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Abstract

This work presents a novel approach for automatic epilepsy seizure detection

based on EEG analysis. The proposed solution exploits the underlying non-

linear nature of EEG data. In this article, two main contributions are presented

and validated: the use of non-linear classifiers through the so-called kernel trick

and the proposal of a Bag-of-Words model for extracting a non-linear feature

representation of the input data in an unsupervised manner. The performance of

the resulting system is validated with public datasets, previously processed to re-

move artifacts or external disturbances, but also with private datasets recorded

under realistic and non-ideal operating conditions. The use of public datasets

caters for comparison purposes whereas the private one shows the performance

of the system under realistic circumstances of noise, artifacts, and signals of

different amplitudes. The obtained results prove the robustness of the proposed

solution to more realistic and variable conditions. Moreover, the proposed solu-

tion has been compared to state-of-the-art works not only for pre-processed and

public datasets but also with the private dataset. The mean F1-measure shows
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a 10% improvement over the second-best ranked method including cross-dataset

experiments.

Keywords: Classification algorithms, Non-linear classifiers, SVM, Bag of

words, Wavelet, Epilepsy

1. Introduction

Epilepsy is a disease that affects approximately 1% of the world’s population

Shoeb et al. (2004). This neurological disorder might cause a loss of conscious-

ness, muscle jerks or, in the most severe cases, prolonged convulsions. Its effects

have a significant impact on the patients quality of life as well as other impor-5

tant social and economic considerations, due to health-care needs, premature

death and/or loss of work productivity Organization (2016).

Epilepsy diagnosis is a tedious, expensive and time-consuming task, which

is performed by highly trained professionals who examine EEG data in seeking

abnormal brain activity. Despite the great impact that epilepsy has on society,10

there are few computational systems or tools that support automatic analysis

and categorization of EEG recordings. The lack of reliable systems for auto-

matic epilepsy diagnosis is not casual. In contrast, several reasons appear to

be responsible for this scarcity, such as the great variability found among indi-

viduals and the overlapping stages among seizure and non-seizure statesEchauz15

et al. (2008). This work proposes and analyses two expert systems for epilepsy

diagnosis that exploits the non-linear separability of the data. More impor-

tantly, this paper demonstrate the expert-system performance under realistic

and variable conditions, similar to the ones that would be found in a real hospi-

tal environment. For this reason, special emphasis has been made in this paper20

to demonstrate the robustness of the solution regardless the training data.

The present work systems are based on EEG analysis and inspired by non-

linear classifiers and the Bag-of-Words model Joachims (1997), which has been

previously used in fields such as natural language understanding or computer

vision Cheng et al. (2010); Gilbert et al. (2009) to deal with multiple sources25
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of noise and variation. The goal is to analyze the behavior of both systems

and study their suitability and robustness using datasets with different charac-

teristics in terms of noise, signal attenuation, presence of artifacts, or the type

of activity being recorded (ictal, inter-ictal, normal with artifacts, etc.). Fur-

thermore, cross-dataset testing will be employed to ensure that the results are30

representative of the real expected performance. The accuracy of the results

obtained by the proposed system is compared to the performance of a linear

classifier and the state of the art. Our proposal outperforms the most represen-

tative and relevant state-of-the-art works and its performance is stable across

datasets. Moreover, this proposal has been demonstrated to be computationally35

efficient.

2. Previous work

Many different approaches have been proposed for automatic seizure detec-

tion and epilepsy diagnosis, for the sake of simplicity, we will mention some

of the most relevant but for a thorough analysis of the state of the art, please40

refer to Tsiouris et al. (2015); Alotaiby et al. (2014). The first acknowledged

and widely used approach for automatic recognition of epileptic seizures based

on EEG analysis was proposed in Gotman (1982, 1990) by Gotman. The ap-

proach presented in this work consists of quantitatively measuring the novelty

of the EEG signal. Therefore, a continuous temporal analysis is performed that45

compares one epoch or EEG signal segment against a reference or background

segment. Gotmans Monitor algorithm employs a set of rules for identifying and

triggering seizures. The work of Wilson et al. in the Reveal algorithm Wilson

et al. (2004) also relied on the analysis of EEG tendencies and a rule-based sys-

tem to identify potential seizure scenarios. However, Wilson introduced analysis50

of frequency parameters.

Methods that combine time and spectral analysis of an EEG signal have

showed an improvement in the success ratios for seizure detection in contrast to

those that only focus on one domain. In this regard, the wavelet transform is
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one of the most frequently used signal processing algorithms for EEG analysis55

(see Faust et al. (2015) for a detailed summary of published research on EEG

signal feature extraction using DWT).

As a common feature of all of the current approaches, after characterizing

the signal either in time or frequency, a decision must be made as to whether

the EEG signal presents the characteristics of a seizure or not. This decision60

is supported by the use of a classifier that has as inputs several signal features

that are computed from the EEG data after the pre-processing stage. There is a

variety of methods that have been used to characterize the pre-processed EEG

record: entropies Acharya et al. (2015), energy distribution Omerhodzic et al.

(2013); Orhan et al. (2011); Patnaik & Manyam (2008); quantitative statistical65

variables such as the mean, standard derivation, variance, inter-quartile range

and other measurements Pippa et al. (2015); autoregressive models Atyabi et al.

(2016); or independent component analysis Siuly & Li (2015), just to name some

of the most promising approaches.

The type and number of such features has a direct impact in the behavior70

of the system. Thus, it is necessary to select the most appropriate techniques

to maximize the recognition rates. The work in Upadhyay et al. (2016) carries

out a comparative study of feature ranking techniques.

Regarding the use of non-linear classifiers the following works propose the

analysis of different paramenter from the point of view of their significance in75

distinguishing different types of EEG signasl (normal, ictal, interictal). The use

of Higher Order Spectra (HOS) is studied in Chua et al. (2008)Chua et al. (2011)

to conclude that the analysed parameters are statistically significant therefore

appropriate for the classification of EEG signals. The use of Recurrent Quantifi-

cation Analysis (RQA) Acharya et al. (2011b) paramenters yields an accuracy80

result of 95.6% when run with SVM classifiers. The work in Martis et al. (2013)

proposes the use of a novel method, as it is the Intrinsic time-scale decom-

position (ITD), to compute features for the automated classification process.

Accuracy rate of 95.67% was reported in this study. The work in Acharya et al.

(2011a) report the use of Higher Order Cumulant features. This study reports85
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an accuracy rate of 98.5% when used with SVM classifiers.

Regarding classification strategies, the existing literature mainly reveals two

different approaches in EEG analysis for automatic seizure detection: Artificial

Neural Networks Alfaro-Ponce et al. (2016); Omerhodzic et al. (2013); Husain &

Rao (2012); Orhan et al. (2011); Patnaik & Manyam (2008); Tzallas et al. (2007);90

Bao et al. (2008); N & Thanushkodi (2009) and linear classifiers such as Support

Vector Machine Direito et al. (2014) or k-means clustering Janjarasjitt (2010).

Alternatively, other machine learning algorithms, such as Genetic Programming

Bhardwaj et al. (2016), have also been proposed in this field.

