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Abstract

Safety on public transport is a major concern for the relevant authorities. We

address this issue by proposing an automated surveillance platform which com-

bines data from video, infrared and pressure sensors. Data homogenisation and

integration is achieved by a distributed architecture based on communication

middleware that resolves interconnection issues, thereby enabling data mod-

elling. A common-sense knowledge base models and encodes knowledge about

public-transport platforms and the actions and activities of passengers. Tra-

jectory data from passengers is modelled as a time-series of human activities.

Common-sense knowledge and rules are then applied to detect inconsistencies

or errors in the data interpretation. Lastly, the rationality that characterises

human behaviour is also captured here through a bottom-up Hierarchical Task

Network planner that, along with common-sense, corrects misinterpretations to

explain passenger behaviour. The system is validated using a simulated bus sa-

loon scenario as a case-study. Eighteen video sequences were recorded with up

to six passengers. Four metrics were used to evaluate performance. The system,

with an accuracy greater than 90% for each of the four metrics, was found to

outperform a rule-base system and a system containing planning alone.
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Point-to-Point responses

Reviewer 1

Reviewer:

First, the paper’s contribution in expert and intelligent system is not clearly

outlined.

Response to Reviewer comment No. 1:

We agree with the Reviewer on this aspect and several changes have been

made for improving the manuscript over this point.

On the one hand, the title has been changed to highlight the fact that this

work presents an intelligent system that automates the task of behaviour anal-

ysis for surveillance purposes.

Then, both the abstract and introduction sections have been completely

rewritten to highlight the contributions to the field made in this work. Each of

the stages involved in an intelligent surveillance approach (detection, tracking,

and behaviour analysis) have been individually addressed and justified in the

introduction section. Special attention is paid to the behaviour analysis stage

since its automation involves recognition tasks at different levels of granularity,

such as: human motion, action, activity, and behaviour. Our work considers

each of these levels and proposes the use of novel approaches (the theory of pos-

sible worlds or a HTN planner) to overcome the difficulties involved at each level.

For example, action recognition deals with the problem of associating sensor and

video events to passengers. This is not trivial when more than one passenger is

in the scene and when sensor malfunctioning or video quality or occlusions are

considered. Activity recognition has to deal with the ambiguity inherit from

the action recognition level. When actions cannot be associated with total cer-

tainty to a given passenger the activity recognition level has to maintain parallel

stories. Finally, our system resembles human intelligence by considering the ra-

tionality that governs human behaviour at the behaviour recognition level. Such

rationality is the heuristics that leads the recognition process at the behaviour

level.
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We have added the following paragraph at the end of the Introduction sec-

tion:

To summarise, this work describes a comprehensive solution to automatic

surveillance in public-transport platforms, based on the analysis of multiplepeo-

ple behaviour. Several challenges have been faced, such as the heterogeneity

of data and sources of information, the malfunctioning, uncertainty, and am-

biguity associated to data collected from real environments, or the exponential

complexity of action recognition as more than one passenger is considered in

the scene. To address these challenges, several contributions are presented in

this paper:

1. Development of a distributed architecture for interconnection support,

data gathering, and modelling.

2. Development of a comprehensive and fully automated approach for high-

level semantic passenger behaviour understanding that integrates video-

analytics and other sensors with a knowledge based reasoning system that

deals with uncertainty.

3. Our two-stage process for multiple-people behaviour recognition and anal-

ysis supports the different levels of recognition: motion, action, activity

and behaviour thanks to two novel components:

a) A commonsensical approach for event association based on the pos-

sible worlds theory to deal with the uncertainty, vagueness, and in-

correctness of context information.

b) A Hierarchical Task Network (HTN) planning strategy to recognise

courses of passenger actions, based on the aforementioned event as-

sociation process.

Reviewer:

The abstract in current form is kind of superficial, and the abstract needs

to rewrite to point out significance and impact of the paper.
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Response to Reviewer comment No. 2:

The abstract has been completely rewritten to emphasise its contribution

and following the reviewers guidelines:

Safety on public transportation networks is a major concern for

public and transport authorities. This work faces this issue by propos-

ing an automating surveillance platform for public transport which

combines data from a variety of sensors including video, infrared

and pressure. Data homogenisation and integration is addressed by

means of a distributed architecture based on a communication mid-

dleware that takes care of the interconnection issues first, enabling a

data modelling process afterwards. A common-sense knowledge base

models and encodes the different sources of information, the knowl-

edge about public-transport platforms and the actions and activities

relevant to this context. Data collected from the surveyed context

is modelled as time-series explaining human activities. Then, such

time-series will be jointly considered with common-sense knowledge

and rules to detect inconsistencies or errors on the data interpreta-

tion. Finally, the rationality that characterises human behaviour is

also captured here through a bottom-up Hierarchical Task Network

planner that, along with common-sense corrects misinterpretations

and, eventually, explains the behaviour of passengers. The overall

system is validated using a simulated bus saloon scenario as case

of study. Eighteen sequences were recorded with up to 6 passen-

gers. Four metrics were considered to evaluate the performance of

each of the components of the system and the full system itself. The

system was also compared with a rule-base system and planning sys-

tem outperforming them for the four metrics considered. Combining

all sources of information, the proposed system yields an accuracy

greater than 90% for any of considered metrics.

Reviewer:
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It would also be interesting that the authors recall the relevance/utility of

their proposal in the context of expert and intelligent systems, since this is the

topic of the journal. A few lines in the introduction would be enough.

Response to Reviewer comment No. 3:

We agree with the Reviewer in that the utility of the proposal was not totally

clear, hidden behind the different proposals made by this work. In order to face

this point, we have added the following paragraph at the end of the Introduction

section:

To summarise, this work describes a comprehensive solution to

automatic surveillance in public-transport platforms, based on the

analysis of multiple-people behaviour. Several challenges have been

faced, such as the heterogeneity of data and sources of information,

the malfunctioning, uncertainty, and ambiguity associated to data

collected from real environments, or the exponential complexity of

action recognition as more than one passenger is considered in the

scene. To address this challenges, several contributions are presented

in this paper:

1. Development of a distributed architecture for interconnection

support, data gathering and modelling.

2. Development of a comprehensive approach for passenger be-

haviour understanding that supports the different levels of recog-

nition: motion, action, activity and behaviour. To do so, a

two-stage process is proposed base on:

a) A commonsensical approach for event association based on

the possible worlds theory to deal with the uncertainty, vague-

ness, and incorrectness of context information.

b) A Hierarchical Task Network (HTN) planning strategy to

recognise courses of passenger actions, based on the afore-

mentioned event association process.
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Reviewer:

A more general comment concerns the literature review. The contribution

of this study is not made explicitly clear, relative to existing approaches, that

is, what is new in this study which has not been done by previous studies - this

is not achieved by simply summarising what others have done. The authors

may want to consider listing these explicitly; otherwise the reader has quite a

difficult time in dissecting the extent of the contribution which appears to be

there.

Response to Reviewer comment No. 4:

The contributions of this work have been made more explicit and to do so the

previous-work section has been heavily rewritten. However, it is our concern

that to demonstrate the novelty implementation or technical details have to

be provided. We have made an effort to find a trade-off between being more

explicit and trying not to get into too much details of how such contributions

are accomplished.

For example, apart from the first introductory paragraph, the rest of the sec-

tion is organised by paragraphs, stating a novelty or contribution of our work in

comparison with state-of-the-art ones. First, our work has been compared with

works that basically employ information obtained from vision systems whereas

the rest of the section analyses the different approaches found in the literature

by systems that have traditionally tackle the problem of human behaviour un-

derstanding (context awareness, Ambient Intelligence, Ubiquitous Computing,

etc.)

Reviewer:

In the conclusion section, the authors need to clearly discuss their theoretical

contributions in Expert and Intelligent Systems compared to those in related

papers in Expert and Intelligent Systems. Overall, contributions of the article

are unclear and weak.

Response to Reviewer comment No. 5:

The conclusion section has also been heavily rewritten. An additional para-

graph has been added to highlight the strengths and weaknesses derived from
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the system evaluation (see next answer). Additionally, in the theoretical plane,

this work has demonstrated its robustness, specially when it comes to whole-

story interpretations. Contrary to solutions that are provided with patterns or

rules that describe human behaviour, our system is intended to give a causal

explanation to the gathered events. These explanations are not only based

on the information derived from the gathered data but also considers common-

sense knowledge. These conclusions have been derived both from the theoretical

perspective and the experimental results. For instance:

Our system outperforms, over all four evaluation metrics, the

rule-based baseline system which is provided with the same informa-

tion, rules and knowledge. The greatest improvement was obtained

when evaluating the correct whole-stories interpretations, which val-

idates our capability to correct for the lack of common sense when

whole scenarios are put in perspective. A main disadvantage to our

approach, is the use of intrinsically ambiguous video sensors, which,

while information rich, may produce a wrong explanation when the

uncertainty increases due to growing scene complexity. However,

even in the worst-case tested scenario, a 75% accuracy rate is ob-

tained, outperforming the rule-based approach. It is also important to

note that dangerous behaviour tends to occur at night and in mostly

empty busses, rather than in overcrowded conditions.

In the overall, for being a comprehensive approach, this work presents con-

tributions to different fields (knowledge modelling, knowledge reasoning, data

fusion, etc.). However, a new paragraph has been added to remark the most

important theoretical contributions:

As main theoretical contributions, this paper has introduced the

use of the possible-world theory as a mechanism to handle the uncer-

tainty and ambiguity of certain sensor events. Different worlds are

created to track each of the possible scenarios in which such events
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are plausible, delaying the selection of just one until further informa-

tion is available or until it cannot be delayed any longer. Moreover,

a Hierarchical Task Network planner is proposed as a mechanism to

resemble the rationality that leads human behaviour. The planner

has been theoretically formalised and empirically evaluated.

