(Ice_header));
Ice_OutputStream_writeIdentity(os, this->identity);
Ice_OutputStream_writeString(os, "vehicleState");
[...]

/* encapsulated params */
Ice_OutputStream_writeShort(os, sessionId);
Ice_OutputStream_writePrx(os, uav);
Autopilot_ParamSeq_writeToOutputStream(&(params), os);
Ice_OutputStream_setMessageSize(os);

Ice_ObjectPrx_send(this);
}

Fig. 4. IceC generated code for a proxy.

Figure 4 shows and example of the generated ANSI C
code for the vehicleState method defined in Figure 3, Section
IV-A. This function is a proxy to the actual functionality
implemented as a server in the Ground Station. The client
task, which runs in the UAV, only needs to call the procedure
as it is defined by its signature.

By means of a set of utility functions implemented in
the core of IceC middleware, the different parts of an IceP
messages are generated and all the parameters serialized and
stored in memory through the Ice OutputStream object. This
object is a high-level abstraction of the memory write buffers,
where the IceP messages are temporally held before they are
sent. For each user data type defined in Slice (i.e. ParamSeq)
a pair of functions are also generated which knows how to
marshall and unmarshall such data type, according to the
Slice (Autopilot ParamSeq writeToOutputStream) definition.
Finally, the built message is sent out to the network using
the reliable send primitive provided by the network layer.

Client-server communication between UAV and ground
station is performed by referring to remote objects. Coding
in the UAV must be programmed in ANSI C (for µC-OSII)
but for the ground station we have the flexibility to use any
programming language supported by ZeroC Ice.

Figure 5 shows the code for the server running at the UAV
platform (upper half) and the code of the corresponding client
executing on a standard PC written in Python (lower side). The
objects that we can be identified are: (a) the communicator is
part of the middleware core library and represents the object
broker in ZeroC Ice parlance; (b)the PROXY and HWOBJECT

void Autopilot_HwProcessingEngine_setParam(short value){
//servant goes here, registers acces through FSMC iface
FSMC_write(...)
[...]

}
void Autopilot_HwProcessingEngine_startProcessing(void){
//servant goes here, registers acces through FSMC iface
FSMC_write(...)
[...]

}
void appMainTask (void) {
XBeeInitTypeDef xbeeConf = {XBEE_BD_115200,0x0000,0x0000};
Ice_Communicator ic;
Ice_ObjectAdapter adapter;
Autopilot_HwProcessingEngine servant;

xbeeInit(&xbeeConf);
Ice_initialize(&ic);
XBeeATEndpoint_init(&ic, "xbee-at");

Ice_Communicator_createObjectAdapterWithEndpoints(&ic,
"Adapter", "xbee-at", &adapter);

Ice_ObjectAdapter_activate(&adapter);
Autopilot_HwProcessingEngine_init(&servant);
Ice_ObjectAdapter_add(&adapter,

(Ice_ObjectPtr)&servant,
"hwengine1");

Ice_Communicator_waitForShutdown(&ic);
[...]

}

class Client(Ice.Application):
def run(self, args):

ic = self.communicator()
proxy = ic.stringToProxy(’hwengine1 -o:xbee-at’)
hwobject = Autopilot.HwProcessEnginePrx.uncheckCast(proxy)

paramValue = 0

hwobject.setParameterA(paramValue)
[...]

Fig. 5. UAV embedded server (ANSI C for µC-OSII) and Python client
(ground station)

are a local references of remote objects. In the first lines
of the program, the necessary declarations are made and
configuration and initialization of the XBee modem takes place
as well. Following, the Ice Communicator is created, setting
“xbee-at” as the endpoint to use3. Finally, the objects and
references to objects needed by the application are got and
the data structures containing the parameters to send are filled
out before invoking the SETPARAMETERA remote method.

In this scenario, the server requires of the
ICE COMMUNICATOR object (already explained), the
ADAPTER and the SERVANT. The ADAPTER provides
visibility to the objects registered by the server, exposing
their functionality to the rest of the network. A SERVANT is
the piece of code which actually implements the functionality
of the interface.

In this example, the reader can identify the interface Hw-
ProcessingEngine which corresponds to an simplified example
of a possible hardware object running on the FPGA platform.
For each method declared in the Slice file for such interface

3XBee-AT endpoint implementation is available at
https://bitbucket.org/arco_group/xbee-at-endpoints/



a function is generated which represents the API to be used
from the ground station to, for example, setting up the algo-
rithm parameters (i.e. setParameterA) or start the accelerating
function.

VI. RESOURCE USAGE

The implementation of the UAV embedded platform de-
scribed in the preceding sections has been carried out focusing
in size optimizations.

TABLE I
SYNTHESIS RESULTS FOR THE FPGA SOC.

Resource Total amount
Flip Flops 1537 (8%)

LUTs 1728 (18%)
Slices 772 (33%)

Table I summarizes the total amount of FPGA resources
used by a basic configuration of the UAV SoC. It is only
considered the FSMC bridge, the Memory Controller and the
Radio IP. More than two thirds of the reconfigurable logic area
is available for user application purposes. The results have
been obtained with the ISE Design Suite 11.3 from Xilinx,
targeting the XC6SLX16 Spartan-6 chip. The design runs at a
clock frequency of 100Mhz but the FSMC interface is limited
by the Xynergy board to 25Mhz which represents a serious
bottleneck.