However, these previous techniques have been evaluated in simple datasets95

such as the University of Bonn dataset in which only one type of variation or

activity modality is present, which explains the high accuracy rates achieved

by simple and linear methods. Furthermore, the methods are retrained for

each datataset and parameters have been manually tuned for the testing set

rather than using automatic optimization techniques as in other fields Valipour100

(2016); Valipour & Singh (2016); Yannopoulos et al. (2015); Valipour (2012b,a).

This results in overfitting to the specific dataset, which means that a significant

performance drop is expected when testing in a different dataset or under more

realistic and challenging scenarios with different activity variations and noise

presence.105

Table 1 summarizes a comparative analysis of the most relevant works of the

state of the art for automated EEG analysis for epilepsy diagnosis.

3. Background

3.1. Wavelet transforms

The analysis of EEGs for seizure detection is mostly performed in the time110

and frequency domains. The simplest and most straight-forward technique, as

performed by neurophysiologists, is the visual inspection of the EEG time series,

which does not require any additional manipulation of the EEG data. Additional

information in the time domain can be obtained by means of simple calculations
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Table 1: Summary of most relevant state-of-the-art works for automated EEG analysis

Reference Features Classifier Accuracy(%)

Chua et al. (2008) HOS features GMM 93.3

Acharya et al. (2011b) RQA SVM 95.6

Martis et al. (2013) IDT SVM 95.67

Acharya et al. (2011a) HOC SVM 98.5

Polat & Güneş (2007) FFT Decision Tree 98.72

Guo et al. (2009) Relative Wavelet Energy ANN 99.6

Wang et al. (2012) DWT ANN 99.5

Janjarasjitt (2010) Wavelet-Based Scale Variance k-means 99.0

Husain & Rao (2012) DWT ANN 98.2

Fathima et al. (2011) DWT Linear classifier 99.8

Chen (2014) DTCWF Nearest Neighbor 100

Übeyli (2010) Burg AR least squares SVM 94.83

on the time series, such as the average, median, and standard deviation values.115

Nevertheless, it is generally more interesting to analyze transients and changes

in the EEG signals by means of calculating the rate of change, moving average,

autocorrelations, and autoregressions.

The frequency content of the EEG signals provides very valuable informa-

tion, but it is difficult to extract from the visual analysis in the time domain.120

Moreover, certain manipulations and signal processing techniques, such as fil-

tering, convolution operations, and Fourier analysis, are better addressed in the

frequency domain.

Wavelet transforms provide the most suitable tool for time-frequency anal-

ysis of non-stationary and transient signals. They can remove noise and reveal125

trends, similarities, repeated patterns and discontinuities, to ultimately outline

the occurrence of certain events of interest. The wavelet transform, in contrast to

Fourier analysis, consists of the decomposition of the original signal into scaled

(stretched or compressed) and shifted versions of the original wavelet waveform,

also known as the mother wavelet. The wavelet transform behaves as a fre-130

quency microscope that provides detailed information about different frequency
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bands as well as temporal information. Computationally efficient algorithms of

the Discrete Wavelet Transform (DWT), based on the multi-resolution analysis

concept, provide the decomposition of the original signal into low-frequency ap-

proximations and high-frequency detailed coefficients. Iterative decompositions135

of the resulting low-frequency approximations provide local detail in certain

frequency bands in the time-frequency domain. The DWT decomposition is

illustrated in the following example (Figure 1), in which an EEG signal that

contains an epileptic seizure is analyzed1. A fourth-order Daubechies with five

levels of decomposition is shown. The approximation A5 and different levels of140

detail, from D1 to D5, show the frequency content of the different frequency

bands of interest.

Figure 1: The 4th-order Daubechies 5-level de-

composition of an EEG signal that contains an

epileptic seizure

The Wavelet transform has been

employed in several previous studies

in the field of epilepsy analysis and145

is used for the extraction of features

from EEG data. Table 2 compiles

some of the references and the type

of Wavelet and number of decompo-

sition levels employed. The fourth-150

order Daubechies Wavelet with 4 to

6 levels of decomposition is the most

common choice found in the litera-

ture.

3.2. Bag of Words155

The Bag-of-Words (BoW) model was originally proposed in the field of Nat-

ural Language Understanding Joachims (1997). However, this field is not the

only field in which this technique has succeeded. In contrast, it has also been

1This signal corresponds to one channel of the E Set of the University of Bonn dataset

that records epileptic seizure activity.
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Table 2: Wavelet transform implementations in previous studies

Reference Wavelet
Decomposition

levels

Omerhodzic 2010Omerhodzic et al. (2013) 4th order Daubechies 5

Janjarasjitt 2010Janjarasjitt (2010) 25th order Daubechies 5

Adeli 2003Adeli et al. (2003a) 4th order Daubechies Harmonic Wavelet 6

Fathima 2011Fathima et al. (2011) 2nd order Daubechies 4

Husain 2012Husain & Rao (2012) 4th order Daubechies 4

Ataee 2006Ataee et al. (2006) 4th order Daubechies 4−6

Orhan 2011Orhan et al. (2011) 2nd order Daubechies 6

Subasi 2007Subasi & Erelebi (2005) 4th order Daubechies 5

applied to the computer vision field, for image recognition, in which good per-

formance rates have been achieved Cheng et al. (2010); Gilbert et al. (2009).160

Image recognition is not very different from the pattern recognition tasks that

are required for seizure detection based on EEG signal analysis and, in fact, this

technique has been explored for biomedical time series classificationWang et al.

(2013). They are both digital signals in which the salient points of the signal

serve to identify a sought-after pattern.165

The working hypothesis of this study is, therefore, that with some adjust-

ment, the same approach that is applied to Natural Language Understanding

and Computer Vision can be applied to epilepsy seizure detection. The good

results obtained in these fields of knowledge can also be reproduced in the field

of EEG analysis for seizure detection. To prove this working hypothesis, a170

BoW-inspired system must be implemented and tested to determine whether

the obtained accuracy rates improve on the state-of-the-art results.

Essentially, the first step of the BoW model consists of calculating an attribute-

value representation, in which each word that appears in the document has an

associated value that reflects the number of times the word appeared in the text.175

In the context of EEG analysis, each word is considered to be a feature, and each

document is represented by means of a feature vector. A document is therefore

described by means of the word distribution, which is used to characterize the

type of content of that document.
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(a) using an SVM classifier method and (b) implementing a BoW-inspired method

Figure 2: Proposed EEG classification frameworks

The required adjustments are intended to adapt the original approach, in180

which words are considered to be representation units, to the approach proposed

here, in which EEG signal segments, or epochs, are equivalent to words in a

document. Similar to the role that word order plays in documents, the epoch

order can also be considered to be irrelevant and is therefore overlooked.

4. Methods185

This section describes the characteristics of the EEG non-linear classifiers

proposed here. Figure 2 outlines the stages that are involved in the process of

signal characterization and categorization for both systems: an SVM classifi-

cation framework and a BoW-inspired methodology that extends the previous

pipeline. Both methods have most of their stages in common. The difference190

between the SVM method and the BoW-inspired one is that the codebook gen-

eration stage is omitted for the SVM. The classifier is therefore trained with the

feature vector set computed after applying the wavelet transform decomposition.

