
A Semantic Middleware Architecture for Supporting
Real Smartness

Maria J. Santofimia∗, David Villa∗, Felix J. Villanueva∗, Soledad Escolar†, and Juan Carlos Lopez∗
∗School of Computing Science, University of Castilla-La Mancha, Ciudad Real, Spain.

†Institute of Technology and Information Systems, Ciudad Real, Spain.
Email: {mariajose.santofimia, david.villa, felixjesus.villanueva, soledad.escolar, juancarlos.lopez}@uclm.es

Abstract—Smart environments, enabled by the Internet of
Thing (IoT) paradigm, advocate for more intelligent and in-
terconnected systems, electronic devices, tools, and appliances.
While most efforts are nowadays addressed to provide connec-
tivity or smartness to IoT devices, unfortunately, few have realised
the importance of supporting automatic service composition and
service reconfiguration capabilities at middleware level. Due to
the openness that characterise such environments, the range of
possible interactions and available services and devices cannot
be totally defined nor prescribed in advanced. This uncertainty
demands mechanisms to dynamically adapt existing systems, and
their functionality, to address unforeseen needs. In order to do
so, a general understanding of contexts, services, and device
capabilities is needed. From that understanding, new responses
can be automatically devised on run-time. This paper presents
a semantic middleware specifically devised to support automatic
and autonomous service reconfiguration and composition. The
novelty consists in moving the semantics, traditionally held at the
programming-interface level, to a common-sense knowledge-base
system, with higher expressive power and reasoning capabilities.

I. INTRODUCTION

The middleware technology gained more importance as ap-
plications were involving more distributed and heterogeneous
devices and services. The middleware layer was originally
devised to provide an abstraction layer, with mechanisms and
tools, that simplified the way how these elements connect and
communicate. The advent of paradigms such as the Internet
of Things (IoT) or Internet of Everything (IoE) brought
about new challenges that extended those previously faced by
traditional middleware technologies [1] demanding appropriate
responses.

The IoT faces two important challenges: on the one hand,
enabling seamless communication and interconnection of de-
vices, services, or object in general and, on the other hand,
to digest and understand the vast amount of unstructured
data generated by these networks. Interoperability support is
grounded in the IoT protocol stack but, eventually, depends
on the rules that determine how devices or services might
communicate. Similarly, the data gathered by IoT devices
need to be semantically enriched in order to extract structured
knowledge from them.

The work in [2] summarises the most relevant approaches
that, to the date, have been proposed for information retrieval
in IoT, claiming the need to provide semantic awareness [3] in
the IoT. Sowa proposed in [4] analysing the notion of context
from a triple dimension involving its syntax, semantics, and

pragmatics. The majority of the work founds in the literature
only concerns one of such dimension, leading to partial
meaning being captured. In this sense it is common to find
semantic middlewares that simply consider an ontology [5] in
the sense of a taxonomy. Some other works like [6] extend
that taxonomy to consider relationships, as a proper ontology,
using to this end description logics. However, their expressive
power do not exceed that of first-order logic. The work in
[7] provides a complete list of state-of-the-art approaches for
semantic normalisation along with a new proposal. These
methods succeed in addressing the semantic dimension but
overlooked the syntax and pragmatic ones.

Providing semantics to IoT objects and data should therefore
be addressed from the same triple dimension identified by
Sowa and applied to smart spaces in [8]. In the application
of this triple perspective, the use of common-sense knowledge
is essential. Minsky [9] considered that the lack of common
sense is responsible for the deficiencies of current computa-
tional systems. In this sense, he criticised three aspects of
current programs. The first issue is the lack of common-sense
knowledge and the skills required to use such knowledge. For
example, from the fact that a parcel is tied up with a string,
there are many obvious facts that are straightaway associated
with it. The string can be used to pull the parcel but not to
pull it, or the fact that if you push it too hard you might break
it. These are some of the facts that despite being obvious
for humans are unknown by computational systems, unless
explicitly told about. The second issue refers to the lack of
explicit goals, in the sense that systems are told what to
do, instead of why doing so. This ignorance causes systems
to fail in their task when something goes wrong, since no
reasons have been provided that help reconfiguring the task.
For example, “people like to go indoors when it rains”, this
fact tell us the what, and the why is provided by the fact that
“people do not like to get wet”. Knowing that fact makes it
possible to fulfil the ultimate goal of preventing people from
getting wet, for example by using an umbrella, if going indoors
is not a possibility. The third issue is related to resourcefulness
and how people use common sense to make analogies when
some required knowledge is missing.

