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Abstract. Diabetes is a chronic disease that requires continuous medi-
cal care and patient self-monitoring processes. The control of the glucose
level in blood is a task that the patient needs to perform to prevent
hypoglycemia episodes. Early detection of hypoglycemia is a very im-
portant element for preventing multi-organ failure. The incorporation of
other biomedical parameters monitoring, combined with glucose levels
can help to early detect and prevent those episodes. At this respect,
several e-health platforms have been developed for monitoring and pro-
cessing vital signals related to diabetes events. In this paper we evaluate
a couple of these platforms and we introduce an algorithm to analyze the
data of glucose, in order to anticipate the moment of an hypoglycemia
episode. The proposed algorithm contemplates the information of several
biomedical sensors, and it is based on the analysis of the gradient of the
glucose curve, producing an estimation of the expected time to achieve
a given threshold. Besides, the proposed algorithm allows to analyze the
correlations of the monitored multi-signals information with diabetes re-
lated events. The algorithm was developed to be implemented on an
FPGA-based SoC and was evaluated by simulation. The results obtained
are very promising and can be scalable to further signals processing.

Keywords: e-health Platforms, FPGAs, Biometric Sensors, Continuous
Glucose Monitoring, Diabetes.

1 Introduction

The International Diabetes Federation estimates that 387 million people world-
wide suffered from diabetes in 2012 and it is expected an increase of 215 million
people more by 2035 [1]. Diabetes is a chronic illness that occurs when the pan-
creas is no longer able to produce insulin (or not enough amount), an hormone
that acts letting glucose that we obtained through the ingestion of carbohy-
drates, to pass from the blood towards the cells in the body to produce energy.
Consequently, the diabetic patient presents abnormally raised glucose levels in
blood that, in absence of an effective treatment, may produce important damages
to various organs or even the death.
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The control of its glucose level in blood is a basic task that a diabetic patient
needs to perform several times per day in order to help adjusting the amount of
insulin to be injected. The most basic way consists in piercing the skin (normally
a finger) using an electronic device called glucometer that extracts a small blood
sample and then applies to a chemically active disposable test-strip, able to read
the concentration of glucose. However, according to [7], this approach presents
limitations with regard to the accuracy and specificity as well as the need of
sticking several times per day. Advances in microelectronics enable the Con-
tinuous Glucose Monitoring (CGM) [12], a technique that determines glucose
levels in the interstitial fluid on a continuous basis. To this end, a glucose sensor
is implanted under the skin of the patient for a few days, normally between 3
and 7 days. This sensor normally operates by transmitting every a few minutes
the average of the concentration of glucose of the samples towards a nearby
non-implanted receiver, which displays on a small screen both the actual mea-
surement and the curve of glucose levels along the time to see rising and falling
trends. In order to describe more precisely the current clinical state of the di-
abetic patient and to be able to anticipate diseases as are the hypoglycemias
and hyperglycemias (values abnormally low and high of glucose, respectively),
the monitoring of additional parameters is being progressively incorporated. As
described in [2], the heart rate variability combined with the monitoring of the
glucose levels may increase the time of forecasting of hypoglycemias, yielding a
lead time of 22 minutes as compared to the CGM device. The work presented
in [6] reveals significant inverse changes of the ECG parameters (e.g. QT, PR,
RT and TpTe intervals) upon the occurrence of an hypoglycemic process. There-
fore, the real-time processing of more and more signals, corresponding to vital
signals whose values are altered in presence of hypo- and hyperglycemia events
such as the heart rate, sweeting, and blood pressure, could increase the time
interval given by the moment of detection of the event and the moment of its
potential occurrence. It is important to stress that such time of anticipation
could result critical for implementing the medical actuation required to avoid
the risk. Given the potentially high number of signals to be processed and the
importance of the processing time, FPGAs are very adequate for the execution
of real-time medical applications where the analysis and study of signal patterns
behavior are necessary. The internal structure of FPGAs allows parallelizing the
execution of several algorithms using simultaneous instantiation of the corre-
sponding component, feature that is very useful to analyze the correlation of
events produced in a determined signal, in correspondence with the behavior of
the rest of them. Besides, FPGAs allow to develop customizable high speed data
acquisition systems to create multi-signals processing systems.