From the seizure detection viewpoint, the process of codebook generation

consists in identifying the different codewords appearing in the different EEG195

channels of a given record. Therefore, codewords are the different clusters in

which the feature vectors characterizing EEG channels can be grouped in. After
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having generated the codebook, the next step consists in obtaining the histogram

that characterizes the EEG signal channel. In order to do so, the proposal made

here resorts to clustering the feature vector in the optimum number of clusters200

in which these data can be grouped in, and then, measuring the distance to each

of the computed clusters. The next step consists in training the classifier using

examples, with segments corresponding to normal activity and those others cor-

responding to epileptic activity. The adopted learning strategy uses a Support

Vector Machine (SVM) classifier to compute the final classification model.205

For both systems, different non-linear classifier kernels have been applied to

compute their accuracy rates. The different kernels are also described in section

4.3.1. Several stages are common to both processes and both systems, as seen

from Figure 2, such as the signal segmentation, the wavelet transform stages

and the adopted learning strategy based on Support Vector Machine (SVM)210

classifiers. The stages represented in the figure are discussed in detail in the

following subsections.

These different stages are grouped into two major processes: training and

testing. First, a learned model is trained using examples of segments that

correspond to both normal and seizure activity. This model is then used in the215

testing phase to classify a new, unseen signal.

Figure 3: Signal segmentation into 3 second

epochs

In this framework, it is impor-

tant to note that each individual sig-

nal channel is considered in isolation

and is split into 3-second epochs, with220

a window overlap of one second be-

tween epochs (see Figure 3). The

accuracy rate therefore refers to the

number of epochs that can be correctly identified. This approach is the typical

strategy used in the literature Fathima et al. (2011); Janjarasjitt (2010).225
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Table 3: Decomposition levels and frequency bands

Decomposed signal Frequency bands Decomposition Level

D1 43.4 - 86.8 1 (noises)

D2 21.7 - 43.4 2 (gama)

D3 10.8 - 21.7 3 (beta)

D4 5.40 - 10.8 4 (alpha)

D5 2.70 - 5.40 5 (theta)

A5 0.00 - 2.70 5 (delta)

4.1. Feature extraction

Even though using the raw EEG signal channels as input for the classifier

is possible, the use of these full segments is a poor representation of the input

data. This drawback is due to the large amount of redundant information that

is contained in an epoch and its high dimensionality, which make the learning230

and classification task more difficult. It is therefore necessary to find a better

representation. Feature vector computation is the process of identifying the

salient features of a signal segment and translating them into a quantitative

set of features that characterize that segment. The process of computing these

quantitative values is not unique; moreover, the performance and accuracy rate235

of the process can be greatly affected by the method by which these character-

izing values are selected and obtained.

This work proposes the use of a wavelet decomposition approach to minimize

the amount of information that is required to characterize a segment as well as

to magnify those signal aspects, or features, that are related to the presence of240

epileptiform activity.

The wavelet transform is used to decompose the original signal into frequency

sub-bands as listed in Table 3.

Among the different wavelet transform types and decomposition level con-

figurations, this work made use of the Daubechies wavelet Omerhodzic et al.245

(2013)]. The clinically and physiologically relevant activity of the brain is framed
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in the frequency range of 0.3 to 30 Hz. More specifically, brain activity can be

categorized into a set of typical wave types, each of which lies within a prede-

termined frequency band.

The theoretical foundation for identifying those frequency bands out of the250

different decomposition levels is derived from Nyquist’s theorem. The frequency

bands of each decomposition level are comprised in the range stated by [fm/2 :

fm], such that fm = fs/2
l+1, where fs is the sampling rate frequency and l is

the level of decomposition Omerhodzic et al. (2013).

Figure 4: Signal decomposition using the DWT

and feature extraction

Given the dominant frequency255

components of the brain signal the

number of decomposition levels is set

to five Adeli et al. (2003b). The

Daubechies 4 (db4) wavelet trans-

form is applied, decomposing the sig-260

nal into details D1-D5 plus one fi-

nal approximation A5, as listed in

Figure 4. The first step in comput-

ing the feature vector for a given sig-

nal segment therefore consists of ap-265

plying the Daubechies wavelet trans-

form, with five levels of decomposition. However, the number of values that

correspond to these coefficients is still too large for the purposes of a feature

extraction process, which could be affected by the curse of dimensionality. For

that reason, rather than using all of the coefficient values, the coefficient set270

dimensionality is reduced by selecting a small number of coefficients that is be-

lieved to be the most characteristic set. Based on Kandaswamy et al. (2004);

Gotman (1990), four statistical operations are performed over the original coef-

ficient value set, and the following values are selected: the maximum value; the

minimum value; the mean value; and the standard deviation value.275

The resulting feature vector xi ∈ <24 is composed of 24 values, with four

values for each of the six wavelet coefficient sets that correspond to the different
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decomposition bands. A visual description is depicted in Figure 4.

4.2. Bag of Words feature representation

BoW is proposed in this paper as one of the main novelties in the EEG analy-280

sis field. BoW has shown its excellent properties in the fields of computer vision

and text analysis to automatically learn and extract discriminative features in

complex data, where manual feature selection or manually design features are

not possible or provide little discriminative properties. This is largely the case

of EEG where the interesting neural activity can be difficult to describe, may285

appear in many different varying shapes or may be largely hidden by noise.

Features extracted from the EEG signals in the literature are largely based on

simple statistics, being wavelet features one of the most advance techniques. In

this sense, BoW can provide a relevant framework to the field to improve the

current state of the art.290

This subsection describes the processes of clustering and codebook genera-

tion that are involved in the BoW-inspired system. From the BoW perspective,

EEG signals play the role of a text document in which each signal segment,

quantized as a feature vector, can be characterized as a set of words in a specific

configuration. The aim of this new feature representation is to better address295

the non-linear nature of the data by mapping to a new representation or space

where the classifier can be better applied. The BoW representation can be

therefore understood as a non-linear transformation function.

4.2.1. Codebook generation

The first step is the generation of words to be used to represent the initial300

signal. This process is called codebook generation and consists of identifying

the most common and repetitive patterns, or words, that appear in a set of

signals, or document. Thus, each word represents a frequent and characteristic

spectro-temporal feature that can be used to codify our signal, to obtain the

most representative groups. Under this definition, words are the different cluster305

centers ck in which the feature vectors of the EEG segments can be grouped,
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and the codebook C, or vocabulary, is the entire set of words that can appear

in the whole dataset.

Clustering

Clustering the feature vectors according to their common features allows us310

to obtain those representative words that repeat over the dataset. This clus-

tering also removes undesired feature value variations due to noise in the signal

because each group will allow a certain variability or deviation from the cluster

center. At the same time, the outlier segments that are not very representative

will be filtered because they will not have sufficient critical mass to compose315

their own cluster. This process can be considered equivalent to the elimination

of the typos from the text.

Two different clustering techniques were tested in this paper, and an empiri-

cal comparison is presented in the results section. No assumption regarding the

number of clusters, their allowed variability or the memberships of the feature320

vectors to the hypothetical words was made.

The first clustering approach used in this work is k-means clustering Ka-

nungo et al. (2002). In this algorithm, initial seeds for each of the K clusters

are initialized to a random sample in the dataset. Then, an iterative process is

applied to refine their positions and characteristics until convergence is achieved.325

At each iteration, each sample, defined by its feature vector xi∀i ∈ dataset, is

assigned to the closest cluster, and the cluster center ck is recalculated as the

average of all of the samples assigned to it.

ck =
1

nk

nk∑
i=1

xi (1)

where nk is the number of data samples that correspond to cluster k.