Eventually, a semantic middleware is intended to provide
the means to support context understanding and automatic
response elaboration. In this sense, a twofold aim is pur-
sued. On the one hand, the middleware framework should

encompass the required knowledge to identify the undergoing
situation. On the other hand, it should also be aware of
the device and service capabilities that support the acting
skills. A semantic middleware should therefore be expected
to support the automatic implementation of responses, by
reconfiguring and combining existing system capabilities. To
this end, the middleware framework should count on the
appropriate machinery to translate events into actions effects
and to understand available devices and services as middleware
capabilities. Based on these requirements, this work describes
the foundations supporting Dharma, a semantic middleware for
smart spaces. The paper is organised as follows. Section II de-
scribes the proposed approach for supporting the description of
the three dimensions proposed by Sowa. Section III describes
the different modules comprising the proposed architecture.
Finally IV presents the most relevant conclusions of this work.

II. A THREE-LEVEL PERSPECTIVE

Approaches such as the Context Modelling Language
(CML) [10] claims to provide support for reasoning through a
database modelling technique that captures the context syntax
and semantics. However, reasoning capabilities are here lim-
ited to answering SQL-like queries. In this sense, inferences or
deductions are therefore limited to the information explicitly
stated by means of rules.

Although aimed at the field of meaning in natural language,
the theory of situation semantics, proposed by Barwise and
Perry [11] has been extrapolated to context-awareness. How-
ever, as stated in [4], situations cannot be completely described
by propositionally enumerating all the aspects involved in the
situation since aspects such as intuitions about context escape
this modeling strategy. Sowa also proposes his own theory
[12] for context modeling, based on conceptual graphs of
semantic networks. Under this theory, contexts are modeled
as propositional containers of additional conceptual graphs.

Based on the three-dimensional view proposed by Sowa
and given the limitations of previous approaches in which
only one perspective was considered at a time, we propose a
semantic middleware for IoT that comprehensively addresses
the aforementioned dimensions. The following subsections
describe the information modelled at each level and the
mechanisms employed to it. Moreover, we will indicate how
the information handled at each level is made available to the
semantic middleware.

A. The syntax level

This dimension concerns the lexicon shared between the
middleware and the context, systems, and services it interacts
with. Several domains are therefore considered:

• Actions and events: this domain includes human actions
that can be captured by the effects they produce on
sensing devices. Additionally, it also considers the actions
that can be performed by electronic devices, such as the
actuator that turns on a light. WordNet [13] provides a
hierarchical structure for actions. This Knowledge-Base
will be used as a source for the employed lexicon.

• Internet of Things objects: this domain describes the
taxonomy of electronic devices, message types, objects,
etc., considered by the IoT paradigm. The work in [14]
provides a full description of IoT components (smart
devices, persistent nodes, actors, etc.). The identified
entities will be incorporated here as part of the lexicon.

The syntax level basically consists in enumerating the
vocabulary that will be employed by the semantic middleware
when interacting with external elements. Additionally, basic
relations such as IS-A or HAS-A will be also considered at
this level.

These knowledge will be held in a Knowledge-Base (KB)
system with support for efficient search and retrieval oper-
ations. We propose the use of Scone1, an open-source KB
system written in Common Lisp. The main difference with
respect to other approaches consists in the way search and in-
ference operations are implemented. Scone adopts an efficient
marker-passing algorithm [15] that support most of the search
and inference works involved in common-sense reasoning:
inheritance of properties, roles, and relations in a multiple-
inheritance type hierarchy; default reasoning with exceptions;
detecting type violations; search based on set intersection; and
maintaining multiple, overlapping world-views at one time in
the same knowledge base.