In this work we evaluate a couple of commercial e-health platforms that en-
able the continuous monitoring of vital parameters. e-health platforms integrate
several biometric sensors, a microcontroller, and some sort of communication
radio to transmit the readings towards an external receiver. By using biometric
sensors, we propose an algorithm for improving the detection of hypoglycemias
and we implement it on an FPGA with the purpose of comparing its perfor-
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mance against alternative e-health platforms and evaluating its suitability for
implementing medical algorithms. The rest of the paper is organized as follows.
After reviewing the related work we describe in Section 3 the medical parame-
ters to be monitored in presence of diabetes and in Section 4 we propose and
algorithm for hypoglycemias detection. Section 5 shows the results of testing two
e-health platforms and the evaluation of the proposed algorithm on an FPGA.
Finally, in Section 6 we draw the conclusions and future research work.

2 Related Work

CGM enables to predict the risk of hypo- and hyperglycemia and to adjust better
the administration of insulin [4]. However, most of the current CGM devices are
invasive (since they require accessing blood or interstitial fluid), expensive, they
require still calibration by finger sticks (several times per day) for optimal glucose
sensor accuracy, and their lifespan is limited to just a few days. Three examples
of certified, still invasive CGM sensors currently used by diabetic patients are
ipro, abbot, and G4/G5 Dexcom series. ipro kit is composed of a sensor implanted
under the skin and an ipro recorder that receives and stores the readings of the
sensor. A reading is sent from the sensor towards the receiver each 5 minutes,
which represents 288 daily readings. The ipro recorder is not able to communicate
with a smartphone; instead of that, after as much 6 days, the sensor must be
removed and replaced, and data must be downloaded from the recorder for its
interpretation. The abbot system comprises a CGM sensor and a reader device
able to scan the sensor when located at distances from 1 up to 4 cm. This CGM
sensor measures the glucose level each 15 minutes, which represents 96 daily
readings. In turn, the glucose sensors series from Dexcom are especially indicated
for children from 2 years. The novelty of this system regarding to the previous
ones, is that the sensor is able to transmit each reading via Bluetooth towards a
smartphone, which enables also its visualization. The next generation of CGM
includes a small pump of insulin that is connected to a needle subcutaneously
implanted under skin; this mechanism is able to supply insulin upon the clicking
of a button, at discrete time to reduce the glucose concentration or continuously
to maintain the basal rate [3], based on the readings from the glucose sensor.

The research in microelectronics and MEMS technology is focused on pro-
viding still continuous monitoring but through pain-free, non-invasive devices
that avoid the necessity of piercing the skin. This technique is known as Non-
invasive Glucose Monitoring. The main weakness of non-invasive sensors is their
accuracy, which is still far from achieving the precision level of finger sticks. In
the last few years have appeared non-invasive devices to measure the glucose
levels, as GlucoTrack, that provides a sensor that clips to the patient’s ear lobe
and uses an algorithm to compute the glucose level, or Glucowise, which may be
positioned between the thumb and forefinger or at the earlobe. Wearable com-
puting also enables the continuous monitoring of parameters related to health
and physical activities. Wearable computing is intended to be continuously avail-
able, observable, and controllable by the user, but does not need its attention