Reviewer:

It is required to provide some including remarks to further discuss the pro-

posed methods, for example, what are the main advantages and limitations in

comparison with existing methods?

Response to Reviewer comment No. 6:

The main advantages and limitations of our system have been remarked in

the conclusion section.

The main advantages of the proposed methodology are its scala-

bility due to its distributed implementation, its ability to effectively

combine a variety of heterogeneous, rich, and ambiguous sensors, the

capacity to provide correct casual explanation under the presence of

inconsistent and contradictory stories, and the avoidance of requir-

ing accurate quantification of the uncertainty of sensors and events

to provide valid explanations.

As a disadvantage, the use of intrinsically ambiguous video sensors,

while rich in information, may produce wrong explanation when the

uncertainty increases due to a growing number of passengers and

multitude of events take place in a spatio-temporal proximity. How-

ever, even in the worst-case tested scenario, a 75% accuracy rate is

obtained, outperforming the rule-based approach. It is also impor-

tant to note that most dangerous behaviours take place at night while

buses are mostly empty rather than overcrowded.

Also, during the state-of-the-art revision advantages of our system over oth-

ers were also mentioned. Regarding the limitations of our work, in section ??
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that discusses the evaluation results, we have mentioned, in detail, the detected

problems. For example, when two events involve actions in seats that are nearby

located, the association process might fail. Some further mechanisms should be

implemented to refine the association process of uncertain events. The paper

also points out the limitations of our proposal when the tracking system is

incapable of detecting a person (due to clothes, light, etc.).

In this sense, the point made by the Reviewer has been included in the

conclusion section and is also stated in sections ?? and ??. In order to avoid

replication, we have not included that information with the same level of details

in the conclusions.

Reviewer 2

Reviewer:

The authors should give the readers some concrete information to get them

excited about their work. The current abstract only describes the general pur-

poses of the article. It should also include the article’s main (1) impact and (2)

significance on expert and intelligent systems.

Response to Reviewer comment No. 1:

The title, abstract, and introduction sections have been completely and ex-

tensively rewritten to capture both the impact and significance of this work

following the reviewer’s guidance. For example, in the abstract, we have contex-

tualised the importance of having an intelligent system capable of understanding

multiple-passenger behaviour from the analysis of multiple-sensor inputs. The

main challenges faced by this task are also enumerated so that the significance

of the solution can be appreciated. Further details have also been given in the

introduction and the following sections.

Reviewer:

Please give a frank account of the strengths and weaknesses of the pro-

posed research method. This should include theoretical comparison to other

approaches in the field.

Response to Reviewer comment No. 2:
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A summary of the strengths and weaknesses of the approach has been in-

cluded in the conclusion section.

The main advantages of the proposed methodology are its scala-

bility due to its distributed implementation, its ability to effectively

combine a variety of heterogeneous, rich, and ambiguous sensors, the

capacity to provide correct casual explanation under the presence of

inconsistent and contradictory stories, and the avoidance of requir-

ing accurate quantification of the uncertainty of sensors and events

to provide valid explanations.

As a disadvantage, the use of intrinsically ambiguous video sensors,

while rich in information, may produce wrong explanation when the

uncertainty increases due to a growing number of passengers and

multitude of events take place in a spatio-temporal proximity. How-

ever, even in the worst-case tested scenario, a 75% accuracy rate is

obtained, outperforming the rule-based approach. It is also impor-

tant to note that most dangerous behaviours take place at night while

buses are mostly empty rather than overcrowded.

Discussions on weaknesses can be found at section ?? while commenting the

results obtained from the validation experiments.

However, we can point to seat proximity as the reasons why events

in the other two sequences, were incorrectly associated[...] Another

possible reason why the system might fail to associate passengers with

the correct ID is when the tracking struggles to detect a particular

person in the image (due to clothes, light, orientation, etc.)[...] In

cases such as the sequence DL2 ACT3 03, the tracking system output

was so poor, that the reasoning system could not make any improve-

ment at the sensor association level[...] Regarding scenarios where

more than two or three passengers are involved, the accuracy rate

drops,

10



Furthermore, a more theoretical description of the strengths of the proposed

intelligent system against other approaches in the field have been enumerated

in the rewritten state-of-art in section ??. Some examples of this are:

However, these works consider a simple scenario in which only

single-person sequences are considered. This single-person assump-

tion is not valid for transport platforms[...] Our present work aims

to solve this limitation by, firstly,[...]

In contrast, the approach implemented by our work consists of

general knowledge about how the world works, known as common

sense, in addition to specific domain knowledge. As we will demon-

strate, this enables the proposed system to infer and derive additional

information

However, these approaches are normally constrained to first-order

logic, which is insufficient to explain and model the human action

rationality, [...] In this work, we place special emphasis on modelling

mental states using higher-order logic

Moreover, section ?? compares the performance of the video analytics system

with state-of-the-art works in the field of computer vision, such as [? ] for the

gender classifier and [? ] for the tracker. Tables ?? and ?? provide some

additional metrics.

Reviewer:

Moreover, I believe that it will make this paper stronger if the authors present

insightful implications in at least one paragraph based on their experimental

outcomes.

Response to Reviewer comment No. 3:

We agree with the reviewer and are grateful for the suggestion. One of

the most significant implications of the proposed system is the improvement

achieved at metric-4 level. At this level, stories are interpreted as a whole and

actions and activities are put in perspective. For example, a passenger cannot
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take a seat if he/she has not previously transit from the bus entrance to the

seat. Or a passenger cannot be sat in two seats at the same time. These are

they type of corrections that common-sense reasoning can undertake at the level

of story interpretations.

We have also experienced the system underperformance as more passengers

are considered in the scene due to the problems experienced by the tracker.

However, it is still able to cope with a reasonable number of interacting and

active subjects.

These are the two main implications that have been derived from the ex-

perimental validation of the system. These issues have been summarised in the

following paragraph of the conclusion section:

Our system outperforms, over all four evaluation metrics, the

rule-based baseline system which is provided with the same informa-

tion, rules and knowledge. The greatest improvement was obtained

when evaluating the correct whole-stories interpretations, which val-

idates our capability to correct for the lack of common sense when

whole scenarios are put in perspective. A main disadvantage to our

approach, is the use of intrinsically ambiguous video sensors, which,

while information rich, may produce a wrong explanation when the

uncertainty increases due to growing scene complexity. However,

even in the worst-case tested scenario, a 75% accuracy rate is ob-

tained, outperforming the rule-based approach. It is also important

to note that dangerous behaviour tends to occur at night and while

buses are mostly empty rather than overcrowded.

Reviewer:

Finally, the authors need to discuss several (say 4-5) solid and insightful

future research directions.

Response to Reviewer comment No. 4:

A paragraph including some of the future research directions that we are

exploring has been added to the conclusion section.

12



For future work, we aim to address the accuracy rate drop as

more passengers are being considered. Since most of the problems

experienced are caused by the tracking system, the integration of bet-

ter video-analytics and multiple cameras, we expect to mitigate the

decrease in performance. As second future work line, human social

behaviour in public-transport platforms will be modelled in collabora-

tion with sociologists to be incorporated in the knowledge-base of our

framework. Some patterns of social and anti-social behaviour have

already been identified, but more interdisciplinary effort is required.

Finally, we will extend the recordings, data capture and evaluation

to real environments using actual busses and transport platforms.

Reviewer:

If the paper is resubmitted as a significantly reworked piece of work, offering

a proper view with clear Point-to-Point responses on what is the novelty and

significantly improving the evaluation, then I can imagine a more positive second

evaluation.

Response to Reviewer comment No. 5:

The title, abstract, introduction, previous works, and conclusions sections

have been heavily rewritten according to the comments and directions given by

the Reviewers.

All the comments arisen by the reviewers have also been properly discussed

in a point-to-point format.
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1. Introduction

Safety on public transportation networks is a major concern for the general

public and transport authorities, specially for users and passengers as vandalism,

harassment or terrorist attacks have a great impact on current society. During

the last decade, there has been significant investment in the deployment of

CCTV systems onboard public-transport platforms such as busses and trains

(surface and underground). These systems produce enormous amounts of data

that needs to be analysed in order to provide situation awareness to security

analysts. However, manual analysis is not a cost-effective option. Therefore, it

would be desirable if automated approaches could be developed through expert

and intelligent systems.

Automating surveillance on public-transport platforms consists in recognis-

ing human activities from sensor value interpretations and video analysis. Differ-

ent stages are involved in an intelligent surveillance system: detection, tracking,

and behaviour analysis [? ]. Detection and tracking are accomplished through

the use of video analytics and sensoring devices. This is, however, a challenging

task because of the heterogeneity, uncertainty, and imprecision suffered by the

data used for these interpretations. The fact that data has been gathered from

different sources, therefore involving different devices, technologies, protocols,

etc., turns data integration into yet another major challenge. Data homogeni-

sation is therefore considered here as a previous requirement for surveillance

automation. Furthermore, the scalability of the proposed solution should be

assured.