The considered vocabulary, along with its primary relation-
ships, is therefore modelled using the Scone language and
asserted to its knowledge base.

B. The semantic level

At the semantic level, the taxonomy proposed at the syntax
level is going to be enriched with common-sense knowledge.
To this end, an expressive-enough language is required that,
at the same time, does not fail to be computationally efficient.
The Scone system pays special attention at providing an
expressive, easy to use, scalable and efficient approach for
accomplishing search and inference operations.

The semantic model considered here was proposed and
formalised in [16] and can be summarised as follows: devices
provide services that perform actions on objects. Additionally,
events take place in a context and involve the actions whose
effects are perceived. This semantic model is described in
the Scone KB and, additionally, provided as the middleware
programming interface, as described later on this work.

C. The pragmatic level

Both semantic and pragmatic level concerns about meaning,
however, the semantic level assumes that there exists a precise
meaning for every concept, while the pragmatic one goes
one step further and considers how that meaning may vary
depending on the surrounded circumstances [17].

The work in [18] describes how Scone is used to capture
the context pragmatics using its multiple-context mechanism.
Here, this mechanism is adopted to model actions and events
in terms of the world states before and after their occur-
rence. This mechanism plays an essential role in enabling

1https://github.com/sfahlman/scone

reconfiguration and composition capabilities in the proposed
middleware architecture. Hence, when there is not a basic
service for accomplishing a certain action, alternatives are
explored to select those that produce the same world state after
they take place. Some adjustment works might be required
(reconfiguration) or more than one service might be involved
in producing the desired world state. The process how the
service space is explored is described underneath.

III. THE SEMANTIC MIDDLEWARE ARCHITECTURE

The motivation behind the middleware architecture pro-
posed here is to enable system capabilities to react to un-
foreseen situations on the basis of available resources. The
everyday world can be seen as an open world in which
different sources of change are concurrently taking place.
This openness makes it difficult to characterise, in advance,
the possible changes that might take place. The infinite list
of possible states that the system might find itself makes it
unfeasible to address it as though it would be a state planning
problem. This limitation calls for more intelligent mechanisms
that replicate human ability to tackle unforeseen situations. For
example, when we devise clever uses of things we have at hand
to overcome the shortage of a certain item (e.g., switch on your
cell phone during a blackout to illuminate your surroundings).

Leveraging system capabilities to articulate automatic and
unsupervised responses is a task that should address several
challenges. On the one hand, available means or devices can-
not be foreseen in advance. Then, predefined system responses
cannot be elaborated in terms of available actuators because
they might or might not be available when required.

On the other hand, more than one service might be involved
in the devised response. Then, it should be stated how these
services are to be bound or simultaneously executed. This
task regards the service composition process in contrast to
service combination. Combining music, for example, differs
from composing it, due to the required understanding of
additional aspects such as harmony, rhythm, chords. Similarly,
composing services requires that understanding of what the
service does and how, whereas combining basically involves
service input/out matching. Most common approaches found
in the state of the art claim to perform service composition
while simply combining services. Nonetheless, composition
involves combination, but it is not restricted to it. To date,
among all those that claim to perform service composition
few are really addressing the key challenges that are involved
in composition:

• Basic services: the composition process involves basic
services as its raw elements. A complete and updated list
of available services should be held for the composition
task.

• Automatic binding: different technologies, protocols,
or service features, make the service binding process
unfeasible without automatically abstracting those issues
from the composition task.

Fig. 1. Overall view of the different modules involved in the proposed
middleware architecture

• Uniform treatment of services: despite their heterogene-
ity, all services have to provide the same interface, as if
they were being provided by the same service source.

• External automatic service adaptation: at some point it
can be necessary to carry out an adaptation process during
the composition, since external source services may differ
in the interaction models and protocols. It is necessary to
mask out these differences by means of translation and
interface masks.