4

and do not constraint its movements [5]. Wearable computers are implicit to
the body, they are worn (not carried) comfortably on our clothes or as watches,
glasses or lens, and are aimed at sensing both vital signals as environmental
parameters through multiple sensors. In this sense, the next generation of non-
invasive glucometers trends to be devices worn, able to continuously read the
glucose level and communicate the readings wirelessly towards a smartphone or
computer. A first prototype of these devices are iWatch (Apple) and Google’s
smart contact lens. Continuing at the experimental level, open e-health plat-
forms are proliferating as an effective mean mainly oriented to assist developers
and researchers in the evaluation of innovative algorithms for predicting, detect-
ing, and tracking illnesses. They are not conceived for the monitoring of critical
patients since they do generally not have medical certifications. An e-health
platform enables the body monitoring through a rich set of biomedical sensors,
as well as providing the capabilities of processing, storing, and communication.
e-health Sensor Shield [8] is a PCB designed to connect nine sensors: patient po-
sition (accelerometer), glucometer (invasive), body temperature, blood pressure
(sphygmomanometer), pulse and oxygen in blood, airflow (breathing), sweating
via galvanic skin response (GSR), electrocardiogram (ECG), and electromyog-
raphy (EMG). This shield can be connected to both Arduino and Raspberry
PI platforms, which provide capabilities of processing and transmission of data
(e.g. Wi-Fi, GPRS, Bluetooth, 802.15.4). The medical information collected can
be used to monitor in real time the state of a patient and for medical diagnosis,
yielding a large set of different medical applications. A limitation of the e-health
Sensor Shield is that not all sensors can work together. The BioMedical Devel-
opment Kit [10] from BITalino, is an easy-to-use and low-cost toolkit to learn
and prototype applications using body signals. This consists of a PCB with a
microcontroller, Bluetooth 2.0, a Li-Po Battery 320mAh, a LED actuator and
ECG, EMG, Electrodermal Activity, accelerometer and light sensors, all of them
can be connected to the board through USB ports.

On the other hand, the inherent parallelism to FPGA architectures results
very appealing for the implementation of data-intensive medical applications.
For example, the work presented in [9] implements on an FPGA a discrete-time
inverse neural controller to regulate the glucose level in diabetic patients, thus
providing a first step to develop an artificial pancreas.

3 Early Detection of Hypoglycemias

The system that we are proposing has as a primary goal the early detection of
hypoglycemias. Our proposal applies to diabetic patients subject to a therapy
consisting in the continuous monitoring of their glucose level in blood (glycemia),
which is the most relevant evidence for the diabetic. In our system model, the
diabetic patient monitors its glycemia by means of a CGM device, which mea-
sures the glucose level in blood in a continuous basis. In particular, the values of
glycemia before and two hours after breakfast, lunch, and dinner are especially
relevant. The evidence that reports on if the patient is controlling its glycemia
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well is the glycosylated hemoglobin (also known as HbA1c), that represents the
average glycemia during the last 90-120 days and that is obtained through a
blood test in the laboratory. In addition to this, some diabetic patients present
risk factors for the illness as are the hypertension and the overweight. Hyperten-
sion is controlled through blood pressure tests, which deliver two values p1, p2,
where p1 is the systolic pressure (the pressure when the heart beats) and p2 is the
diastolic pressure (the pressure when the heart muscle is resting between beats
and refilling with blood). In turn, the existence of overweight is determined by
means of the Body Mass Index (BMI), that represents the relative size of an
individual and it is computed as BMI = weight

height2
, where weight is expressed in

kilograms and height in meters. It follows that the lifestyle, particularly diet and
practice of sports, impact on BMI. Diet is a critical part of the treatment of
any diabetic patient with overweight, intended to take care of the ingestion of
calories, fats, and carbohydrates, including the uniform distribution of calories
among meals. Physical exercise is indicated in most of the cases but mainly in
presence of overweight. The heart rate provides the number of contractions of
the heart per minute, and it increases with the intensity of the exercise. To this
regard, during the physical activity of the patient, it would be useful to mon-
itor its heart rate variability to avoid that it exceeds the maximum heart rate
(HRmax), which can be computed by taking into account the gender and the
age of the patient according to the Haskell and Fox’s equation: HRmax=220-age
(in men) or HRmax=226-age (in women). Note that HRmax is the theoretical
maximum heart rate that can be achieved without harming the health under
optimal physical conditions. Note also that exercise usually lowers blood glucose
level; therefore, the monitoring of the glucose level during the physical activity
is key for hypoglycemias detection.

