
1

Functional & timing in-hardware verification of FPGA-based designs using unit testing
frameworks

Julián Caba, Fernando Rincón and Julio Daniel Dondo
Department of Technology and Information Systems, University of Castilla-La Mancha, Spain

email: julian.caba@uclm.es

Abstract—In this PhD dissertation, we propose a new testing
approach for effectively managing hardware development risks,
producing hardware designs with enough quality and reliability.
Our proposal is based on the combination of high-level modelling
and a unit testing framework in order to generate real hardware
implementations for validating the designer intent, in order to
keep a high cycle-accuracy and a low design effort. Such real
hardware implementations are based on FPGAs, whose reconfig-
urability are key to provide a flexible verification environment,
whereas unit testing frameworks have been extended to consider
new testing requirements beyond pure functionality, such as
timing analysis. Moreover, we provide a hardware library with
two different types of components: 1) monitors to check internal
variables at run time, keeping the errors to later trace them, and
2) double functions to reduce third-party dependencies.

I. INTRODUCTION

NOWADAYS, high-level modelling (HLM) is widespread
to build hardware designs, providing an early under-

standing of the design impact decisions, and allowing an
effective design space exploration, which results in a higher
design productivity and improves the likelihood of finding
the most-optimal implementation. In order to fill the gap
between development tools and the capabilities offered by
the technology, FPGA vendors are making a high effort
to include High-Level Synthesis (HLS) as a solution [1].
However, the verification stage still entails an amount of non-
trivial problems, that are summarised in the following points
and coincide with our motivation.

• The trade off between simulation effort and simulation
accuracy depends on the design abstraction level. Using
HLM provides the lowest simulation effort but results in
a very poor accuracy, whereas a real hardware prototype
would be the perfect environment for an accurate verifica-
tion but it implies an important verification effort [2], and
even more the use of real hardware devices introduces a
new problem: the exponential synthesis time.

• Each testing-level stage induces rewriting tests, which
is prone to human errors and time consuming. The test
translation process may result in wrong decisions while
developers try to modify them according to the new
verification level, instead of just working in production
code with the only aim to pass their tests at any level.

• The time spent in verification accounts for roughly 80
percent of the development life-cycle, considering this

This work is supported by Ministry of Economy and Competitiveness of
Spain under project REBECCA (TEC2014-58036-C4-1R), and European
Regional Development Fund under project SAND (PEII11-0277-0070)

task as the bottleneck of most projects, and even ver-
ification engineers are not the only staff to check the
design [3]. Nowadays, the biggest challenge in design
and verification is identifying solutions to reduce the
verification gap, optimising the time-to-market and the
product reliability/quality.

• Timing is a major issue in hardware projects, which
makes the verification process more complex. Timing
results in-hardware verification usually differ from ver-
ification models used during simulation, where engineers
do not care about available resources and their location.

• Maybe the most hard task is to integrate a new component
into a test environment fulfilling all its dependencies,
since several ones will not be already implemented or
simply not available (for the case of third-party compo-
nents, for example). Many vendors provide simulation
models for their products, but they rarely can be synthe-
sised. In addition, a part of a hardware component can be
implemented in different ways, and that decision should
be taken at implementation time, where it may prove not
to be the correct one.

II. OBJECTIVES

The main objective of this dissertation is to propose an
integral solution that provides solutions to the mentioned
verification problems in digital hardware design. This solution
is presented as a novel hardware testing framework using
the new generation tools provided by FPGA vendors. At the
same time, the dissertation should focus on a solution that
considers two important verification aspects: functional and
timing factors; whose precision should be closed to a real
scenario. Thereby, hardware designs described by a high-level
programming language must be verified through an automatic
infrastructure allowing transparent verification using a real
hardware device. The expected contributions of our work are:

• To propose techniques for checking the correctness of a
hardware design, contrasting the developer intent and the
result obtained, including the timing factor too.

• To ease the verification stage without building the whole
verification environment, and reusing the same test at
different abstraction level.

• To reduce the third-party dependencies and allow to
increase the intermediate results visibility.