The middleware architecture proposed here addresses these
requirements with a set of modules, as depicted in Figure
1. The proposed architecture is based on a general purpose
communication middleware as it is ZeroC Ice2. ZeroC ICE is
an object-oriented and CORBA-like middleware technology
that provides the mechanisms (tools, API, libraries) to easily
build object-oriented client-server applications. This layer rests
on the operating system or firmware of the devices and nodes.
Finally, at the domain application layer, concrete service
factories might be available for deploying basic or composite
services. Additionally, a well-known API will be available for
external developers to use the different services provided at
the semantic middleware layer.

The following subsections describe the details of the dif-
ferent modules comprising the proposed architecture. Addi-
tionally, Figure 2 depicts these modules from the point of
view of their interrelations and the functionality they provide
when a lookup() request is launched. The Scone KB, at the
core of the diagram, holds the common-sense knowledge that
describes how the world works, including information such
as that a typical human being has two arms and two legs. It
also holds domain specific knowledge comprising information
about concrete physical spaces, such as a specific building,
with a complete description of the different rooms, floors,
etc. Domain specific knowledge also encompasses the different
devices or IoT objects that are available at that specific domain,
and the services they provide. This knowledge will support the

2https://zeroc.com/

Fig. 2. Roles involved in a service-lookup operation

automatic service composition and reconfiguration as a mean
to overcome the need to face unexpected needs.

A. Service deployment module

Several stages are involved in the deployment process:
• If the device has not been previously asserted to the KB,

it has to be described in terms of what it is and what it
does. For example, a lighting device:

(new-type {light} {thing})
(new-type {emitter} {thing})
(new-type {light-emitter} {dharma-device})
(new-is-a {light-emitter} {emitter})

(new-relation {emits} :a-inst-of {emitter} :b-inst-of {thing})
(new-statement {light-emitter} {emits} {light})

Recall that, at the syntax level, a taxonomy of IoT devices
was employed to determine the terms that are to be
employed during the service deployment. In this sense,
developers will be assisted with this list of device terms.
All the devices available at the semantic middleware layer
are labelled as dharma-device.

• Once the provider device has been described and asserted
to the Scone KB, the next step consists in describing the
services this device provides. For example, two services
can be offered by the lighting device, as they are light-up
and light-down.

(new-type {light-service} {dharma-service})

(x-is-the-y-of-z {light-up} {performs-action} {light-service})
(x-is-the-y-of-z {light-down} {performs-action} {light-service})

The naming policy used for the actions performed by
services follows the taxonomy of actions and events
extracted from WordNet. Once again, meeting the vo-
cabulary agreed during the modelling stage will assure
compatibility with applications implemented by different
developers, in a plug-and-play manner.

• Describe the actions that can be carried out by the
offered services in terms of relevant elements and states
of the world involved (before and after contexts). Please
refer to [16] for further details on modeling actions and

events using Scone). Action roles (e.g.: action-type,
object-type, or recipient-type) symbolise
those domain elements that characterize the world states.

(new-action-type {light-up}
:agent-type {thing}
:object-type {light}
:recipient-type {bulb})

;; Before context
(new-context {light-up BC} {dharma})
(new-is-a {light-up BC} {before context})
(x-is-the-y-of-z {light-up BC} {before context} {light-up})

(in-context {light-up BC})
(new-is-not-a {bulb-instance} {light-emitter})
(new-not-statement {bulb-instance} {emits} {light})

;; After context
(in-context {dharma})
(new-context {light-up AC} {dharma})
(new-is-a {light-up AC} {after context})
(x-is-the-y-of-z {light-up AC} {after context} {light-up})

(in-context {light-up AC})
(new-is-a {bulb-instance} {light-emitter})
(new-statement {bulb-instance} {emits} {light})

These steps will have to be carried out each time a new
device is to be deployed. However, once that this knowledge
has been provided to the Scone KB no further assertions
are required apart from providing the service endpoint. The
$proxy argument corresponds to the service endpoint.