We consider two symptoms more that generally accompany the first stages
of hypoglycemia: sweating and trembling. Sweating occurs all over the body but
mainly in face and hands, and it may be associated to an increase of the body
temperature, which should be also monitored. A sort of slight trembling may
appear in fingers and hands, and it is generally only observed by the person
that experiences it without being visible to other persons. There exist many
other symptoms associated to the early stages of hypoglycemia such as hunger,
weakness and fatigue, headache or impaired vision. For our purpose, we have
focused on those parameters associated to hypoglycemias that can be measured
through the e-health platforms that we have available in our laboratory. Table 1
presents the values of reference and imbalances for the parameters considered.

4 Algorithm for Hypoglycemias Detection

Let us consider an e-health platform for the continuous monitoring of glucose
in conjunction with the monitoring of heart rate, blood pressure, temperature,
position, sweating, and trembling. Thus, the platform integrates n = 7 sensors
named s0, . . . , s6, each one is sampling a vital sign at a suitable periodicity: s0
is a CGM sensor, s1 is a heart rate sensor, s2 is a tensiometer that measures the
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Parameter Normal Values Abnormal Values Observations
Glycemia 70− 100 mg/dl − No diabetes (fasting)

< 140 mg/dl − No diabetes (after eating)
100 − 125 mg/dl − Pre-diabetes (fasting)
140 − 199 mg/dl − Pre-diabetes (after eating)

− ≥ 126 mg/dl Diabetes (fasting)
− ≥ 200 mg/dl Diabetes (after eating)
− ≤ 70 mg/dl Hypoglycemia
− ≥ 200 mg/dl Hyperglycemia

HbA1c 4− 6% − −
− ≥ 6.5% Bad control of glycemia

BMI 18.0 − 24.9 − No overweight
− 25.0− 29.9 Overweight
− ≥ 30.0 Obesity

HR ≤ (60− 80%)HRmax > HRmax −
p1 90− 119 mm Hg − Systolic Pressure

− 140− 159 mm Hg Stage 1 Hypertension
− 160− 179 mm Hg Stage 2 Hypertension

p2 60− 79 mm Hg − Diastolic Pressure
− 140− 159 mm Hg Stage 1 Hypertension
− 160− 179 mm Hg Stage 2 Hypertension

Table 1. Normal and altered values for some vital parameters related to diabetes.

blood pressure (systolic and diastolic), s3 is a body temperature sensor, s4 is
an accelerometer that detects the patient’s position (fowler’s, prone, supine, and
recumbent) and that is useful to detect falls, s5 is a GSR sensor that measures the
electrical conductance of the skin, which varies with its moisture level and s6 is
an EMG sensor, which measures the muscle activation via the electric potential.
All these sensors are available in the e-health platforms described in Section 2.
We also consider the age, the gender, and the weight and height of the patient
as fixed parameters which, therefore, do not need to be continuously monitored
through a sensor; similarly, HbA1c is a parameter that could be estimated by
computing the average of the values of glucose.

Each sensor is provided with a sampling frequency fi, which corresponds
to the rate of readings taken by sensor i, initially defined as fi = 300 seconds
∀i ∈ [0, n). These frequencies could be adjusted depending on the variability of
their values along a day and the necessity of register them for diagnosis purposes.
Each sensor is also provided with a maximum threshold denoted as maxi. By
taking the series of readings from the sensors along the time as an input, we
propose an algorithm for analyzing the data of glucose in order to anticipate
the moment of time of the occurrence of an hypoglycemia event. This analysis is
based on the computation of the slope of the curve drawn by the glucose level in
blood along the time. At each sampling period, a value of each sensor denoted
as vi is obtained, for all i ∈ [0, n). Let us also define v0(t) as the glucose reading

at time t and α as the maximum angle drawn for the segment
−−→
AB (A = v0(t),

B = v0(t+ 1)) with the horizontal axis. Thus, for any two consecutive readings

v0(t) and v0(t+1) the slope of the curve is m = dv0
dt

= v0(t)−v0(t−1)
t−(t−1) and by using

simple geometry its angle is θ = arctanm. The slope is positive (ascending) iff
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Algorithm 1 Hypoglycemias Detection Algorithm