On the other hand, the behaviour analysis stage faces the challenge of having

to deal with erroneous, uncertain, or ambiguous data. This essential component

cannot be supported on the sole analysis of video [? ], due to the complexity of

the task and the fragility of current video analysis techniques. On the contrary,

artificial intelligence and statistical processing techniques are being explored

as complementary sources of information that could enhance the recognition

process [? ].
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1.1. Proposed solution and contributions

Taking into account real environments where different devices, technologies,

and protocols might coexist, this work starts by resolving the data integration

and homogenisation problem. Moreover, if the solution proposed here is to be

realistic, scalability should be seriously considered since, for an average size

provincial city, a fleet can consist of several hundred busses. Our system is

supported on a distributed sensor architecture, responsible for abstracting the

communication issues amongst different sensor technologies and protocols. In

addition, the same architecture will support the construction of advanced ser-

vices for processing and fusing the information coming from sensors and the

video analytics. Finally, that information will be modelled and asserted to a

knowledge base where, when combined with previous and a priori knowledge,

will derive corrections and interpolations to uncertain sensor measures.

Homogenised data enables the automation of the surveillance process. In this

sense, the work in [? ] identifies different levels of granularity in the process

of automating the task of human behaviour understanding: motion, action,

activity, and behaviour. At the motion level, this work proposes the combination

of different sources of information to determine the passenger motion. The

tracking algorithm provides the current location of the different passengers of the

scene. At the action level, video and sensor measurements have to be interpreted

as actions. For example, the tracking algorithm helps on determining when the

passenger is walking or the seat sensor determines when the passenger sits down

or stands up. At the activity level, actions are considered as part of a greater

entity, like female boarding the bus and transiting to a seat is interpreted as

the activity of taking seat in a bus. Finally, at the behaviour level, actions and

activities are jointly considered to explain, for example, that after boarding the

bus and taking a seat the passenger has existed the bus.

Different challenges have to be faced at each of these levels. At the motion

level, sensor malfunctions or video quality or occlusions might lead to impre-

cise or ambiguous data. The association between this data and human motion

recognition is not straight forward and further analysis is required, specially
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when the number of passenger increases. This paper presents a knowledge-base

system to support the association process. For instance, the tracklet association

algorithm relies on knowledge such as how fast a person can move inside a bus.

Under ambiguous circumstances, the association process is supported on such

knowledge to discard certain possible associations for being too distant one from

the other, for example. However, sometimes ambiguity cannot be completely

resolved using this type of knowledge. In these situations, erroneous recogni-

tion at the motion level makes the action level to be misled. To face that risk

our system implements the theory of possible worlds. When a sensor event is

suggesting that a person has sat down but the boarding sensor has not detected

any passenger, it is either that the seat sensor or the boarding sensor is failing.

If no further information is available both situations seem plausible so what

our system does is to fork the interpretation until further information is avail-

able or it cannot be delayed any longer. At the activity level, spatio-temporal

considerations have to be considered along with actions. We propose the use

of common-sense knowledge to model actions, space, and time. Such knowl-

edge combined with an appropriate reasoning mechanism will avoid situations

in which, for example, a passenger has stood up from a seat before having sat

down previously. Finally, at the behaviour level, activities are considered in

an ordered manner. A rational approach is inspiring this work and a planning

algorithm is proposed to reason at this level. In this sense, it cannot be obvi-

ated that passengers use public transport to move from one geographical point

to another. In this process, they have to spend some time inside the platform

transport so, whenever possible they will try to do it in the most comfortable

way. Such rationality is the heuristic guiding the planning strategy proposed

here to support behaviour understanding.

To summarise, this work describes a comprehensive solution to automatic

surveillance in public-transport platforms, based on the analysis of multiplepeo-

ple behaviour. Several challenges have been faced, such as the heterogeneity

of data and sources of information, the malfunctioning, uncertainty, and am-

biguity associated to data collected from real environments, or the exponential
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complexity of action recognition as more than one passenger is considered in

the scene. To address these challenges, several contributions are presented in

this paper:

1. Development of a distributed architecture for interconnection support,

data gathering and modelling.

2. Development of a comprehensive and fully automated approach for high-

level semantic passenger behaviour understanding that integrates video-

analytics and other sensors with a knowledge based reasoning system that

deals with uncertainty.

3. Our two-stage process for multiple-people behaviour recognition and anal-

ysis supports the different levels of recognition: motion, action, activity

and behaviour thanks to two novel components:

a) A commonsensical approach for event association based on the pos-

sible worlds theory to deal with the uncertainty, vagueness, and in-

correctness of context information.

b) A Hierarchical Task Network (HTN) planning strategy to recognise

courses of passenger actions, based on the aforementioned event as-

sociation process.

This paper is organised as follows. First, previous work in the field of public-

transport surveillance and human-action recognition are reviewed in Section ??.

Section ?? describes and formalises the proposed approach for multiple-people

behaviour analysis in public-transport contexts. Section ?? provides implemen-

tation details for the prototype built to experimentally validate the system.

Section ?? validates the proposed architecture. To this end, an experiment has

been designed to test the proposed solution. Finally, Section ?? summarises the

conclusions drawn from this work.
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2. Previous work

Human behaviour recognition is a multidisciplinary field that comprises dif-

ferent techniques and disciplines, including machine vision, artificial intelligence

and multi sensor fusion. Consequently, this sections reviews how our proposal

advances current research results by analyzing the contributions made to areas

such as computer vision, knowledge modeling and reasoning. This work is at

the interface of computer vision and artificial intelligence where very little work

have been done previously in integrating video analytics with a knowledge- base

reasoning system that deals with uncertainty.

The combination of computer vision techniques with advanced mechanisms

for knowledge modeling and reasoning has demonstrated a great potential for

human behaviour understanding regarding approaches based solely on image

and video analysis, as reported in [? ][? ]. However, this works consider

a simple scenario in which only single-person sequences are considered. This

single-person assumption is not valid for transport platforms, which are intrin-

sically multiple-people scenarios. These scenarios pose the problem of having to

deal with associating events to agents since more than one passenger might have

caused it. This is not a trivial task because of the precision of sensors, specially

the vision sensors whose information is inherently ambiguos, and it grows in

complexity as more passengers are coexisting in the scene. Our present work

aims to solve this limitation by, firstly, considering and homogenizing other

sources of information relevant to a transport platform (seat sensors, tracking,

boarding sensor, etc.) into a distributed architecture, and by, secondly, ad-

dressing the event association problems from a novel approach that consists in

seeking for a causal explanation to the sensed events.

As an intelligent system seeking a casual explanation, our work should also

be compared with systems that have traditionally been intended to recognize

human behaviour [? ]. In this sense, the combination of knowledge and context

information has been widely studied in fields such as context-aware systems,

Ambient Intelligence, Ubiquitous and Pervasive systems, etc.
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Case-based reasoning approaches learn through previously acquired specific

knowledge [? ][? ]. Consequently, they are only able to deal with situations

previously presented to the system. Whilst these are the most commonly occur-

ring, rare situations, which tend to be the most challenging and significant in

our target scenario, will fail to be recognised. In contrast, the approach imple-

mented by our work consists of general knowledge about how the world works,

known as common sense, in addition to specific domain knowledge. As we will

demonstrate, this enables the proposed system to infer and derive additional

information.

As an alternative, logic-based approaches have been succesfully applied to

activity recognition [? ][? ]. However, these approaches are normally con-

strained to first-order logic, which is insuficent to explain and model the human

action rationality, particularly in real and multi-agent scenarios such as trans-

port platforms. An example will be for example, a person moving from one

seat to another onboard a bus due to another passenger moving closeby. In this

work, we place special emphasis on modelling mental states using higher-order

logic [? ].

Similarly, ontological approaches, [? ][? ][? ], are also constrained by the

limitations of languages such as OWL [? ] or RDF [? ]. Neither of these allow

the storing of a-priori inconsistent information, which is expected when multiple

ambiguos sensors are employed simultaneously. Furthermore, their reasoning

process is limited to consistency checking, such that no new information can

be derived from existing knowledge. The solution proposed in this paper can

handle a priori inconsistent information by postponing decision making until

enough information is available, or when it cannot be delayed any longer.

A relevant approach was presented in [? ] applying probablistic reasoning,

based on Dempster-Shafer (DS) theory, to address activity recognition in public

transport. While probabilistic approaches can overcome the limitations of onto-

logical languages [? ][? ], they require precise quantification of the uncertainty

associate to every sensor and situation. In real world scenarios, such as public-

transport platforms and other highly dynamic environments, deriving accurate

19



probabilities for human activities is fraught with difficulties, since this values

tend to vary over time and with the observed conditions and number of subjects

[? ].

To overcome the limitations of the aforementioned approaches, a common-

sense reasoning strategy is proposed [? ][? ]. Our solution has been designed to

address the specific challenges of transport platforms such as the multi-agent sce-

nario, manage inconsistent information, and exploit rich but ambiguos sensors

such as cameras, which are disregarded by most previously analysed intelligent

systems.

3. Methodology

This work proposes a two stage process, Figure ??, in which, based on sen-

sor inputs, an action is first hypothesised and afterwards is reified as a concrete

passenger action, performed at a specific time instant, which is part of a more

general situation or an ongoing activity. The output is a set of casual explana-

tions for each passenger’s behaviour. We refer to the first stage as atomic action

recognition and the second stage as situation identification.

The overall process has been conceived as a process to seek for a causal

explanation to the sensed events. According to Woodaward [? ] a causal

explanation is “any explanation that proceeds by showing how an outcome de-

pends (where the dependence in question is not logical or conceptual) on other

variables or factors counts as causal”. Based on the supposed rationality with

which passengers behave in the public transport context, causal explanations

of sensed events should match ongoing situations such as: passenger changing

seat, passenger boarding bus and transiting to seat, or passenger exiting the

transport platform. The first situation (passenger changing seat), for example,

provides a causal explanation for events such as a seat sensor being deactivated,

a tracked person tracing a route from one seat to another, and a different seat

sensor being activated.