TABLE II
SIZE IN BYTES OF THE DIFFERENT SOFTWARE LAYERS.

Code Size Subsystem
1116 FSMC Driver
1795 Radio Driver
1307 Network Layer
2622 IceC

Concerning the footprint in memory of the developed soft-
ware stack, the results shown in table II confirm the high
compactness of the solution with a total size of approximately
just 7 KB. The generation of the object code has been done
using the integrated compiler from the µVision IDE from
Keil with the highest optimization level and disabling the
debugging symbols.

It has not been considered the inclusion of the memory
overhead due to the IceC communication stubs. Since these
pieces of generated software are application dependant, there
is no impartial way to measure the impact in general terms.
For the same reason, no timing analysis has been taken into
account in this work.

VII. CONCLUSION

HW-SW hybrid boards are emerging platforms for UAV
applications, however there is a lack of solutions/tools for
developing on these type of platforms.

In this paper, it has been dissected the architecture and im-
plementation details of a tailored middleware infrastructure for
hybrid embedded system. With extremely little resources, it is

assured the compatibility with standard ZeroC Ice subsystems.
No special tools, languages or design skills are required in
order to integrate HW or SW components with our solution
into an object-oriented networked system. The application use
case, ground to UAV communication, introduces additional
challenges which are faced using a combination of hardware
and software.

From an industrial point of view, apart from certification
issues, our current efforts are devoted to extend the number
of heterogeneous embedded platforms and legacy middlewares
supported which can integrate in IceC.

ACKNOWLEDGMENT

This work has been partly funded by the Spanish Ministry
of Economy and Competitiveness under project REBECCA
(TEC2014-58036-C4-1-R) and by the Regional Government
of Castilla-La Mancha under project SAND (PEII-2014-046-
P).

REFERENCES

[1] AIA, “Unmanned aircraft systems: Perceptions & potential,” Aerospace
Industries Association, Tech. Rep., 2013.

[2] J. Barcelo-Ordinas, J. Chanet et al., “A survey of wireless sensor
technologies applied to precision agriculture,” in Precision agriculture
13, J. Stafford, Ed. Wageningen Academic Publishers, 2013, pp. 801–
808.

[3] F. Mohammed, A. Idries et al., “Opportunities and challenges of using
uavs for dubai smart city,” in New Technologies, Mobility and Security
(NTMS), 2014 6th International Conference on, March 2014, pp. 1–4.

[4] P. Doherty and P. Rudol, “A uav search and rescue scenario with human
body detection and geolocalization,” in AI 2007: Advances in Artificial
Intelligence, ser. Lecture Notes in Computer Science, M. Orgun and
J. Thornton, Eds. Springer Berlin Heidelberg, 2007, vol. 4830, pp.
1–13.

[5] J. Paunicka, B. Mendel, and D. Corman, “The ocp - an open middleware
solution for embedded systems,” in American Control Conference, 2001.
Proceedings of the 2001, vol. 5, June 2001, pp. 3445–3450 vol.5.

[6] J. Paunicka, D. Corman, and B. Mendel, “A corba-based middleware
solution for uavs,” in Object-Oriented Real-Time Distributed Computing,
2001. ISORC - 2001. Proceedings. Fourth IEEE International Sympo-
sium on, May 2001, pp. 261–267.

[7] J. Kwon and S. Hailes, “Mirea: Component-based middleware for
reconfigurable, embedded control applications,” in Intelligent Control
(ISIC), 2010 IEEE International Symposium on, Sept 2010, pp. 2385–
2390.

[8] P. Royo, J. Lpez et al., “Service abstraction layer for uav flexible
application development,” in Proceedings of the 46th AIAA Aerospace
Sciences Meeting and Exhibit. Reno, Nevada (USA): AIAA, Jan 2008.

[9] G. Pardo-Castellote, “Omg data-distribution service: Architectural
overview,” in Proceedings of the 2003 IEEE Conference on Military
Communications - Volume I, ser. MILCOM’03. Washington, DC, USA:
IEEE Computer Society, 2003, pp. 242–247.

[10] M. Tortonesi, C. Stefanelli et al., “Multiple-uav coordination and
communications in tactical edge networks,” Communications Magazine,
IEEE, vol. 50, no. 10, pp. 48–55, October 2012.

[11] E. Santamaria, P. Royo et al., “Increasing uav capabilities through
autopilot and flight plan abstraction,” in Digital Avionics Systems Confer-
ence, 2007. DASC ’07. IEEE/AIAA 26th, Oct 2007, pp. 5.B.5–1–5.B.5–
10.

[12] M. Henning, “A new approach to object-oriented middleware,” IEEE
Internet Computing, vol. 8, no. 1, pp. 66–75, 2004.

[13] G. Montenegro, N. Kushalnagar et al., “RFC 4944 – transmission of
IPv6 packets over IEEE 802.15.4 networks,” IETF RFC.

[14] C Language Mapping Specification, Object Management Group, June
1999.