Require: vi is the reading of sensor i at time t, fi = 300 is the sampling frequency
∀i ∈ [0, 6]; maxi is the threshold for sensor i ∀i ∈ [1, 6]

Require: min0 = 70 is the minimum threshold for s0; α is the maximum angle
Ensure: T : the estimated anticipation time of a potential hypoglycemia

G = 0 %initial value of glucose

F = f0 % the frequency for sampling the glucose sensor

threshold = min0 ×1.25 % a threshold for the glucose value

loop

% At each sampling period

if(G == 0) then G = v0; break;

m = G−v0
f0

; θ = arctan(m); T = f0×(v0−min0)
G−v0

; G = v0
case 0: (θ < α)

break; % Normal state

case 1: (θ < α) ∧ (v0 ≤ threshold)
initiate sampling s1 . . . s6 % Low glucose

if (vi ≥ maxi), 1 ≤ i < n then return T % Alert hypoglycemia

case 2: (θ ≥ α)
f0 = F

3
% Pre-hypoglycemia state

initiate sampling s1 . . . s6
loop

m = G−v0
f0

; θ = arctan(m); T = f0×(v0−min0)
G−v0

; G = v0

if(θ ≥ α) then f0 = F
3

if(θ < α) ∧ (m > 0)then f0 = F
2

% Risk factors state

if (m ≤ 0) then F = f0; stop sampling s1 . . . s6; break
if (vi ≥ maxi), 1 ≥ i < n then return T % Alert hypoglycemia

end loop

end loop

m > 0 and it is negative (descending) iff m < 0. If θ < α (θ, α are expressed in
degrees) the slope of the curve is under the threshold and glucose keeps within
the normal levels; otherwise, the slope of the curve is above the threshold and,
therefore, glucose level is falling more quickly than recommended. Note that it
could be still possible a descending slope while θ < α holds, so glucose is falling
but not dramatically for our purpose. The pseudo-code is shown in Algorithm 1.

The algorithm enters into a loop that starts to sample only the glucose sensor
s0 each f0 and keeps in this state until two possible events occur: 1) v0 drops
under a threshold defined slightly above min0 = 70mg/dl (which is the minimum
value of glucose to be considered hypoglycemia) and 2) the angle θ is larger or
equal than the maximum angle α. In both cases, the glucose level is descending
with the time (in the second case it falls at a faster pace than in the first case),
so in both cases the algorithm starts sampling the rest of sensors s1 . . . s6 to
monitor the symptoms of a possible hypoglycemia. In the first case, if some
value vi exceeds the allowed threshold (i.e. vi > maxi, i ∈ [1, n)) then, an alert
is generated to warn the medical team about a potential hypoglycemia and the
algorithm returns the estimated time T to achieve min0 while the slopem is kept.
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The second case occurs when two consecutive values of glucose form an angle
θ ≥ α, which means that is dropping quickly. The algorithm adjusts the sampling
frequency for the glucose sensor to f0 = f0

3 in order to be able to anticipate the
risk detection. As in the first case, if some value vi exceeds the allowed threshold
an alert is immediately generated. Otherwise, if the slope is still lower than 0
but at slower pace (θ < α) then the reading frequency for the glucose sensor is
updated to f0 = f0

2 . Under the event of a glucose value larger than the previous
one, i.e. drawing an ascending slope (m ≥ 0), the algorithm returns to the initial
state. Figure 1 represents the different cases described above.