Events are not always that clear and precise due to a sensor malfunctioning
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Figure 1: Overall view of the process of sensed information understanding.
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or having low precision. Moreover, scenarios involving more than one person

introduces an added complexity as events cannot always be unequivocally as-

sociated to a single passenger. For that reason, the first stage, Atomic Action

Recognition, is simply concerned with recognising the atomic action associated

to the sensed event. Then, the second stage, Situation Identification, will com-

bine that information with Domain Specific Knowledge, World Knowledge, and

Expectations. This combination will bring into light inconsistent interpretations

or, alternatively, confirm the action initially hypothesised action.

More specifically, Scone1 is used to implement the necessary mechanisms

required for automating the reasoning process [? ] of the second stage. While

other common-sense knowledge-base systems are available, such as OpenMind2,

and Cyc or OpenCyc3, Scone was chosen for the following reasons. Firstly,

OpenMind is only a database technology, lacking an inference and reasoning

engine. Secondly, whilst Cyc may be more powerful, with respect to collected

knowledge, it is only commercially available. OpenCyc, its open source version,

is quite restricted. Finally, Scone is an open source system that provides efficient

mechanisms for common-sense reasoning and knowledge modelling [? ][? ]. It

also provides an efficient mechanism, using an abstraction called context , for

managing a priori inconsistent knowledge. The lightweight multiple-context

mechanism does not overload the system even as contexts are created in the

knowledge base. Moreover, the fact that only one context is active at a time

means inconsistent information can be kept in the same knowledge base without

causing data inconsistencies.

3.1. Multiple worlds

While the previous procedure is common in most rule-based reasoning sys-

tem, our system introduces an important contribution. In a context where

sensed events may have a certain degree of uncertainty, inconsistent interpreta-

1http://www.cs.cmu.edu/~sef/scone/
2http://openmind.hri-us.com/login.jsp
3http://www.opencyc.org/
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tion may not be distinguishable from a coherent interpretation of inconsistent

incorrectly sensed events at a given instant in time. Therefore, the recognition

of inconsistent interpretations does not imply its automatic rejection. It might

be that other previous interpretations, initially considered incorrect or less co-

herent, may be considered plausible in the light of new evidence. Since total

certainty about both previous and current interpretations is not possible, incon-

sistent knowledge must be kept, as a backup, in case interpretations have to be

re-evaluated given the appearance of new and more deterministic information.

Addressing this issue however requires a knowledge-base system capable of si-

multaneously holding inconsistent knowledge while avoiding consistency issues.

The majority of state-of-the-art knowledge-base systems (rule or ontology-based

systems, just to name a few) do not provide this feature, however, Scone[? ]

does.

Parallel, and therefore inconsistent, causal explanations are preserved by

means of an abstraction known as possible worlds [? ]. For example, if a seat

sensor suggests that a person has sat down although no-one had previously

boarded the bus, only two worlds can be considered possible here: one in which

a person boarded the bus and the boarding sensor failed; and the other in which

there is nobody in the bus and the seat sensor has malfunctioned. Each world

is plausible within itself although incongruous among the others. By using this

isolated world representation, inconsistent information can be represented in a

logically consistent manner until future information or sensor values will help

to reduce the number of possibilities. For example, in the previous example,

subsequent sensor values suggest that a passenger has stood up from the oc-

cupied chair, walks towards the exit door, and exits the bus. It can then be

concluded that the only possible world is that in which the boarding sensor

failed. Whereas the rest of the sensors have worked.

3.2. Atomic action recognition: Multi-target reasoning

Each passenger detected in the scene, represented as Pi ∀i ∈ P = P1, ..., Pn

in Figure ??, has been associated to a set of contexts or possible worlds. Each
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Figure 2: Event association process.

context, represented by Cj ∀j ∈ C = C1, ..., Cs, encompasses a set of actions

Ai ∀i ∈ A = A1, ..., An that causally explain the detected events or so called

observations. The abstract concept referred to as belief [? ] is employed to

implement each of the contexts or worlds considered plausible. A new belief

will be created every time a new sensor measurement cannot be coherently,

and with certainty, fitted into an existing course of action being propositionally

stated in a context. Eventually, only one of these beliefs, E, the main belief,

will be considered as the real estimation. Secondary beliefs hold the information

considered less plausible. However, these are not discarded, being considered at

first less plausible, in case further evidence reveals past choices were incorrect.

Figure ?? shows, in detail, the steps involved in the proposed process. During

the association stage, sensor values have to be translated into atomic actions

performed by specific passengers. Then, during the composite event recognition

stage, those associations have to be processed, corrected, and interpreted such
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that a causal explanation can be offered that is consistent with the proposed

event association.

3.2.1. Association

Association aims to establish correspondences between actions, sensor events,

and actors by using spatial, temporal, and logical information. This is not trivial

when more than one passenger is in the scene. In fact, the complexity exponen-

tially grows as more passengers take part in the scene, particularly when they

mingle, causing events to overlap in time and space.

During the association process, the use of the aforementioned Scone mecha-

nism for multiple-contexts [? ] is essential for managing the different association

possibilities. At an early stage, association decisions need to be taken in the

presence of inconsistent and uncertain information, including that produced by

the video analytic modules. Making hard decisions under these circumstances

could lead to a misinterpretation of the scene, making it difficult to rectify later.

On the contrary, managing different possibilities in different contexts allows the

system to delay the association decision until new information is available, or it

cannot be delayed any longer.

In conclusion, the common-sense reasoning engine, constructed using Scone,

handles the association problem under temporal, spatial, and logical constraints.

This engine is therefore intended to assert hypothetical atomic actions into

the most appropriate belief. Every passenger detected in the scene will have

associated a set of beliefs, under which hypothetical atomic actions are being

considered. Each atomic action Ai is independently processed at occurrence

time t and associated to the most coherent belief bi of the most suitable actor

according to the aforementioned constraints. At time t+ ∆, when new atomic

events are sensed, the current belief can be kept if consistent with the new

information, or a new belief bj can be created.
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3.2.2. Discrete and continuous events consideration

In the public-transport scenario of interest, as in many others, some atomic

events such as sitting, standing, boarding, and exiting are discrete, and occur at

a specific time, while others, such as tracking events or transitions are considered

continuous since they occur over a period of time. Tracking events are essential

due to the rich information they potentially entail. However, among the different

sensors observations considered in the bus problem, the trajectory ones are, by

far, the most challenging ones.

Figure 3: Trajectory representation. Orange squares represent seats and coloured lines repre-

sent trajectory fragments

It is important for the reader to understand the tracking algorithm in order

to understand how the composite event recognition works. The tracker attempts

to track every subject present in the camera field of view at each time instant,

regardless of their state standing/sitting down. However, it usually loses track

when the actor is occluded, but it usually reacquires the actor when he/she

re-appears, producing fragmented trajectories. This means that initial and end

positions and times of the tracking events are not reliable indicators of atomic

events. Instead, the trajectory location of actors at time instants when other

discrete events happen are used during belief construction.
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Figure ?? depicts the output of the video tracker for two passengers. As

is clear from the figure, the task of identifying the trajectory followed by each

passenger is challenging, even for humans.

Figure ?? outlines the track association process that needs to be carried out

whenever a new subject detection is provided by the computer vision system.

The noisy trajectory observations force the system to analyse all possible asso-

ciations. Standing/sitting down detection requires special reasoning in order to

corroborate the evidence from seat pressure sensors.

If a person in movement action has not been asserted into a belief in which

a sitting down or exiting action exists, then it is reasonable to assume that

a tracking error has occurred, therefore the reasoning engine will search for a

new tracking event in the hope of linking fragmented trajectory events. This

reasoning mechanism removes tracking errors produced by the video analytics,

by taking advantage of the fact that more information is available from other

sensors as well as the DSK/WK. For example, if two trajectory events occur that

are far apart, and are separated by a large time period, based on the knowledge

it has that there is only one passenger, or that all others are seated, the reasoning

engine will link the events despite their temporal and spatial dissimilarity.

3.3. Situation identification: Composite event recognition

After the association stage, a set of composite events should explain the pas-

senger behaviours, as well as determining their number. It should be expected

that these composite events and resulting stories are consistent with achieving

a goal that is rationally motivated [? ][? ][? ]. For that reason, our approach

to composite event recognition will be to solve a planning problem, in which

actions associated to detected events will be consistent with a plan to achieve

the ultimate goal of transporting the passenger from one point to another.

Under this approach, the task of estimating rational composite events can

be automatically accomplished by adapting a bottom-up Hierarchical Task Net-

works (HTN) planner [? ], in which atomic actions are considered tasks.

The classic HTN algorithm is intended to determine the sequence of atomic

27



Figure 4: Tracklet association algorithm

actions that, when properly articulated, are capable of providing the function-

ality of composite actions. This work implements a bottom-up planner in which
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the knowledge retrieved from the common-sense knowledge base provides the

heuristics that guide the planning algorithm.

The actions that can be performed by a passenger, at a specific location

and time, are determined by his/her previous state, and the atomic actions

that he/she can undertake at that location and time (pre and post-conditions

in the common-sense knowledge base). For instance, if passenger is sat in seat

1, performing the action of sitting in seat 14 one second later is not feasible.

Common sense tells us that to sit down in a particular seat, the person had to

previously approach it, and in order to do that, the person has to be standing

up and capable of transiting along the gangway.