In contrast to previous work Gotman (1990), in our implementation, the330

number K of clusters is not predetermined beforehand but is calculated for each

new training set under consideration. The implemented approach is intended

to maximize the distances among the clusters, the inter-class distance, while

minimizing the distance between the elements that are inside a cluster, the

14



intra-class distance:335

Interclass(K) =

K∑
k=1

K∑
i=1,i6=k

‖ ci − ck ‖2 (2)

Intraclass(K) =

K∑
k=1

1

nk

nk∑
i=1

‖ xi − ck ‖2 (3)

To accomplish this goal, we predefine a maximum number of clusters, which

ranges from 1 to 8 clusters, and we evaluate the optimization function for each

of the considered numbers of clusters:

arg max
x

{
Interclass(K)− Intraclass(K)

max(Interclass(K), Intraclass(K)

}
(4)

However, although k-means works well with isolated and compact clusters

Jain et al. (1999), its performance decreases for a more complex clustering space.340

In addition, another disadvantage of the k-means algorithm is its stochastic ini-

tialization, which results in a high sensitivity to the selection of the initial seed.

As a result, the clustering can converge to a local minimum of the optimization

function if the initial partition is not properly chosen Jain et al. (1999).

To obtain a more robust grouping, a second clustering algorithm has been345

implemented and tested, based on the expectation−maximization (EM) algo-

rithm McLachlan & Krishnan (2007). EM is an iterative methodology that

allows finding the most likely estimates of parameters in statistical models. An

EM iteration alternates between performing an expectation (E) step, which cre-

ates a function for the expectation of the log-likelihood as evaluated using the350

current estimate of the parameter k, and a maximization (M) step, which re-

computes the parameter k that maximizes the expected log-likelihood found in

the E step. This framework allows us to estimate and fit a Mixture of Gaussian

(MoG) φ to our data x and calculate the associated parameters, the mean and

covariance ck,
∑

k, while minimizing the error. The minimization of the error is355

equivalent to maximizing the probability of expressing our data as a function of
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the MoG.

p(x|φk) ∝ e−(x−ck)
T ·

∑−1
k ·(x−ck) (5)

φ = N(ck,
∑
k

) (6)

In our approach, the number of clusters k is automatically learned during the

clustering process by applying the Figueiredo-Jain GMM automatic estimation

Figueiredo & Jain (2002).360

The strength of EM is that it can derive elliptical clusters (Gaussians) in-

stead of spherical clusters that are estimated by k-means, and thus, it is more

general and versatile when adapting to complex clustering spaces. Moreover, by

integrating the automatic estimation of the number of clusters K in an iterative

process, not only the computational cost is reduced by avoiding repetitions of365

the clustering process a number of times but also the sensitivity to the stochastic

initialization is removed.

The resulting vocabulary C will be the set of cluster centers that result from

clustering the training set:

C = {ck}k∈K (7)

in the case of k-means clustering, or by their centroids and their covariances:370

C = {ck,
∑
k

}k∈K (8)

in the case of the EM algorithm.

4.2.2. Bag-of-Words representation

Once the vocabulary has been defined, the next step consists of redefining

the feature vectors, which are originally composed of statistical values derived

from the wavelet decomposition coefficients, as a function of our vocabulary.375

This codification or quantization process generates a new descriptor, which is

composed of words or bag of words and is finally fed into the classifier.
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The new chosen descriptors represent the feature vector in terms of its dis-

tance to each of the words or cluster centroids. Since clusters are characterized

differently depending on the applied clustering technique, two different distances380

were used: Euclidean distance for k-means clusters and Mahalanobis distance,

for the EM clusters.

After the generation of the descriptor, the aforementioned feature vector of

24 values is now reduced to a new vector whose dimensionality depends on the

optimum number of clusters for that specific signal. This arrangement can be385

seen as a non-linear transformation of the data.

4.3. Classification

Finally, the chosen feature representation, either the statistical values that

result from wavelet decomposition or the BoW representation, are fed into a clas-

sifier that distinguishes among the different classes of samples. In our seizure390

detection problem, this classification is performed to distinguish normal and

seizure EEG signals, and thus, a binary classifier is used (normal/epileptic).

In our implementation, an SVM paradigm has been used Vapnik (1995); Jan-

jarasjitt (2010); Kıymık et al. (2005). The choice of SVM in comparison with

more traditional approaches, such as regressio, neural networks and discriminant395

analysis (DA) Ripley & Hjort (1995), is supported by the reported advantages

of the SVM Auria & Moro (2008): it does not require regularity in the data and

thus can be applied to data that follow an unknown distribution; it delivers a

unique solution because the optimality problem is convex in contrast to neural

networks; it can be easily extended to non-linear non-parametric problems by400

replacing the linear kernel; it scales relatively well to high-dimensional data;

and the trade-off between the classifier complexity and error can be controlled

explicitly.

To classify a new test descriptor, the SVM should be already trained in

a supervised mode with a training set that is composed of both positive and405

negative examples of normal and epileptic EEGs. As an output of the training

phase, an hyperplane that is capable of separating the two classes with the
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maximum margin, called the maximum-margin hyperplane, is obtained. The

position of a new test descriptor with regard to this hyperplane will be the

criterion for assigning it an identity as normal or epileptic.410

4.3.1. Non-linear classification

For linear data, a hyperplane can be used to split the data. However, the

assumption of linearity is often wrong (see Figure 5). In these cases, the dataset

is inseparable in a linear space, and the classification fails. Although the deci-

sion of taking a linear classifier is supported by the literature Gotman (1990);415

Orhan et al. (2011), where little attention has been paid to the classification

technique to be applied, and linear classifiers have reported excellent results in

EEG analysis, our working hypothesis about the non-linearity of the data will

be evaluated by proposing the usage of non-linear SVM.

An extension of SVM was developed Husain & Rao (2012) to solve non-420

linear problems by the “kernel trick”. Given a training set F = {f{xi}, y(xi) ∈

{−1, 1}}i∈dataset, where f is the BoW descriptor that corresponds to the training

sample i and y is its class, this methodology applies a kernel function K to the

descriptors, which maps them into a higher dimensional non-linear space by

means of a non-linear function ϕ.425

f(x), f(x′)← K (f(x), f(x′) = ϕ (f(x)) , ϕ (f(x′))) (9)

In this new space, the data are linearly separable, and the SVM framework

can be applied. This process is illustrated in Figure 5.

Different kernel functions can be applied to obtain the best possible transfor-

mation, and even a function that is personalized to the data can be used. Among

the most common transformations are Cristianini & Shawe-Taylor (2000).430

Polynomial of order d:

K (f(x), f(x′)) = (f(x) · f(x′))
d

(10)

K (f(x), f(x′)) = (f(x) · f(x′) + 1)
d

(11)

18



Figure 5: Non-linearly separable data (left) and its mapping into a linearly separable space

through a non-linear kernel (right)

Gaussian Radial Basis Functions (RBF):

K (f(x), f(x′)) = exp

(
−‖f(x)− f(x′)‖2

2σ2

)
(12)

Perceptron multi-layer:

K (f(x), f(x′)) = tanh (τ · f(x) · f(x′) + c) (13)

5. Results

This section describes the results that were obtained from testing the pro-

posed system in three different datasets, which encompass situations with ar-

tifacts, different noise levels, highly attenuated signals and different activity

variations. This section is intended to evaluate both types of systems under435

different circumstances, to determine the system that better suits the charac-

teristics of a real scenario, and to compare it against the state of the art.