Normal

Low
glucose

Pre-
hypoglycem

Risk
factors

Alarm

θ < α

θ ≥
α

v0
≤
th0

v0 ≤ th0

θ ≥ α

v0
>
th0

v
i >

max
i(i ∈

(0−
n)) ∨

v
0 ≤

min
0

θ <
α ∧

m
<
0

vi > maxi ∨ v0 ≤ min0, i ∈ (0− n)

vi ≥ maxi ∨v0 ≤ min0, i ∈ (0− n)

θ < α ∧m < 0

m
>
0

θ ≥
α

Fig. 1. State transition diagram for the cases considered in Algorithm 1.

5 Evaluation

This section presents the evaluation of our approach. We first test the e-health
sensor shield and BITalino platforms in order to compare the results that are
obtained from equivalent sensors in both platforms. Second, we evaluate by sim-
ulation our algorithm on an FPGA-based SoC. For the work presented here a
development platform based on SmartFusion II FPGA with Arduino compatibil-
ity has been used. This compatibility allows to connect the sensing platform to
the FPGA to perform the required computation. Although the evaluated plat-
forms are based on a microprocessor such Arduino, ARM, the incorporation of
reconfigurable logic allows to develop hardware versions of different algorithms
for signals processing that could require improved computational performance.
The next subsections describe the evaluation method and results.
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5.1 Testing e-health Sensor Shield and BITalino Platforms

We have written a program to collect data from the sensors in e-health Sensor
Shield connected to Arduino. This program enters into a loop where in each iter-
ation the pulseoximeter, temperature, GSR, accelerometer, and airflow sensors
are sequentially read. Since ECG and EMG sensors cannot be used simultane-
ously, we proceed to implement different versions of the program, one to read
ECG signal and the other one to read the EMG signal. The glucometer and the
sphygmomanometer devices can neither work together; they are not sampled as
a result of the invocation of a program’s function but instead they work au-
tonomously and just transmit data to Arduino (number of measures stored in
the device, and date and time associated to each value of glucose/blood pressure
sample) when they are requested via the appropriate reading function. Thus, in
each loop iteration we ask for new measures of glucose/blood pressure to avoid
overflow the output buffer. Accelerometer and blood pressure sensors were sam-
pled only once since they do not (or almost not) suffer variations along the time
frame. Glycemia was not monitored in this experiment (see next subsection for
details). The test demonstrated that the ECG, temperature, oxygen saturation,
and blood pressure sensors seem working accurately for purposes of non-critical
monitoring. Additionally, since EMG sensor measures the muscle intensity, the
test proved that the highest values coincide with some action done by the carrier
of the sensor. GSR conductance voltage and airflow values should be compared
against another reliable device. However, the position sensor revealed incorrect
results in most of the samples as it is also stated in [8]. The average time taken
by each loop iteration is 318.8 ms. In turn, BITalino provides a software that
makes most of the work for us, letting to sample the sensors and visualize the
results in a real-time via a user-friendly interface on the PC or smartphone. The
sampling program executes on Arduino and BITalino platforms during a time
frame of 10 minutes and by using a sampling period of 30 seconds, which means
that 20 readings per sensor and per individual were collected. The tests were
developed with help of three healthy volunteers in seated position.

As an example, we show in Figure 2 the values of ECG and EMG collected on
the Arduino platform. ECG parameters are, according to [6], altered in presence
of hypoglycemia. ECG and EMG results for the same persons obtained from
BITalino platform are presented in Figure 3. As observed, the sampling frequency
of this platform is much higher than the provided by Arduino. Both platforms
may potentially support an algorithm for hypoglycemia detection based on the
continuous monitoring of ECG parameters together with the glucose levels.