3.3.1. Description of the planning problem

Every planning strategy has a set of common elements that define the char-

acteristics of the problem. The first of these elements is the state space S. This

element describes all the states that the planner can be in. For the bus problem,

the state space is determined by the description of all the possible combinations

of passengers and their states (sat down, transiting, etc.). Nevertheless, due to

the possibility of having infinite or very large state spaces, the proposed solution

resorts to an information space, overlapping the state space. The information

space considers the information gathered from the bus-like area sensors as well

as the actions and additional observations that can be retrieved from there. For

the planning problem considered here, states are depicted as a tuple of the form

s = (Pi, Ai) meaning that the current situation s ∈ S is the resulting state after

a certain passenger Pi ∈ P performs the action Ai ∈ A.

The second element of a planning problem consists of the set of actions or

action space A(s) available at each given state s ∈ S. Availability is determined

by the satisfaction of the pre and post-conditions of each of the considered ac-

tions. Action unavailability means that a certain action either leads the system

to a situation incompatible with the desired goal state or requires a different

state of the world to take place.

An additional element is the state transition function f that, given the cur-
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rent state and action space, produces a new state for every action, out of the

action space, that is currently available.

f(s, a, θ) for s ∈ S, a ∈ A and θ ∈ Θ(s, a)

Function f returns the actions, from the action space, that are available in

the current situation s.

The Θ function therefore provides the set of situations that can be reached

given the current state and the execution of any of the actions that are available

at that state.

Stages, denoted by k ∈ K, also need to be considered in order to conceive the

execution plan as an incremental task. Moreover, stages are used by the planner

to evaluate the evolution of the plan execution, identifying possible deviations

from it. In this incremental context, the goal state is specially relevant, denoted

by SG ⊂ S. The goal state in our scenarios will be determined by the passenger

existing the bus, due to two main reasons. First, all the passengers are supposed

to exit the bus eventually. Second, since no more information is expected to be

received following exit, the reasoning system must take a final decision regarding

the composite events performed.

Finally, it is necessary to have a function that evaluates the goodness of an

action in comparison with the others. Given the current and the goal situation,

the cost function L weights each action according to its suitability in seeking the

course of actions that minimises the cost of reaching the goal state. The history

of states, actions, and available actions are respectively denoted by s̃K , ãK , ṽK ,

so the cost of a given course of actions, given that G is the goal state, can be

calculated as follows:

L(s̃K , ãK , ṽK) =

K∑
k=1

l(sk, ak, vk) + lG(sG) (1)

The cost function should consider a set of constraints l involved in the process

of action association:

1. Temporal constraint Tc: Atomic events are temporal entities and beliefs

are created as consecutive sequences of events (atomic actions).
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2. Spatial constraints Dc: The further apart two atomic events happen, the

less likely is that they are associated. The distance between the last known

locations of the actors (in case of tracking events). or sensor locations

according to DSK (in case of boarding, exiting or sitting down events) are

computed.

3. Common-sense constraints Gc: Defined in the WK. This constraint is

binary since it deals with impossible incoherence such as people cannot

sit down if they are already sat down.

These constraints can be modelled as a cost function l

l(ai, pj , θk) =

 Dc(pj , ai) if Gc(pj , ai) ∗ Tc(pj , ai) == true

∞ if Gc(pj , ai) ∗ Tc(pj , ai) == false
(2)

where j is the index of the possible actors that can perform the given action

ai, and D is the Euclidean distance between the locations of the atomic events

to be associated. Common-sense constraints Gc and temporal constraints Tc of

passenger pj performing action ai are implemented as gating functions, where

an impossible association is assigned an infinite cost.

3.3.2. The planning algorithm

The planning strategy considers all previous elements in order to achieve the

goal state. Our proposed planning algorithm uses a Dijkstra-like algorithm [? ]

in which each stage of the execution of the plan is expected to be closer to the

goal than the previous stage.

In contrast to the traditional Dijkstra algorithm, states cannot be weighted

beforehand, but are evaluated at each execution stage, based on the cost function

in eq. ??. Moreover, revisiting states is allowed since states are described in

terms of the situation that results from a passenger performing an action.

The planning algorithm starts from situation s0 that differs from the goal

state sg that results from the passenger pc performing the action ai exiting the

bus. The HTN planning algorithm is devised to find the sequence of actions

31



Algorithm 1 HTN planning(s0, sg)

1: Π = (P,A)

2: for every passenger pc in P do

3: s0 = (pc, a0) that have arisen the goal sg = (pc, ag)

4: sc = s0 and ac = a0 current values are the initial values

5: while sc is different from sg do

6: get all the actions ai that are available in the current state sc

7: f(sc, ac, θc) = (a0, a1, a2, ...)

8: θ = Θ(pc, ai)

9: for θi do

10: get its cost function li = L(sc, ai, θi)

11: end for

12: select the action that minimises the cost function L MIN(li)

13: Append pc, ai as πi

14: sc = Θ(gc, ai)

15: end while

16: end for

17: Return Π
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A, performed by every passenger comprising the actor set P considered in the

scene.

For every passenger pc from the list of passengers in the scene P, while the

current situation does not match the goal situation, the algorithm will look for

the action that moves the current situation closer to the goal state. There-

fore, given a current situation, the list of possible actions is determined by the

function f(sc, ac, θc). It is possible to rank all the possible actions, based on the

spatio-temporal and common-sense constraints, using the cost function given by

Equation ??. The action that minimises the cost will be selected as the action

carried out by the passenger pc leading the context to situation sc, which is a

step closer to the goal state sg.

4. System implementation

Previous section has described the theoretical and technical details of the

proposed methodology for ongoing-situation identification. Despite being the

key module of a system aimed at public-transport surveillance, this module has

to be supported by some others for information gathering, communication sup-

port, and knowledge modelling. This section therefore provides implementation

details for these other modules involved in the proposed solution.

Figure ?? provides a system overview depicting the different stages involved

in the process of situation understanding. The first step consists in gathering

information from the bus-like area sensors and the video analytics. It has to

be noticed that, despite the fact that the implemented prototype works upon

prerecorded sequences, from the point of view of the middleware abstraction

layer, there is no difference on whether sensor measures are being published

by real or post-processed sensors. In this sense, measure will be published in

a distributed communication channel. Then, the reasoning system subscribed

to that communication channel will be notified whenever a new publications

appears in the channel. Whether these publications are the result of a real

sensor or a synthetic service make no difference for the reasoning system.
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Figure 5: System overview

The method described in Section ?? will come into play for every new sensor

publication, to firstly hypothesise the atomic action that will afterwards be

justified or corrected based on the available knowledge.

4.1. The distributed architecture

Sensorized contexts such as the bus one, are characterized by the presence

of different hardware devices that use different protocols, operating systems,

or implementation languages. Collecting information from these devices im-

plies the implementation of a distributed heterogeneous application. In this

sense, the use of a middleware technology simplifies the procedures required for

achieving an effective communication among the different devices involved in

the application.

The solution proposed here resorts to ZeroC ICE4 as the commercial dis-

tributed object-oriented middleware technology. ZeroC ICE is an object-oriented

and CORBA-like middleware technology that provides the means (tools, API,

libraries) to easily build object-oriented client-server applications. Despite being

similar in concept to CORBA, there are some additional resources that make

ZeroC ICE the most appropriate technology for the solution devised here. In

this sense, two of the most useful services provided by this technology, IceGrid

4http://www.zeroc.com/
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and IceStorm play an essential role in easing the application deployment as

well as in abstracting the details involved in implementing a publish/subscribe

architecture.

Regarding scalability, the ZeroC ICE technology provides an implementation

of the evictor pattern, as well as mechanisms to automate object persistence,

that ensure the scalability of the system.

4.2. The computer vision system

Sensor data and video analytics are fed into the reasoning system in order

to provide the require information to discover the underlying actions and be-

haviours. As mentioned before, our system combines hardware sensor inputs,

when it is possible to install them within the transport platform without being

intrusive or prohibitively costly, with video sensors, given their highly poten-

tially rich information and their low intrusiveness. However, in spite of these

benefits video sensors by themselves only provide raw pixel information, which

is not of much use for an automatic reasoning system. In order to fully exploit

video sensors, computer vision algorithms are being used to extract automati-

cally relevant information.

The first video analytics module is a gender recognition system. A camera

pointing at the entrance/exit of the transport platform provides the data to

our recognition algorithm. This system is composed of 3 different component

as depicted in Figure ??. Once a new image is capture, the first component

detects the passenger’s face by applying Viola and Jones face detector [? ].

In this detector a bank of rectangular Haar filters are used to extract contrast

features from the image and then feed into a boosting cascade classifier to label

the image region as a face or not. By fully scanning the image horizontally and

vertically using a sliding window the presence and absence of faces as well as

their location is determined.

After locating the face, its corresponding pixels are first projected onto a

reduced subspace derived using a principal component analysis (PCA), aiming to

reduce the dimensionality by discarding irrelevant and noise information within
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Figure 6: Tracklet association algorithm

the face image (several hundreds of pixels even in low resolution). Then, the

resulting reduced feature vector is input to a support vector machine (SVM),

which classifies the image as male or female by finding the separating hyperplane

with the maximal margin between both populations. Both PCA and SVM

requires a training data set of face images, which is composed of 1841 female

and 1918 male face images. The resulting output of our gender recognition

system is a label with the gender of the passenger as well as a confidence value

or probability of the face as being either male or female. The accuracy of this

video analytic module was reported to be 83% in an independent testing [? ].