The proposed system has been implemented in Matlab, using the gmmbayestb-

v1.02 for automatically learning the number of clusters based on the Figueiredo-

2http://www.it.lut.fi/project/gmmbayes/doc/gmmbayestb-v1.0/gmmbayestb-v1.0/
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Jain GMM automatic estimation Figueiredo & Jain (2002). Additionally, we440

have employed the Matlab support for the SVM classifier and its different ker-

nels.

5.1. EEG Data

Different datasets have been used in this work for training and testing pur-

poses. First, the system was trained using the data described in Andrzejak445

et al. (2001), which is an open-access dataset made available by the University

of Bonn. This dataset comprises a series of clean EEG signal channels that were

recorded from both healthy and epileptic patients during ictal and inter-ictal

periods. It is organized into five different sets, which are labeled from A to

E. The A set records eyes opened and healthy patient activity, and the B set450

records the activity with eyes closed and healthy patients; the C set records

inter-ictal activity from the healthy part of the brain, the D set records also

inter-ictal activity but from the epileptic hemisphere of the brain, and finally,

the E set records epileptic seizure activity. This work concentrates on sets A

and E for learning by example, following a similar procedure as in other ap-455

proaches in the literature Janjarasjitt (2010); Fathima et al. (2011). Each set

contains 100 individual channels of 23.6 seconds, at a sample rate of 173.6 Hz.

This dataset is an artifact-free dataset, which was recorded with a 128-channel

amplifier system. Each dataset set records the activity of 5 different patients.

In total, sets A and E contain a total of 1200 segment each, considering here460

3-second segments. Half of these segments, randomly chosen, has been used for

the codebook generation as well as for the SVM classifier model training.

Initially, the same University of Bonn dataset was used for testing using the

remaining 50%. In addition, to obtain accurate results that are closer to a real

scenario, where the system cannot be retrained for each new environment or465

patient, two other datasets are used as cross-dataset evaluation. The testing

stage is extended to additional datasets that were not considered during the

training stage or adapted to them. This allows us to obtain a more reliable

evaluation of the real performance of the method. Moreover, it is expected that
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these datasets contain different variations, noise and artifacts from the ones used470

for training.

This work therefore resorts to a second only-testing dataset, which was made

available by the Epilepsy Center of the University Hospital of Freiburg, Germany

Winterhalder et al. (2003). This dataset records data from 21 patients who

suffer from medically intractable focal epilepsy. The data are labeled according475

to the type of activity they record, which conforms to our set of labels I and

J. Moreover, each labeled activity is stored in a single file in which the signal

channels are differentiated. For each patient, this dataset provides records of

2-5 hours of ictal activity, sampled at a frequency rate of 256 Hz. We have

employed a reduced version of the dataset that records 3693,2 seconds of ictal480

activity. It should be highlighted that this dataset contains artifact-free data

that were recorded from intracranial sensors.

Finally, a third dataset is also used for testing exclusively. The purpose of

this third only-testing dataset is to consider real EEG data that was recorded

from non-ideal environments in which there were numerous artifacts and at-485

tenuated signals. Such factors are missing in the two previous datasets. This

last source of EEG data used in this work comes from the Hospital Regional

Universitario Carlos Haya (HRUCH) Malaga, Spain. EEG data were recorded

with XLTEK Neuroworks at a sampling rate of 512 Hz, although the signals are

band-pass filtered in the range of 2 to 200 Hz. This dataset is comprised of four490

sets, labeled F, G, H, and K (to continue with the University of Bonn nomencla-

ture). The F set records the activity of a healthy patient, although with many

artifacts (due to cable disturbances and blinking). The G set records inter-ictal

activity, also with many blinking artifacts. These two sets are sampled at a fre-

quency of 511.99 Hz. The H set records a partial seizure, recording from both495

the healthy and the epileptic part of the brain. The seizure takes place at the

left temporal lobe of the brain. The data were sampled at a frequency of 200

Hz. The K set records a tonic-clonic general seizure, also downsampled at 200

Hz. These three sets sum to a total of 277,71 seconds of recording.

Because of the many artifacts and attenuated signals, the HRUCH dataset500
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Table 4: Datasets used in this work

Set label Source Number of segments Time in seconds Label

A University of Bonn 600 11,8 1

B University of Bonn 1200 23,6 1

C University of Bonn 1200 23,6 1

D University of Bonn 1200 23,6 1

E University of Bonn 600 11,8 2

F HRUCH 345 7,61 1

G HRUCH 5829 125,60 1

H HRUCH 894 39,5 2

I Freiburg 4431 3600 2

J Freiburg 1920 93,2 2

K HRUCH 2309 105 2

can be considered to be the most complex dataset, and it can provide a clear

idea of how good is the performance of the proposed system outside of the lab, in

a real environment. The data, as provided by the HRUCH dataset, are the type

of data that a framework for seizure detection will be required to address. Table

4 summarizes the most relevant features of the sets used for testing purposes.505

In summary, out of the 21728 segments of 3 seconds used in this work, 600

have been used for training purposes (half of the A and E sets). For those used

for testing, 10374 segments corresponds to normal activity and 10154 segments

to epileptic activity. The system performance has been tested with a total

amount of 4065,31 seconds, 215,81 seconds of normal activity (label 1) and510

3849,5 of seizure activity (label 2). No additional filters have been applied to

any of the datasets, apart from the anti-aliasing filter applied by the equipment

used to record the University of Bonn and HRUCH datasets. To address the

different frequency rates that range from 173.6 to 511.99 Hz, all of the datasets

are automatically resampled at 173.6 Hz, the frequency of the training set.515
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5.2. Qualitative analysis of the data

PCA projection of the data are computed and represented in Figures from 6a

to 6d to graphically demonstrate that the data from different datasets (i.e., the

different modalities present in the data, in different colors) are not linearly sep-

arable. Figure 7b shows the same projection but now differentiating the healthy520

and epileptic samples. Only two dimensions are represented to facilitate human

visual interpretation of the data. Although these figures are only indicative

because no PCA is actually performed by the classifier, it gives an indication

of the distribution of both the input feature space and the BoW transformed

feature space.525

It can be noticed that the data and modalities seem hard to separate with

linear and simple classifiers in the original space, while non-linear separation

using kernels may give better results. We also provide the representation of the

resulting data after the BoW has been applied and how it linearizes the space,

simplifying the separation process performed by the classifier.530

5.3. Clustering evaluation

The first implementation decision to be evaluated is the clustering method-

ology to be applied to generate the codebook. Both k-means and EM were

evaluated on the 3 testing sets (Bonn, Freiburg and HRUCH). The empirical

results confirm clearly the theoretical advantage of using EM instead of k-means535

(see Figure 8).