5.2 Simulation of the Algorithm on an FPGA

We have developed a prototype in VHDL to be deployed on any FPGA. Our
prototype uses two data bus for input/output standard communication and an
input signal for each sensor s0, . . . , s6. Our prototype is able to simulate the
algorithm described in Section 4 by taking the CGM input data from real pa-
tients. In our simulations, the execution time of the algorithm is 6 cycles (in the
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Fig. 2. ECG (on the left) and EMG (on the right) samples obtained from Arduino.
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Fig. 3. ECG (on the left) and EMG (on the right) samples obtained from BITalino.

worst case), which means that the simulated platform (SmartFusionII) working
at 100MHz delivers a time of approximately 60 microseconds.

In order to make more realistic simulations we have taken the data of CGM
of three diabetic patients described in [11] that suffered hypoglycemia episodes.
For our purpose we fix α=[-5,-8] (note that a negative angle corresponds to a
360◦+α angle). Table 2 shows the expected time T in minutes and the slope m
for each one of the three patients and for each state transition (i.e. each slope
variation) before achieving the minimum value (70 mg/dl). Figure 4 shows the
best results for patient 1 (left), patient 2 (center) and patient 3 (right). The axis
x is showing the number of samples and the axis y represents the glucose levels.
Figures on the left and on the right correspond to transitions from Normal to
Low state, that occurs when the threshold 88 mg/dl (e.g. 1.25% of 70 mg/dl)
is achieved (red line), while the figure in the middle shows the case when the
algorithm transits from Normal to Pre-hypoglycemia state because θ ≥ α, that
occurs for glucose levels under 70 mg/dl (blue line). Times are provided when
the threshold is achieved (figures on the left and right) or when θ ≥ α (figure in
the middle). The best case occurs if in the moment of detection the glucose is
far from the threshold and θ is slightly above α.
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α=-5 α=-6 α=-7 α=-8
T m T m T m T m

Patient 1 9.4 -0.3 28.3 -0.3 28.3 -0.3 28.3 -0.3
1.4 -0.9 1.4 -0.9 1.4 -0.9 1.4 -0.9

Patient 2 23.9 -0.9 23.9 -0.9 23.0 -0.9 23.9 -0.9
700 -0.3 700 -0.3 700 -0.3 700 -0.3

Patient 3 95 -0.1 95 -0.1 95 -0.1 95 -0.1
30 -0.1 30 -0.1 30 -0.1 30 -0.1

Table 2. Estimated time (T) in minutes for an hypoglycemia episode and gradient
(m) of the curve for different values of α.
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Fig. 4. CGM curves and estimated time for hypoglycemia for different values of α.

6 Conclusions

The continuous monitoring of variables associated to medical disorders by means
of biometric sensors, integrated into e-health platforms and into wearable de-
vices, enables the design of algorithms able to detect the potential occurrence of
risk events based on the correlation of data series collected from the sensors. An-
ticipating the early detection of risks is of utmost importance to increase the time
to implement medical actions that avoid critical situations. Precisely with this
motivation we have firstly tested two commercial e-health platforms (e-health
Shield Sensor/Arduino and BITalino) to show their suitability and weaknesses
for biomedical signal monitoring and data acquisition for medical applications.
Secondly, we have proposed an algorithm for early detection of hypoglycemias
that in this first stage was simulated on an FPGA, in order to investigate how
can be implemented taking into account the correlation of the signals obtained
with the aforementioned platforms. The algorithm is based on the analysis of
the gradient of the glucose curve and estimates the expected time to achieve
a given threshold. The simulation takes as input the glucose levels of diabetic
patients that suffered hypoglycemias. The results show that our algorithm may
effectively predict their hypoglycemias episodes anticipating the time of its oc-
currence (from several minutes to hours depending on the gradient considered).
The execution time of our algorithm on an FPGA is several orders of magnitude
lower than the time delivered by Arduino.

As future works we plan to improve the anticipation time of our algorithm
by investigating the correlation of the data series collected from other sensors
(e.g. heart rate, ECG, sweating) with regard to the glucose levels, since they are
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measuring recognized symptoms of hypoglycemia. We also plan a more exhaus-
tive evaluation that takes as input data obtained from real diabetic patients and
covers a wider spectrum for the values α and θ.
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