The second video analytics module is a multi-target tracking system, shown

in Figure ??. A second camera pointed along the bus saloon aims to capture

the movement of the passengers within the saloon. The tracking-by-detection

algorithm consists of four stages. Firstly, a Poselet detector [? ] is applied to

detect signatures of humans in the video on a frame-by-frame basis. Secondly,

a calibrated process is used to project the detections from the image plane into

the 3D real space and also discard those detections which are likely to be false

positives, e.g. people of abnormal size or detections that are located outside

the bus. This calibration process also allows us to know the 3D locations of all

seats, the gangway and the entrance/exit, which can be later correlated with

the passenger position for further reasoning.
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Figure 7: Tracklet association algorithm

Finally, human detections are linked together over time using a hierarchical

dual-stage linear assignment procedure to form tracks of the passengers. In

the first stage, detections are associated on a frame-to-frame basis by using

their colour appearance, temporal locality and spatial distance. The resulting

fragmented tracklets, are subsequently linked into longer tracks by a second level

of linear assignment, where reasoning about the gaps and the interactions with

other passengers can be modelled. A full description of this tracking algorithm

is provided in [? ] and details about the tracklet confidence are provided in

section ??. The final output of the module is a set of trajectories, containing

the passenger 3D location and identity (sequentially allocated labels) at every

temporal instant.

In addition to the video sensor and analytics, two other hardware sensor

types are simulated using a VICON tracking system [? ]; a pressure sensor at
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every seat, to detect when a passenger sits down/stands up, and an infrared

motion detector, to detect when a passenger gets in/out, at the entrance/exit

of the bus.

4.3. Sources of knowledge

To validate our working hypothesis, a common-sense system has to be built

so as to model and reason about the information obtained from sensors, video an-

alytic modules, the context and the world itself. In this sense, the automation of

the reasoning task requires a language and a syntax, a knowledge base compris-

ing the available information and rules, and a consistency checking mechanism

that makes use of the available knowledge base and information provided by the

sensors to infer new coherent information. Our current common-sense frame-

work has been implemented using Scone [? ] due to its suitability for modelling

actions and human behaviour. By using Scone, it is possible to encode, using a

LISP-like syntax, formal definitions describing the World knowledge (WK) and

Domain specific knowledge (DSK), as well as the expected set of behaviors, here

referred as expectations (EXP).

These three sources of knowledge are described below:

1. World knowledge, WK, comprises all relevant common-sense knowledge

that describes “how the world works”. This information is independent of the

application domain or any particular scenario. It only considers general knowl-

edge rather than specific or expert knowledge. As an example, we provide below

the description of the action of ’boarding a bus’.

Listing 1: Boarding action

1

2 (new-action-type {boarding}

3 :agent-type {passenger}

4 :object-type {movable object })

5

6 (new-action-type {boarding bus}

7 :agent-type {passenger}

8 :object-type {bus})
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9

10 (new-is-a {boarding bus} {boarding })

11

12 (new-context {boarding bus BC} {general })

13 (new-is-a {boarding bus BC} {before context })

14 (x-is-the-y-of-z {boarding bus BC} {before context} {boarding bus})

15

16 (new-context {boarding bus AC} {general })

17 (new-is-a {boarding bus AC} {after context })

18 (x-is-the-y-of-z {boarding bus AC} {after context} {boarding bus})

19

20 (in-context {boarding bus BC})

21 (new-statement {passenger} {approaches} {bus gate})

22 (new-not-statement {passenger} {passes through} {bus gate}))

23 (new-statement {passenger} {stands on} {land})

24 (new-not-statement {passenger} {is in} {bus})

25

26 (in-context {boarding bus AC})

27 (new-statement {passenger} {stands on} {bus floor })

28 (new-statement {passenger} {passes through} {bus gate}))

29 (new-statement {passenger} {is in} {bus})

2. Domain specific knowledge, DSK, describes a given application domain

in terms of the entities that are relevant for that specific context, as well as, the

relationships established between them. The description of sensor placements

or the seat distribution, as part of a specific bus layout, are examples of DSK.

Listing 2 provides a description of the coordinates (in centimeters) with respect

to the camera perspective.

Listing 2: Bus specific knowledge

1 (new-type-role {x-coord} {position} {location })

2 (new-type-role {y-coord} {position} {location })

3

4 (new-type {bus entrance position} {position })

5 (new-type {bus chair} {static object })

6 (new-type-role {bus chair location} {bus chair} {position} :n 8)

7 (new-indv {seat 1} {bus chair})

8 (x-is-a-y-of-z {2260} {x-coord} {seat 1})
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9 (x-is-a-y-of-z {-20} {y-coord} {seat 1})

10 (x-is-a-y-of-z {1710} {x-coord} {seat 1})

11 (x-is-a-y-of-z {-20} {y-coord} {seat 1})

12 (x-is-a-y-of-z {1710} {x-coord} {seat 1})

13 (x-is-a-y-of-z {500} {y-coord} {seat 1})

14 (x-is-a-y-of-z {2260} {x-coord} {seat 1})

15 (x-is-a-y-of-z {500} {y-coord} {seat 1})

16

17 (new-type {passenger} {person })

18 (new-type {bus passenger} {passenger })

19 (new-type-role {bus passenger position} {bus passenger} {position })

20

21 (new-type {sensor} {thing })

22 (new-type {infrared barrier} {sensor })

23 (new-type-role {infrared barrier location} {infrared barrier} {

location })

24 (new-statement {infrared barrier} {is in} {bus})

25 (new-statement {infrared barrier} {controls} {bus gate})

3. Expectations, EXP, consist of sequences of actions that are expected

to occur. It encapsulates logical concepts such as causality, motivation, and

rationality, which are expected in human action recognition, in particular for

passengers onboard. For example, in a bus context, if a person boards the bus,

that passenger is expected to walk along the aisle and sit down if seats are avail-

able (Listing 3). Expectations are part of the domain specific knowledge since

the described behavioural patterns are context-specific. Different behaviour of

the same passenger could be expected in a different transport platform, such as

a train or airplane, where seats are pre-allocated.

Listing 3: Bus specific knowledge

1 (new-type {expectation} {thing })

2 (new-type-role {has expectation} {expectation} {event})

3

4 (new-indv {MBTSt} {expectation })

5

6 (x-is-the-y-of-z {male boards} {has expectation} {MBTSt })

7 (x-is-the-y-of-z {male transists to} {has expectation} {MBTSt} )
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8 (x-is-the-y-of-z {male sits} {has expectation} {MBTSt} )

9 (the-x-of-y-is-a-z {action agent} {male boards} {male})

10 (the-x-of-y-is-a-z {action agent} {male transits to} {male})

11 (the-x-of-y-is-a-z {action agent} {male sits} {male})

4. Beliefs, BLF, consist of a mechanism which attempts to replicate a hu-

man’s ability to recognize actions in poor quality video, or other sensor that

provide ambiguous information. If there is only one active expectation, the

belief will trust and follow it. However, if, due to sensor ambiguity, multiple

expectations are active, the belief will select the most appropriate one to assert

the action happening in the scenario. This mechanism is implemented in Scone

through the multiple-context mechanism.

5. System evaluation

5.1. The dataset

In order to validate our approach, a bus saloon scenario was simulated within

a laboratory. The setup was designed to resemble a bus saloon as much as

possible. It includes an entrance/exit doorway, a gangway and two parallel

seated areas plus a full row at the end, giving a total of 17 seats (C1-C17),

Figure ??.

Figure 8: Recreation of bus saloon
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Two cameras were mounted in the lab with a similar elevation and tilt to

those onboard a real bus. The first camera is placed to capture the bus entrance

and to easily facilitate face detection and gender recognition. The second camera

is located to capture the bus saloon area and to facilitate tracking of passengers

as they transit to and from seated areas.

The following sensor events obtained from the dataset:

• Entrance detector.

• Gender classification.

• Trajectory fragments, also known as tracklets.

• Pressure sensor detecting sitting down.

• Pressure sensor detecting standing up.

• Exit detector.

Each of these sensor events has a unique sID (the tracklets sID is initially

the one given by the tracker and the other sensors have a time-stamped ID

provided by the communication-channel publisher).

Recall that an atomic event is considered here as a short sequence of sensor

events with limited purpose or intent. Each atomic event has also a unique label

aID. In our scenario the following atomic events are considered:

• Person boarding: entrance detector plus gender classification. At this

point a person ID pID is assigned to the passenger.

• Person transiting: one or more tacklets (or even part of a tracklet).

• Person sitting down: Pressure sensor detecting sitting down.

• Person standing: Pressure sensor being released.

• Person Exiting: Exit detector.
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Composite events have been defined here as sequences of atomic events

(or longer sequences of sensor events) with a rational purpose in the context

of a public-transport scenario. Similarly, each of these composite events has a

unique identity cID. The following composite events have been considered in

our scenario:

• MBTS/FMBTS: Male or Female boarding the bus and transiting to a

seat. Composed of: Person pID(i) boarding + person pID(i) transiting +

Person pID(i) sitting down.

• PCS: Person changing seats. Composed of: Person pID(i) standing up +

person pID(i) transiting + Person pID(i) sitting down.

• PEX: Person exiting the bus. Composed of: Person pID(i) standing up

+ person pID(i) transiting + Person pID(i) Exiting

Finally, stories or situations are considered here as sequences of composite

events (or a larger sequence of sensor events) having a unique pID identity, i.e.

the full sequence of events of a given passenger from the moment they board to

the moment they exit the bus .

Six different subjects, three males (M) and three females (F) took part in

the capture of this validation dataset. A total number of eighteen sequences

of varying complexity were recorded. Table ?? summarises the actors, actions

and behaviours occurring in each sequence, whilst Figure ?? depicts the seat

distribution in the considered scenario.

Table 1: Description of the dataset sequences. @f indicates the

frame number at which the composite event starts.