Since EM relies on a stochastic process to initialize the clustering process, an

experiment was performed to evaluate the impact that the selected initial cluster

might have in the overall performance of the system. Quantitative experiments

in section 5.5 were repeated 10 times for the BoW approach (SVM-only ap-540

proaches do not use the clustering) for sets A and E and the standard deviation

(STD) between experiments was measured (see Table 5). The average stan-

dard deviation (STD) is 0.0044 for BoW, which represents an almost negligible

influence of this initialization on the final performance of the system.
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(a) PCA projection of all of the training

and testing samples for the wavelet feature

representation

(b) Zoomed area in the green circle

(c) PCA projection of all of the training

and testing samples for the BoW feature

representation

(d) Zoomed area in the green circle

Figure 6: PCA projection of all of the training and testing samples into the 2 most significant

PCA dimensions for the (a,b) wavelet feature and (c,d) BoW feature representation. The right

column shows a zoom of the area in the green circle. Color-dataset correspondence legend:

red dot=A, green=E, blue=F, black=G, cyan=H, yellow=I, magenta=J, red cross=K

5.4. Window size evaluation545

Another parameter that must be verified is the size of the signal segment

or epochs into which the EEG channels have been split. The 3-seconds window

size has been empirically demonstrated by analyzing the performance of the

system under different window sizes. The following graphics summarizes the

variations in the accuracy rate, which were experienced by varying the size of550

the sliding window, from two-second windows to five-second windows. For the

purpose of conciseness, only the SVM and BoW implementation of the RBF

kernel is presented in this paper. Because it will be justified later, on average,
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(a) (b)

Figure 7: PCA projection of all of the training and testing samples (zoom versions in Figure

6) into the 2 most significant PCA dimensions for the a) wavelet feature and b) BoW feature

representation. Blue indicates healthy samples, while red indicates seizure samples

Table 5: Standard deviation for accuracy results after 10 iterations

STD for BoW

A SET E SET

No D1 band 0,0002635 0,00932274

Quadratic kernel 0 0,00811947

Polynomial kernel 0,00035136 0,00403399

RBF kernel 0,00035136 0,00901815

Perceptron kernel 0,0002635 0,01237935
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Figure 8: Average accuracy rate obtained by BoW over the whole testing set (A to K) by

using K-means and EM clustering

the RBF kernel provides better results than any of the other implementations,

and for that reason, only its value is represented here.555

Figure 9 summarizes the accuracy rates that are obtained by systems testing

the different sets considered here. Although the results are not totally conclu-

sive, it can be observed that the maximums are normally achieved in 3 or 4

seconds. This timing is especially notable for sets A and E, where a maximum

accuracy rate of 100% is achieved.560

5.5. Quantitative results

An exhaustive evaluation of each of the proposed methods -with and without

BoW, with and without different non-linear kernels- was performed. The accu-

racies of the classification results obtained for different experiments are depicted

in Table 6. Since the models are trained using half of the A and E datasets,565

first and fifth lines in the table can be considered intra-dataset while all others

are cross-dataset experiments. Parameters are kept the same for all datasets.
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Figure 9: Classification accuracy evolution with the sliding window size, for tested size values

of 2, 3, 4 and 5 seconds. The solid blue line represents the SVM-only system results, and the

dashed green line represents the BoW+SVM system results

Table 6: Accuracy results for the different experiments that were conducted

System BoW(%) BoW (%) BoW (%) BoW (%) BoW(%) SVM(%) SVM (%) SVM (%) SVM (%) SVM (%)

Set Kernel
Linear

(dot product)
Quadratic

Polynomial

order 3
RBF Perceptron

Linear

(dot product)
Quadratic

Polynomial

order 3
RBF Perceptron

A 100,00% 100,00% 100,00% 100,00% 82,00% 100,00% 100,00% 100,00% 100,00% 82,00%

B 93,00% 93,00% 89,00% 93,00% 98,00% 79,00% 78,00% 78,00% 77,00% 98,00%

C 99,00% 98,00% 98,00% 98,00% 71,00% 90,00% 91,00% 92,00% 92,00% 71,00%

D 86,00% 79,00% 84,00% 86,00% 75,00% 78,00% 50,00% 80,00% 80,00% 75,00%

E 95,00% 96,00% 100,00% 97,00% 79,00% 100,00% 100,00% 100,00% 100,00% 79,00%

F 70,00% 73,00% 77,00% 73,00% 78,00% 75,00% 73,00% 72,00% 72,00% 78,00%

G 93,00% 59,00% 66,00% 58,00% 82,00% 22,00% 30,00% 36,00% 44,00% 82,00%

H 84,00% 80,00% 27,00% 84,00% 24,00% 46,00% 31,00% 42,00% 87,00% 24,00%

I 100,00% 93,00% 29,00% 100,00% 100,00% 100,00% 88,00% 87,00% 100,00% 88,00%

J 99,00% 91,00% 33,00% 100,00% 100,00% 98,00% 47,00% 99,00% 100,00% 100,00%

K 73,00% 77,00% 26,00% 81,00% 31,00% 41,00% 41,00% 19,00% 80,00% 31,00%

Mean 90,21% 85,35% 66,26% 88,15% 74,57% 75,35% 66,10% 73,12% 84,72% 73,46%
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6. Discussion

Several conclusions can be observed from Table 6. First, we can see how BoW

drastically improves the accuracy of the system, on average and for each set,570

with regard to the equivalent model of SVM. This improvement is because the

BoW strategy creates a more discriminative space in which the classification can

be performed, while focusing on the key features. This arrangement is shown in

Figure 6, where all of the positive and negative samples of all (A to K) datasets

are projected into the 2 most significant dimensions of a PCA space.575

Second, a similar accuracy to BoW can be obtained with a more conventional

approach and a careful selection of non-linear classifiers in the same feature

space. This approach gives lower, but similar, accuracy on average and provides

some of the best possible accuracies on the individual sets (E, J, H). The good

performance of the RBF kernels, especially in the SVM version, is supported580

theoretically because of the fact that if the kernel used is a Gaussian RBF, then

the resulting feature space is a Hilbert space that has an infinite dimension.

In this space, our maximum margin classifiers are well regularized and large

or even infinite dimensions do not spoil the results, which mitigates the curse

of dimensionality. However, it is important to note that there is a drop in585

SVM-RBF performance with respect to some of the noisiest datasets (G). This

drop could suggest the convenience of the BoW approach for addressing the

(considerably) more difficult conditions.

Moreover, the use of non-linear classifiers for BoW methods is revealed to be

unnecessary because similar results are obtained for all of the possible kernels,590

except for the 3rd-order polynomial approach, in which overfitting to the train-

ing seems to have happened. This redundancy occurs because BoW has already

reduced significantly the dimensionality and non-linearity of the feature space

as shown in Figure 7b and makes the use of non-linear kernels in the classifier

redundant. This is a significant advantage since selecting a suitable kernel is595

not trivial and relies largely on empirical tuning as shown in Burges (1998) and

in our own exhaustive experiments.
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Table 7: Accuracy means for A and E sets

System BoW(%) BoW (%) BoW (%) BoW (%) BoW(%) SVM(%) SVM (%) SVM (%) SVM (%) SVM (%)

Set
Kernel Linear

(dot product)
Quadratic

Polynomial

order 3
RBF Perceptron

Linear

(dot product)
Quadratic

Polynomial

order 3
RBF Perceptron

Mean A and

E sets 97,59% 98,09% 99,84% 98,38% 80,60% 99,84% 100,00% 100,00% 100,00% 80,60%

In the overall and considering all datasets and the cross-dataset setup, com-

prising different variations and artifacts, it can be observed how the BoW

method combined with an SVM classifier with a linear kernel yields a mean600

accuracy of 90,21%.