(new-indv {light-service-instance} {light-service})
(x-is-the-y-of-z {$proxy} {offered-service} {light-service-instance})

B. Service locator module

One of the main strengths of our semantic middleware
consists in the orthogonal interface provided for searching
and instantiating services. Independently of the action that
needs to be executed and the properties that configure it, the
service-locator module (SLM) will provide a common and
orthogonal mechanism, as it is the lookup() method, as
listed underneath.
interface ServiceLocator {

Service* lookup(string action, PropertyService::ThingDict params);
};

The application invokes the lookup() method over the
SLM. The action argument corresponds to the sought
action (e.g.: light-up). Please note that the action argument
should match one of the terms defined by the taxonomy. The
params argument consists of a list of properties that should
be met by the provided services (e.g., the location where
the service should be deployed). These properties will be
enumerated using a key:value template where the key
will be elements of the taxonomy and value will be the
requirements to be met.

service = SDM.lookup_service("light-up", {’location’:thing.from_str("Room 1")})

This lookup query described above is searching for a
service that implements the light-up action in Room 1.

C. Directory module

The SLM implements the facade pattern, providing a simple
and unique way of looking for services that implement a given
action, obviating the details regarding its existence and nature
(basic or composite). Firstly, the SLM checks the Directory

Module (DM) for an available service providing the requested
action. This would be the case of the light-up action as
we deployed a light-emitter device offering a service
implementing that action.

However, this is not always the case, nor the most powerful
use of the semantic middleware. On the contrary, if there is
not a service offering that action, the SLM will launch a query
for building a service from available basic services, which will
be the role of the service generation module.

D. Service generation module

The Service Generation Module (SGM) will be employed
when a request for a given action cannot be satisfied with
available services. Despite this failure, a combination of basic
services or a reconfiguration of an existing one might end
up solving the problem. To this end, the SGM implements a
Hierarchical Task Networks (HTN) approach to guide the KB
search over available services [19].

The actions that can be performed by a system are deter-
mined by the devices and services available at each moment
in time. Those actions that cannot be performed, due to the
lack of services that provide a specific functionality, are named
here non-feasible actions. Whenever the system demands the
execution of a non-feasible action, the planner comes into play.

As listed below, the Planning algorithm starts with an
empty plan, the Π plan, to be completed with the list of
actions, which at the same time are provided by services. This
course of actions is intended to emulate the required non-
feasible action. The course of actions is provided as a set of
actions performed on objects A and O respectively, and the
results R of accomplishing such actions.

Algorithm 1 Planning(Π, A, O, R)
1: π = (A,O,R)
2: if A is non-feasible then
3: get all the actions A = (a1, a2, ..., an) that have the

same result A
4: while ai is non-feasible do
5: delete ai from A
6: end while
7: while feasible action ai does not have an equivalent

target object do
8: list all the objects Objects = (o1, o2, ..., on) of

action ai
9: check if those oi are equivalent to or can be O

10: end while
11: Recursively call π = Planning(ai, oi, resultOf ai)
12: end if
13: Add π to Π
14: Return Π

In line 3 of the planning algorithm those actions whose
effects are equivalent to the targeted action are selected.
Among the selected actions, lines 4-6 get rid of those that
cannot be directly instantiated by any of the available services.
Upon each of the feasible actions, lines 7-10 are devoted to

identify the object on which the given action can be performed
which, at the same time, is equivalent to the targeted object.
Finally, line 11 recursively instantiates the planning algorithm
in trying to fulfil the action requirements, by accommodating
the context conditions to those in which the action can take
place. Finally, only when all the actions that are part of the
plan can be instantiated will the planning algorithm abandon
the execution, giving as a result, the course of actions which
makes up the plan.

The yielded plan is then registered and, implementing the
builder pattern, the composite service is created. From the
point of view of the client, there will be no difference in
instantiating a composite or a basic service. Additionally,
the SGM will request the service instantiation module to
eventually instantiate the service.