Scene Actors Frames Composite Actions

DL1 ACT3 01 1 M, 1 F 1071 MBTS-C14 @f20, FBTS-C6 @f298, MEX

@f665, FEX @f953
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DL1 ACT3 02 1 M, 1 F 1005 MBTS-C15 @f25, FBTS-C7 @f376,MEX

@f556, FEX @f896

DL1 ACT3 03 1 M, 1 F 960 MBTS-C15 @f20, FBTS-C8 @f252, MEX

@f629, FEX @f819

DL2 ACT2 01 1 M, 1 F 1367 MBTS-C17 @f23, FBTS-C7 @f338,MCS-C9

@f626, MEX @f991, FEX @f1251

DL2 ACT2 02 1 M, 1 F 1314 MBTS-C10 @f28, FBTS-C7 @f432,MCS-C14

@f625, MEX @f919, FEX @f1203

DL2 ACT2 03 1 M, 1 F 1343 MBTS-C13 @f21, FBTS-C7 @f288,MCS-C6

@f624, MEX @f1071, FEX @f1226

DL2 ACT4 01 1 M, 1 F 1165 MBTS-C7 @f19, FBTS-C7 @f332, MEX

@f643, FEX @f1046

DL2 ACT4 02 1 M, 1 F 933 MBTS-C10 @f27, FBTS-C10 @f354, MEX

@f551, FEX @f805

DL2 ACT4 03 1 M, 1 F 835 MBTS-C7 @f22, FBTS-C7 @f216, MEX

@f391, FEX @f726

DL2 ACT3 01 1 M, 1 F 1134 FBTS-C5 @f15, MBTS-C6 @f267, FCS-C3

@f492, FEX @f914, MEX @f1019

DL2 ACT3 02 1 M, 1 F 967 FBTS-C5 @f16, MBTS-C6 @f224, FCS-C3

@f380, FEX @f792, MEX @f847

DL2 ACT3 03 1 M, 1 F 913 FBTS-C2 @f17, MBTS-C1 @f310, FCS-C7

@f448, FEX @f749, MEX @f828

DL3 ACT01 1 M, 1 F 1405 FBTS-C6 @f17, MBTS-C10 @f265, FCS-C3

@f553, MCS-C7 @f762,FEX @f1075, MEX

@f1294

DL3 ACT02 1 M, 1 F 1279 FBTS-C6 @f20, MBTS-C11 @f292, FCS-C11

@f618, MCS-C6 @f651, MEX @f1011, FEX

@f1167
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DL4 ACT02 1 M, 1 F 870 MBTS-C15 @f23, MEX @f375, FBTS-C6

@f449, FEX @f763

DL4 ACT01 2 M, 1 F 1657 M1BTS-C6 @f21, FBTS-C6 @f289, M1CS-

C8 @f558, M2BTS-C6 @f818, FEX @f1067,

M1EX @f1346, M2EX @f1544

DL5 ACT02 2 M, 2 F 1789 M1BTS-C17 @f18, F1BTS-C12 @f294,

M2BTS-C17 @f514, M1CS-C1 @f728,

F2BTS-C2 @f996, F2CS-C3 @f1168, M1EX

@f1354, M2EX @f1456, F1EX @f1542, F2EX

@f1712

DL5 ACT01 3 M, 3 F 1432 F1BTS-C7 @f15, M1BTS-C14 @f179, F2BTS-

C5 @f308, F1EX @f494, M2BTS-C17 @f442,

F3BTS-C3 @f696, M1EX @f818, M3BTS-C13

@f799, M2EX @f968, F2EX @f1029, F3EX

@f1235, M3EX @f1274

The first twelve sequences aim to represent a spectrum of possibly risky

behaviour patterns. The goal in these sequences is to explore the potential

application of our event recognition system for future automatic risk assess-

ment within a transport scenario. Sequences DL1 ACT3 simulate a normal bus

journey (zero risk situation) where a couple of passengers undertake their trip

without interacting. Sequences DL2 ACT2 simulate a low risk situation where

a passenger changes seat whilst the bus is moving. This may be indicative of

a passenger who may feel threatened, or one who is trying to threaten another

passenger. Sequences DL2 ACT4 simulates a medium risk situation, where a

passenger loiters near another who is sitting down. Sequences DL2 ACT3 simu-

late a high risk situation, where a male passenger sits beside a female passenger

who immediately moves.

The last six sequences include increasingly complex scenarios with more pas-

sengers and greater interaction between them. Changing seats (DL3), crossing
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Figure 9: Bus seat distribution

in the gangway (DL4 ATC02), and multiple interactions between multiple pas-

sengers are recurrent situations. The goal of these sequences is to evaluate the

upper limit of events and actors that our system is able to recognise.

5.2. Video analytics performace

In order to fully evaluate our proposed reasoning system, and since real sen-

sors were used, it is important to evaluate the performance of the video analytics

so a better understanding of the capabilities of the reasoning engine is achieved.

While perfect sensors and analytics will mean that the reasoning does not need
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to be specially robust, imperfect sensors require better reasoning to address real

world problems. Obtaining a high recognition rate of the actions and behaviours

given imperfect sensors, demonstrate the potential of the reasoning system to

correct errors and work with uncertainty.

In the described dataset, a total number of 43 passengers appear in the dif-

ferent sequences. The accuracy Acc, or recognition rate, of the gender classifier

used, defined as the number of boarding passengers whose gender is correctly

classified divided by the total number of boarding passengers, is:

Acc =
37

43
= 0.86 (3)

This number, 86%, is very similar to that reported by the authors in their paper

83% [? ]. Although the performance of this classifier is reasonably high, it must

be noticed that, since it is the only sensor evaluating gender, an error in the

gender recognition cannot be corrected by further reasoning.

The evaluation of the tracking system is more complex since, instead of

binary errors as in the gender system, multiple types of errors can occur. In

order to evaluate the performance of the algorithm, a combination of Type I

and Type II errors -true positive, true negative, false positive, false negative-

and multi target specific metrics -identity swaps, MOTA, etc.- must be used. A

detailed explanation of the metrics is displayed in Table ??, and the quantitative

performance of the tracking system in Table ??. More details about how these

metrics are calculated and evaluated can be found in [? ].

One can observe that the tracking, despite being state-of-the-art, is far from

providing perfect results, with only 25% of trajectories tracked, a high number of

missing frames (FN), fragmented tracklets, and a middling value for recall and

MOTA. Given the high percentage of errors, and the tracklet fragmentation,

simple association of events may not be enough to solve complex sequences.

However, when the target is successfully tracked by the system, the precision is

reasonably good and the sensor can be trusted, as evidenced by the high recall

and MOTP.

47



Table 2: Metrics used to evaluate quantitatively a tracking system

Measure Better Perfect Description

GT - - number of ground truth trajectories

MT higher GT Mostly tracked targets. The ratio of ground-truth trajectories

that are covered by a track hypothesis for at least 80% of their

respective life span.

PT - - Partially tracked targets. The ratio of ground-truth trajectories

that are covered by a track hypothesis for at least 20% and at

most 80% of their respective life span.

ML lower 0 Mostly lost targets. The ratio of ground-truth trajectories that are

covered by a track hypothesis for at most 20% of their respective

life span.

FP lower 0 The total number of false positives

FN lower 0 The total number of missed targets or false negatives

ID Sw. lower 0 The total number of identity switches. Please note that we follow

the stricter definition of identity switches as described in [? ]

FM lower 0 The total number of times a trajectory is fragmented (i.e. inter-

rupted during tracking)

Recall higher 100% Percentage of detected targets

Precision higher 100% Percentage of correctly detected targets

FAR lower 0 The average number of false alarms per frame.

MOTA higher 100% Multiple Object Tracking Accuracy [? ]. This measure combines

three error sources: false positives, missed targets and identity

switches

MOTP higher 100% Multiple Object Tracking Precision [? ]. The misalignment be-

tween the annotated and the predicted bounding boxes.
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Table 3: Quantitative performance of tracker system on our dataset

Performance

GT 43 FP 5 Recall 56.3 MOTA 56.1

MT 11 FN 16538 Precision 100.0 MOTP 68.2

PT 28 ID Sw. 90 FAR 0.00

ML 4 FM 89

5.3. Experimental setup

Four metrics are considered in order to evaluate the system at different levels.

• Metric 1. Sensor association accuracy: assessing the number of sID

correctly associated to its pID divided by the total number of sID.

• Metric 2. Atomic event association accuracy: assessing the number

of aID correctly associated to its pID divided by the total number of aID.

• Metric 3. Composite event association accuracy: assessing the

number of cID correctly associated to its pID divided by the total number

of cID.

• Metric 4. Story recognition accuracy: assessing the number of stories

correctly composed divided by the total number of pID.

Metric 1 measures if the sensor events generated by the system are cor-

rectly associated to the person that triggered them. Since only generated events

are considered, sensor errors such as missed sensor events are not included in

this metric. Metrics 2, 3 and 4 are compared against the manually annotated

groundtruth, so missing events and sensor errors are considered and expected

to be corrected by the reasoning engine. Metric 2 considers all atomic events,

including those that cannot be improved with common sense reasoning, such as

the gender classification. Therefore, this aspect has been obviated for metrics

3 and 4. Metric 4 is the most significant one given the fact that it is the de-

sired outcome of the system and that a single error or atomic event mistake can

invalidate the full story.
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5.4. Results

Table ?? summarises the accuracy obtained by the proposed system with

respect to each of the aforementioned metrics.