BoW implementation provides the best results on average when compared

to the equivalent linear or non-linear SVM implementation. The robust per-

formance of the BoW implementation when facing these types of realistic EEG

signals suggests the suitability of this model for deployment in real hospital605

environments. This is justified by the success of BoW in creating a more dis-

criminative and linear space in which the classification of the EEG data can

be better performed. The use of BoW also avoids the non-trivial selection of a

kernel and parameter tuning that is required in the SVM classifier.

6.1. Comparison with the state of the art610

Two different comparison with state-of-art methods were performed. In the

first comparison, results reported by state-of-art methods on the public A and E

dataset are compared against or best performing methods. These dataset are the

most widely used in the literature and for that reason they are commonly used as

reference framework Chen (2014). Our best performing methods were chosen by615

selecting a BoW and a non-linear SVM systems from Table 7, which summarizes

the accuracy rates obtained for the different techniques when applied only to

sets A and E.

Table 8 compares the accuracy results that are obtained from state-of-the-art

methods with the ones in Table 7 for sets A and E (normal and ictal activity)620

according to the reported results in their corresponding papers. Different ap-

proaches are implemented by the studies listed in this table, such as Neural

29



Table 8: Comparative analysis with previous work using the University of Bonn Dataset (CV:

cross validation)

Reference Accuracy (%) Training/testing Setup

Polat and Gulness Polat & Güneş (2007) 98.72 5 and 10 fold CV

Guo et al. Guo et al. (2009) 99.6 50-50

Wang et al. Wang et al. (2012) 99.5 10 fold CV

Janjarasjitt et al. Janjarasjitt (2010) 99.0 66-33

Husain et al. Husain & Rao (2012) 98.2 60-40

Fathima et al. Fathima et al. (2011) 99.8 66-33

Chen et al. Chen (2014) 100 50-50

Übeyli Übeyli (2010) 94.83 50-50

This work:

BoW + SVM

Non-linear SVM (RBF kernel)

99.85

100
50-50

Networks, Wavelet analysis, or a different implementation of the BoW model

Wang et al. (2012). From the observed data, it can be concluded that the current

implementation using both systems, BoW and SVM, achieves state-of-the-art625

performance.

Although these results are important as a reference against the state of the

art, there are some limitations in this comparison. First, different authors used

different experimental setups and training/testing splits, which makes those

numbers not directly comparable. In this regard, in order to measure the im-630

pact that both the training/testing split and the particular subset selected for

training may have in the final results, an additional experiment was carried out,

in which the training and testing configuration is modified. A leaving-10%-out

cross validation approach was implemented in which the experiment was run

10 times. With the obtained accuracy, the STD was calculated, obtaining a635

mean value of 7.3483e-04 (±0.07%) for the BoW and 2.2631e-04 (±0.02%) for

the SVM. This variation may imply a crucial difference between being the best
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performing method or not.

As a second limitation, this single dataset only contains a type of variation

in the epileptic activity, which implies a simple problem and explains the high640

accuracy rates obtained. Finally, since authors only report results on these

datasets or retrain for each dataset, there is a risk of overfitting which means

that the reported result may be artificially high and not a true reflection of

the real performance. Very little discussion, if any, is provided on those papers

regarding the required tuning of these methods and their parameters to reach645

those results. This issue also arises in the adjustment of our proposed methods,

since by selecting the best methods for A and E datasets in Table 7 we are not

necessarily taking the best overall method 6, and their performance will drop

when evaluated under more challenging conditions: Bow+Polynomial kernel

drops from 99.84% to 66.26% and the SVM-RBF drops for 100% to 84.72%.650

In order to provide a better and more reliable comparison, a new set of ex-

periments was performed in which some representative and up-to-date works

of the state of the art have been implemented and evaluated in the same ex-

perimental setup, including cross-dataset evaluation, and in more complex and

realistic datasets with the presence of noise and artifacts. No other state-of-the-655

art methods have been tested under those conditions, and few have followed our

approach of training with a completely different dataset from the testing one.

This testing strategy proves the robustness of our methods against different

patients, capturing device-related and environmental changes.

We have selected four of the most representative works of the state of the660

art. The method “DTCWT+SVM” Chen (2014) proposed the use of a novel

approach based on the use of a dual-tree complex wavelets (DTCWT) com-

bined with an SVM classifier. The method labelled PE+SVM Li et al. (2014)

employs permutation entropy and an SVM classifier to explore changes in the

EEG. The method labelled as DWT+KNN Guo et al. (2011) applies genetic665

programming to a reduced dimension feature vector obtained after a discrete

wavelet transform (DWT) with the purpose of improving the discriminative per-

formance of K-nearest neighbor (KNN) classifier. Finally, the method labelled
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Table 9: Comparative analysis with previous work using the complete dataset space employed

in this work

A-E sets (University of Bonn dataset) FGHK sets (HRUCH dataset) IJ sets (Freiburg dataset)

Method

Set
Acc Prec Recall F1 Acc Prec Recall F1 Acc Prec Recall F1

BoW+SVM 94,68% 70,06% 94,00% 80,29% 81,64% 79,24% 74,49% 76,79% 99,12% 100,00% 99,38% 99,69%

DTCWT+SVM Chen (2014) 83,60% 57,26% 71,00% 63,39% 60,37% 100,00% 20,78% 34,41% 42,14% 100,00% 41,18% 58,33%

PE+SVM Li et al. (2014) 70,93% 11,36% 14,33% 12,68% 40,26% 45,81% 64,99% 53,74% 8,41% 100,00% 6,42% 12,07%

DWT+KNN Guo et al. (2011) 91,00% 52,91% 100,00% 69,20% 68,02% 82,89% 52,40% 64,21% 100,00% 100,00% 100,00% 100,00%

DWT+ANN Tzallas et al. (2007) 90,55% 51,68% 100,00% 68,14% 72,34% 96,59% 44,23% 60,68% 98,65% 100,00% 99,17% 99,58%

as DWT+ANN Tzallas et al. (2007, 2009) proposes the use of time-frequency

distributions with an artificial neural network (ANN) classifier. Since no im-670

plementation was provided by the authors, we implemented them keeping their

parameter setting and configuration as closed as possible to their specifications.

Whenever there were missing details regarding the implementation, the configu-

ration details of our system were adopted to ensure a fair comparison. Similarly,

the experimental setup and training/testing split used is identical for all com-675

pared methods. Training was performed using half of the segments in A and E

datasets, whereas testing was carried out on all other segments and datasets.

Table 9 presents the obtained results for all the datasets used in this work,

including our private datasets. Accuracy (Acc), precision (Prec), recall and F-

measure (F1) are used as evaluation metrics. Table 10 summarizes the mean680

F1-measure obtained for each of the evaluated methods across the three different

datasets.