E. Service instantiation module

Traditional middlewares expect developers implementing
clients for a given service to know, beforehand, the member
functions of the service interface. Invoking a method that is
not provided by the interface would produce an error. On the
contrary, the proposed middleware is based on premises such
as “uniform treatment of services” and “automatic binding”.
These requirements are incompatible with different interfaces
that should be known in advanced by the clients instantiating
the service.

The strength of the proposed solution is that the basic
services that will eventually comprise the composite service
do not have to be known in advance. Traditional middlewares
have overcome this limitation by constraining the basic ser-
vices that can be involved in the composition. To support
this contribution, services have to be orthogonally instantiated,
meaning that every service will implement the Service
interface. This interface provides the performAction() member
function that guarantees that all the actions that can be carried
out by a service are executed through this facade.
#include <PropertyService/PropertyService.ice>

module Semantic {
interface EventSink {
void report(string sourceid, string magnitude,
PropertyService::Thing value, PropertyService::ThingDict metadata);
};

interface Device extends PropertyService::PropertySet {};

interface DeviceFactory {
Device* make(string role);
};

interface Service {
void performAction(string action, PropertyService::ThingDict params, EventSink* callback);
};

interface SconeService {
string sconeRequest(string request);
};

sequence<PropertyService::TypeCode> TypeCodeSeq;
sequence<string> StringSeq;

interface TypeMapper{
TypeCodeSeq getTypes(StringSeq names);
PropertyService::TypeCode getType(string name);
};
};

Moreover, the service instantiation module (SIM) provides
support for third-party services that do not implement the
Service interface. These services have to go through a

dharmification process, consisting in developing a wrapper
that translates dharma invocations to the appropriate method
calls.

Finally, the SIM will create an instance of the composite
service. This instance will be registered in the directory, along
with the services previously registered in the system. This
registration process will also imply an update of the KB
system, to extend the offered functionality with the composite
service.

Finally, the directory will keep track of the elaborated plans
so that if the same or similar request is made, the computing
time can be reduced by reusing the whole plan or a specific
part of it.

IV. CONCLUSION

This paper presents a comprehensive solution for leveraging
real smartness in smart environments. Similarly to human
ability to overcome the lack of the typical object when
performing a task, the proposed solution aims at enabling
automatic service composition and service reconfigurability
as the key capabilities for achiving the smart environment
paradigm.

This paper describes a three-dimensional approach for
capturing the semantics of IoT objects and contexts. The
considered semantics go beyond the use of a taxonomy or
ontology, to consider a mechanism that adapt the semantics to
the considered contexts. These semantics will support context
understanding which will eventually lead to the management
of unexpected needs. Based on available services, the semantic
middleware proposed here, is intended to devise a composite
or reconfigured service that faces that need.

The different modules comprising the middleware architec-
ture proposed here are outlined. Some implementation details
are provided for the most important modules, as they are the
Service Locator, Service Generation, and Service Instantiation
modules.

Future work will extend the planner with projection and
evaluation capabilities, so that plan failures can be foreseen
before being instantiated. Additionally, validation tests need
to be carried out to compare this proposal with state-of-the-
art solutions.

ACKNOWLEDGMENT

This work has been funded by the Programme for Research and
Innovation of University of Castilla-La Mancha, co-financed by the
European Social Fund (Resolution of 25 August 2014) and by the
Spanish Ministry of Economy and Competitiveness under project RE-
BECCA (TEC2014-58036-C4-1-R) and by the Regional Government
of Castilla-La Mancha under project SAND (PEII 2014 046 P).

REFERENCES

[1] J. Rodrı́guez-Molina, J. F. Martı́nez, P. Castillejo, and R. D. Diego,
“SMArc: a proposal for a smart, semantic middleware architecture
focused on on Smart City energy management,” International Journal of
Distributed Sensor Networks, vol. Smart City (special issue), pp. 1–17,
2013.

[2] F. Zhao, Z. Sun, and H. Jin, “Topic-centric and semantic-aware retrieval
system for internet of things,” Information Fusion, vol. 23, pp. 33 – 42,
2015.