Regarding metric 1, it can be observed that in 14 out of the 16 sequences,

involving 2 or 3 passengers, sensor events were correctly associated to each of

the passengers involved. However, we can point to seat proximity as the reasons

why events in the other two sequences, were incorrectly associated. For example,

in sequence DL2 ACT2 02, the IDs association to passengers fails because the

passengers were sat too close to each other, in seats 10 and 14, making tracking

and association difficult. Another possible reason why the system might fail

to associate passengers with the correct ID is when the tracking struggles to

detect a particular person in the image (due to clothes, light, orientation, etc.).

In cases such as the sequence DL2 ACT3 03, the tracking system output was so

poor, that the reasoning system could not make any improvement at the sensor

association level. Regarding scenarios where more than two or three passengers

are involved, the accuracy rate drops, as can be observed for sequences DL5.

This is due to the aforementioned problems experienced by the tracking system.

Regarding metric 2, the reasoning engine is able to address the mistakes

at sensor level and recognise most of the atomic events, providing an accuracy

greater than the one obtained for metric 1. The most common remaining errors

are due to the gender recognition, which means that there is little the reasoning

system can do to correct that situation.

The bigger picture is analysed by metrics 3 and 4. Regarding these two

metrics, it can be concluded that most of the complex events, as well as the full

stories for each of the passengers from the moment they board to the moment

they leave the bus, are correctly recognised, despite multiple errors at lower

levels. This is due to the fact that the reasoning engine and the different mech-

anisms, such as multiple context or HTN, have more information available at

those levels with which to reason correctly. The performance is above 75% in

all the cases, even for those sequences involving six passengers with multiple

interactions. The full description of the reconstructed sequences is provided in
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Table 4: Full system accuracy rates obtained for each sequence and metric

System Metric 1 (%) Metric 2 (%) Metric 3 (%) Metric 4 (%)

DL1 ACT3 01 100.0 96.77 100.0 100.0

DL1 ACT3 02 100.0 100.0 100.0 100.0

DL1 ACT3 03 100.0 100.0 100.0 100.0

DL2 ACT2 01 100.0 100.0 100.0 100.0

DL2 ACT2 02 75.0 97.22 100.0 100.0

DL2 ACT2 03 100.0 94.87 100.0 100.0

DL2 ACT3 01 100.0 100.0 100.0 100.0

DL2 ACT3 02 100.0 97.5 100.0 100.0

DL2 ACT3 03 80.0 97.29 100.0 100.0

DL2 ACT4 01 100.0 100.0 100.0 100.0

DL2 ACT4 02 100.0 100.0 100.0 100.0

DL2 ACT4 03 100.0 100.0 100.0 100.0

DL3 ACT01 100.0 100.0 100.0 100.0

DL3 ACT02 100.0 100.0 100.0 100.0

DL4 ACT01 100.0 96.15 100.0 100.0

DL4 ACT02 100.0 100.0 100.0 100.0

DL5 ACT01 31.57 61.85 91.66 83.33

DL5 ACT02 55.55 67.07 80.0 75.0

Table ??.

5.4.1. Comparison

Additionally, in order to evaluate our system and the contribution of the

different components, our full system with, and without, the multiple context

mechanism is compared to a baseline approach. The three systems under con-

sideration are:

• Baseline: Basic system with no common-sense reasoning skills nor the

multiple-context mechanism enabled. This is equivalent to a rule-based
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Table 5: Description of the estimated sequence of events by our proposed system. Only those

sequence with errors are displayed here, highlighted in bold, since the other ones are identical

to Table ??. Erros are Code @f indicates the frame number at which the composite event

starts.

Scene Actors Frames Composite Actions

DL1 ACT3 01 1 M, 1 M 1071 MBTS-C14 @f20, MBTS-C6 @f298, MEX

@f665, FEX @f953

DL2 ACT3 02 1 F, 1 F 967 FBTS-C5 @f16, FBTS-C6 @f224, FCS-C3

@f380, FEX @f792, MEX @f847

DL5 ACT02 3 M, 2 F 1789 M1BTS-C17 @f18, M2BTS-C12

@f294,F1BTS-C17 @f514, M2CS-C1

@f893,M3B @f996, M1CS-C2 @f1062,

M2CS-C3 @f1168, M1EX @f1354, M2EX

@f1456, F1EX @f1542, M3EX @f1712

DL5 ACT01 3 M, 3 F 1432 F1BTS-C7 @f15, M1BTS-C14 @f179, F2BTS-

C5 @f308, F1EX @f494, M2BTS-C2 @f442,

M2CS-C17 @f610, F3BTS-C13 @f696,

M1EX @f818, M3B @f799, M2EX @f968,

F2EX @f1029, F3EX @f1235, M3EX @f1274
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systems that employs the same rules, world and domain knowledge as our

proposed system. Action associations are carried out based on passenger

boarding order and distances to the event location.

• No multiple-context mechanism enabled: This system is a differ-

ent configuration of our proposed approach. It includes the HTN and

common-sense mechanism, but its capabilities have been limited to only

consider one context. Therefore, the multiple-context mechanism that

supports the creation and maintenance of possible worlds is not available

and only the most likely context at each time is preserved.

• Full system: This system exhibits the full functionality described in this

paper.

The graphic in Figure ?? compares the performance of the three different

systems under analysis for the four metrics considered here.

The full system outperforms the other two for all the four different metrics.

However, the most significant improvement is that achieved for metric 4, which

considers the whole passenger’s story. This improvement demonstrates that cor-

rections made when all atomic actions are put in perspective have an important

impact on the obtained accuracy. The metric 4 accuraccy also demonstrates that

the correct association of sensor events, or atomic events, may not be enough to

fully understand the behaviour of the passengers in a sequence. Since the cor-

rectness of whole stories is what matters most for automatic surveillance, our

proposal exhibits excellent potential for behaviour reasoning on public trans-

port. It is also noticeable how the multiple-context mechanism allows results

in a significant improvement, specially when creating the whole story. This is

due to the fact that different hypotheses are preserved until all the information

is available to create a coherent story and take the correct decision, instead of

discarding hypotheses prematurely.

It is also worth mentioning the difference in performances obtained for metric

1. This metric indicates that the sensor event association is the most complex

problem to solve, given the high uncertainty of the tracking video-analytics. An
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Figure 10: Average accuracy rates

analysis of the results demonstrates the importance of common-sense rules and

the use of possible worlds. In this sense, common-sense rules have leveraged

assertions, such as the fact that a person cannot be in two different places at

the same time.

6. Conclusions

This paper describes an scalabe and distributed intelligent system for au-

tomatic surveillance and multiple-passenger behaviour monitoring in public-

transport platforms based on heterogeneous and ambiguous sensor events and a

common-sense reasoning approach. Sensor lack of precision, noise, uncertainty,

and the presence of more than one passenger that makes event association dif-

ficult, are addressed by first homogenising the data and then providing causal

explanations to the sensed events. Contrary to solutions that are provided with

patterns or rules that describe human behaviour, our double-stage system is

intended to give a causal explanation to the gathered events. A first stage

associate the sensed atomic actions to passengers, whereas the second stage ad-

dresses the coherence and plausibility of the associations. The system makes

use of common-sense reasoning, multiple-context consideration and hierarchical
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association to provide the most likely final explanation to the behaviour of the

passengers onboard.

As main theoretical contributions, this paper has introduced the use of the

possible-world theory as a mechanism to handle the uncertainty and ambiguity

of certain sensor events. Different worlds are created to track each of the possi-

ble scenarios in which such events are plausible, delaying the selection of just one

until further information is available or until it cannot be delayed any longer.

Moreover, a Hierarchical Task Network (HTN) planner is proposed as a mecha-

nism to resemble the rationality that leads human behaviour. The planner has

been theoretically formalised and empirically evaluated.

Our methodology is validated in a simulated bus scenario involving a vari-

able number of passengers in different situations. Our system outperforms, over

all four evaluation metrics, the rule-based baseline system which is provided

with the same information, rules and knowledge. The greatest improvement

was obtained when evaluating the correct whole-stories interpretations, which

validates our capability to correct for the lack of common sense when whole sce-

narios are put in perspective. A main disadvantage to our approach, is the use

of intrinsically ambiguous video sensors, which, while information rich, may pro-

duce a wrong explanation when the uncertainty increases due to growing scene

complexity. However, even in the worst-case tested scenario, a 75% accuracy

rate is obtained, outperforming the rule-based approach. It is also important to

note that dangerous behaviour tends to occur at night while buses are mostly

empty rather than overcrowded.

The main advantages of the proposed methodology are its scalability due

to its distributed implementation, its ability to effectively combine a variety of

heterogeneous rich and ambiguous sensors, the capacity to provide correct casual

explanation under the presence of inconsistent and contradictory stories, and

the avoidance of requiring accurate quantification of the uncertainty of sensors

and events to provide valid explanations.

As a disadvantage, the use of intrinsically ambiguous video sensors, while rich

in information, may produce wrong explanation when the uncertainty increases
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due to a growing number of passengers and multitude of events take place in

a spatio-temporal proximity. However, even in the worst-case tested scenario,

a 75% accuracy rate is obtained, outperforming the rule-based approach. It is

also important to note that most dangerous behaviours take place at night and

in mostly empty busses rather than in overcrowded conditions.

Future work will address the drop in accuracy rate as the number of pas-

sengers increases. Since this is mainly caused by errors in the tracking system,

the integration of better tracking algorithms with additional cameras should

improve performance with larger passenger numbers. Secondly, human social

behaviour in public-transport platforms will be modelled in collaboration with

sociologists and incorporated into our knowledge base. Some patterns of so-

cial and anti-social behaviour have already been identified, but more interdisci-

plinary effort is required. Finally, we will extend the recordings, data capture

and evaluation to real environments using actual busses and transport platforms.
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