From the obtained results, it can be concluded that our method outperforms

the other methods in almost all cases, with the exception of the Freiburg dataset,

in which the results obtained are very similar to the best result reported in685

literature. However, the excellent performance of all methods when using the

Freiburg dataset, which only contains intracrannial ictal (positive) segments,

may indicate the simplicity of this set and/or the particularities of intracrannial

ictal cases. By considering all dataset together (see Table 10), we can conclude

that our method is more reliable and robust since it does not depend on the690

characteristics of the signal to be classified (intracrannial or scalp, noisy or

noise-free and with artifacts or artifact-free).
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Table 10: Mean F1-measure for the evaluated methods

Method Mean F1-measure Standard Deviation

BoW+SVM (Ours) 85,59 % 12,33 %

DTCWT+SVM Chen (2014) 52,04% 15,47 %

PE+SVM Li et al. (2014) 26% 23,88 %

DWT+KNN Guo et al. (2011) 77,80% 19,38 %

DWT+ANN Tzallas et al. (2007) 76,13% 20,64 %

6.2. Computational efficiency

Figure 10: Training time of BoW+LinearSVM

(blue) and SVM-RBF (red) systems and their

trend with the number of training samples

Regarding the computational cost

(see Figure 10), BoW reduces the695

feature vector dimension and makes

it easier to obtain convergence of

the classifier, which results in a

lower training computational cost,

and the effect is more noticeable when700

the number of available samples in-

creases. Both systems have equiva-

lent testing costs.

7. Conclusions

This work presents two systems705

for the automatic analysis of EEG recordings, which aim toward epilepsy seizure

detection. As the first contribution, one of the proposed systems consists of a

non-linear implementation of a Support Vector Machine (SVM) classifier that

makes use of well-known techniques to optimize the feature extraction and

learned classification model. The second contribution is inspired by a successful710

model for Natural Language Understanding and Computer Vision, known as

Bag-of-Words (BoW), which is adapted to the field and added into the frame-

work. In this sense, this work was supported by the premise that an extrapola-
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tion of that model to EEG analysis for epilepsy seizure detection could improve

the existing accuracy rates. The methodology presented here proposes a novel715

combination of well-known techniques such as sliding windows, wavelet signal

decomposition, statistical operations over wavelet coefficients, and the use of

different classifier kernels in the field of EEG analysis.

The proposed systems were validated in a wide spectrum of data, includ-

ing public standard datasets and complex private datasets, in which different720

type of activities, noise and artifacts appear. For instance, a dataset consists

of intracranial data that is characterized by high-amplitude signals with low

noise, and a different dataset was obtained from a real scenario, in which the

EEG signals that were recorded from the scalps were considerably attenuated.

Evaluation was performed focusing on cross-dataset experiments, in which the725

system is trained on the standard public set and evaluated in the other without

adaptation or tuning. The main reason is to demonstrate that accurate results

were not dependent on which dataset was used to train the system and the

reported results are a better reflection of the performance in realistic scenarios.

Our proposed system performs at state-of-art level when evaluated in stan-730

dard datasets under an intra-dataset setup. More importantly, cross-dataset

experiments have been used to evaluate the performance of the proposed BoW

approach against some of the most relevant and representative state-of-the-art

methods for all the datasets considered in this work. The results prove the ro-

bustness of our method to input data and they suggest that more complex and735

non-linear techniques as well as thorough evaluation methodologies are required

in the field of EEG analysis.

The clinical implications of having a reliable system for epilepsy diagnosis are

related to the diagnosis stage. This first stage represents a bottleneck because it

requires from a neurophysiologist going through the EEG logs that should ide-740

ally record as much cerebral activity as possible to increase the probability of

recording seizure occurrences. This is a tedious and resource consuming activ-

ity, which requires very advanced training and experience. Moreover, according

to the neurologist office of the HRUCH, approximately 50% of people attended
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in their offices, regardless of presenting epilepsy symptoms, are afterwards diag-745

nosed as non-epileptic. The bottleneck is therefore in the analysis of the EEG,

that

As future work we aim to evaluate our system for automatic analysis of long

EEG test, such as those of sleep deprivation, which currently relies on specialists

supervising the testing results. This will require the introduction of time-series750

modeling in the BoW representation since our current implementation of BoW

fails to represent the underlying temporal and causal information that is inherent

to time series such as EEG signals and that may be needed to detect more

complex and subtle neural activity. Additionally, due to the computational

efficiency of the proposed method, we will work on the implementation of a755

hardware-specific version of the algorithm for FPGAs.
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Übeyli, E. D. (2010). Least squares support vector machine employing model-935

based methods coefficients for analysis of eeg signals. Expert Systems with

Applications, 37 , 233–239.

Upadhyay, R., Padhy, P., & Kankar, P. (2016). A comparative study of feature

ranking techniques for epileptic seizure detection using wavelet transform.

Computers & Electrical Engineering , 53 , 163–176.940

Valipour, M. (2012a). Comparison of surface irrigation simulation models: full

hydrodynamic, zero inertia, kinematic wave. Journal of Agricultural Science,

4 , 68.

Valipour, M. (2012b). Sprinkle and trickle irrigation system design using tapered

pipes for pressure loss adjusting. Journal of Agricultural Science, 4 , 125.945

Valipour, M. (2016). Optimization of neural networks for precipitation analysis

in a humid region to detect drought and wet year alarms. Meteorological

Applications, 23 , 91–100.

Valipour, M., & Singh, V. P. (2016). Global experiences on wastewater irriga-

tion: Challenges and prospects. In Balanced Urban Development: Options950

and Strategies for Liveable Cities (pp. 289–327). Springer.

Vapnik, V. N. (1995). The Nature of Statistical Learning Theory . New York,

NY, USA: Springer-Verlag New York, Inc.

Wang, J., Liu, P., She, M. F., Nahavandi, S., & Kouzani, A. (2013). Bag-

of-words representation for biomedical time series classification. Biomedical955

Signal Processing and Control , 8 , 634 – 644.

Wang, J., Liu, P., She, M. F., Nahavandi, S., & Kouzani, A. Z. (2012). Bag-of-

words representation for biomedical time series classification. CoRR, .

Wilson, S. B., Scheuer, M. L., Emerson, R. G., & Gabor, A. J. (2004). Seizure

detection: evaluation of the reveal algorithm. Clinical Neurophysiology , 115 ,960

2280 – 2291.

42



Winterhalder, M., Maiwald, T., Voss, H., Aschenbrenner-Scheibe, R., Timmer,

J., & Schulze-Bonhage, A. (2003). The seizure prediction characteristic: a

general framework to assess and compare seizure prediction methods. Epilepsy

& Behavior , 4 , 318–325.965

Yannopoulos, S. I., Lyberatos, G., Theodossiou, N., Li, W., Valipour, M., Tam-

burrino, A., & Angelakis, A. N. (2015). Evolution of water lifting devices

(pumps) over the centuries worldwide. Water , 7 , 5031–5060.

43


	Introduction
	Previous work
	Background
	Wavelet transforms
	Bag of Words

	Methods
	Feature extraction
	Bag of Words feature representation
	Codebook generation
	Bag-of-Words representation

	Classification
	Non-linear classification


	Results
	 EEG Data
	Qualitative analysis of the data
	Clustering evaluation
	Window size evaluation
	Quantitative results

	Discussion
	Comparison with the state of the art
	Computational efficiency

	Conclusions