[3] M. Giannikos, K. Kokoli, N. Fotiou, G. F. Marias, and G. C. Polyzos,
“Towards secure and context-aware information lookup for the internet
of things,” in International Conference on Computing, Networking and
Communications, ICNC 2013, San Diego, CA, USA, January 28-31,
2013, 2013, pp. 632–636.

[4] J. F. Sowa, “Syntax, Semantics, and Pragmatics of Contexts,” in
Proceedings of the Third International Conference on Conceptual
Structures: Applications, Implementation and Theory. London, UK:
Springer-Verlag, 1995, pp. 1–15.

[5] V. Charpenay, S. Kbisch, D. Anicic, and H. Kosch, “An ontology design
pattern for iot device tagging systems,” in Internet of Things (IOT), 2015
5th International Conference on the, Oct 2015, pp. 138–145.

[6] R. de Diego, J.-F. Martnez, J. Rodrguez-Molina, and A. Cuerva, “A
semantic middleware architecture focused on data and heterogeneity
management within the smart grid,” Energies, vol. 7, no. 9, p. 5953,
2014.

[7] S. Hasan and E. Curry, “Thingsonomy: Tackling variety in internet of
things events,” IEEE Internet Computing, vol. 19, no. 2, pp. 10–18,
2015.

[8] M. J. Santofimia, “Automatic service composition based on common-
sense reasoning for ambient intelligence,” Ph.D. dissertation, School of
Computing Science. University of Castilla-La Mancha, 2011.

[9] M. Minsky, “The emotion machine: from pain to suffering,” in Creativity
& Cognition, 1999, pp. 7–13.

[10] K. Henricksen and J. Indulska, “Developing context-aware pervasive
computing applications: Models and approach,” Pervasive Mobile Com-
puting, vol. 2, pp. 37–64, February 2006.

[11] J. Barwise and J. Perry, “Situations and attitudes,” Journal of Philosophy,
vol. 78, no. 11, pp. 668–691, 1981.

[12] J. F. Sowa, Conceptual Structures: Information Processing in Mind and
Machine. Reading, MA.: Addison-Wesley, 1984.

[13] G. A. Miller, “Wordnet: A lexical database for english,” Commun. ACM,
vol. 38, no. 11, pp. 39–41, Nov. 1995.

[14] L. Barker, M. White, M. Curran, Z. Patoli, B. Huggins, T. Pascu, and
N. Beloff, “Taxonomy for Internet of Things - Tools for Monitoring
Personal Effects,” in PECCS 2014 - Proceedings of the 4th International
Conference on Pervasive and Embedded Computing and Communication
Systems, Lisbon, Portugal, 7-9 January, 2014, 2014, pp. 67–71.

[15] S. E. Fahlman, “Marker-Passing Inference in the Scone Knowledge-
Base System,” in First International Conference on Knowledge Science,
Engineering and Management (KSEM’06). Springer-Verlag (Lecture
Notes in AI), 2006.

[16] M. J. Santofimia, S. E. Fahlman, X. del Toro, F. Moya, and J. C. Lopez,
“A semantic model for actions and events in Ambient Intelligence,” En-
gineering Applications of Artificial Intelligence, vol. In Press, Corrected
Proof, pp. –, 2011.

[17] L. R. Horn and G. Ward, The Handbook of Pragmatics (Blackwell
Handbooks in Linguistics). Blackwell Publishers, 2004.

[18] M. J. Santofimia, S. E. Fahlman, F. Moya, and J. C. Lopez, “Possible-
world and multiple-context semantics for common-sense action plan-
ning,” in Space, Time and Ambient Intelligence IJCAI 2011 Workshop
Proceedings, 2011, pp. 100–105.

[19] M. J. Santofimia, S. E. Fahlman, F. Moya, and J. C. Lopez, “A common-
sense planning strategy for Ambient Intelligence,” in Proceedings of
the 14th international conference on Knowledge-based and intelligent
information and engineering systems: Part II, ser. KES’10. Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 193–202.