III. OUR APPROACH

To provide a full verification framework for hardware com-
ponents, and to overcome the limitations related to hardware/-
software communication, high-level synthesis tools, and unit



2

testing principles, we explore an alternative based on Remote
Method Invocation (RMI). Each function to test must be
accessed individually and checked also individually. In addi-
tion, RMI provides a way to communicate components within
different implementation domains, whose main advantage is
reusing the same test at any abstraction level.

The synthesis process requires high computing power and,
thus is quite time-consuming. In order to improve and min-
imise synthesis process, we include an interesting feature
available in some FPGAs called Dynamic Partial Reconfig-
uration (DPR). One benefit enabled by DPR is the fact that
the designer can dynamically insert new functionality without
redesigning the whole system. Furthermore, it is possible to
adapt the FPGA to different scenarios, by simply replacing
a few components. In our approach, we use DPR in those
parts of the system that are susceptible to be changed, mainly
the DUTs. The DUT area will be updated everytime a new
version is available, thus an engineer can exercise the DUT
on real hardware in a short time.

HLS tools introduce a new problem: the visibility of the
generated design. These tools produce complex designs whose
traceability is quite limited, requiring developers to trace the
signal(s) manually when the simulation fails. Therefore, our
approach must provide some facilities to improve visibility of
internal variables or intermediate results.

On the other hand, the integration of a new component with
its dependencies in a test environment is a hard task, since
some may not be implemented or may not be available at
that time. Thus, the use of test doubles can be an appropriate
solution to perform testing efficiently and effectively, reducing
the dependencies with third-party components.

Summarising, our approach provides a transparent testing
service through a hardware platform where a DUT is deployed
into a dynamic area. DUTs are generated using HLS tools, and
are verified through unit testing, checking its behavioural and
timing correctness. These tests are the same at any abstraction
level. The testing process is transparently automated; an engi-
neer commits his design code and unit tests written in a high-
level language, such as C, into a repository, and automatically
the testing service is able to synthesise the design code, deploy
the DUT remotely into an FPGA and exercise it with the
original unit tests, reporting the testing result to the engineer.
In addition, we provide some facilities to reduce third-party
dependencies and to increase the intermediate results.

IV. CURRENT STATUS AND FUTURE WORK

To communicate a hardware component with other hardware
or software components we built a communication mechanism
based on RMI that is able to route the required messages.
This mechanism can be used on any bus, such as AXI.
In addition, the hardware component is wrapped to ensure
individual function access, fulfilling the unit testing principles
and HLS restrictions. To get a solution based on RMI tech-
nology, addressing these limitations, we follow the research
line explained in [4] and [5]. The testing framework chosen is
Unity, and has been extended to fit hardware timing features.

To facilitate the DPR process we built a fast reconfiguration
component which is able to deploy new functionality without

Figure 1: Overview of Remote Testing Service

to stop the whole design. Thus we only must synthesise just
the logic of DUT instead, reducing the computation time
and power consumption. The hardware component developed
achieves the maximum theoretical speed up to deploy a partial
bitstream though the ICAP component (about 400 MB/s). For
the experiments we use a Zedboard from Xilinx.

We addressed the visibility problem through the implemen-
tation of hardware asserts, providing a hardware library which
contains a set of functions that are able to check intermediate
results. Moreover we have included a test double technique
to reduce or eliminate the third-party dependencies. Both
solutions provide extra functionality to express how often,
with which arguments and the relative time when the method
shall be called, this information is stored internally and can
be accessed from unit tests.

Finally, we have integrated our approach using Jenkins as
a continuous integration platform connected to a repository,
such as GitHub which stores the source code: the DUT and its
tests. Thereby, when a change is committed to the repository,
the Jenkins framework triggers the building of the new DUT
version in a remote node through a Docker container. After
the synthesis process, the container sends the partial bitstream
to the real hardware and it deploys the new functionality
through the DPR capabilities of the FPGA. Then the container
stimulates the DUT using the tests defined by the developer.
Finally, the developer is able to observe the correctness of the
new version in a real hardware. (see Figure1)

For the subsequent steps, we plan to complete some ex-
periments using real-life applications to address a verification
stage lead by our proposal. Nowadays, we are using a case
study based on the histogram of oriented gradients to validate
our proposal [6].

REFERENCES

[1] J. Cong et al. ”High-Level Synthesis for FPGAs: From Prototyping
to Deployment”, Computer-Aided Design of Integrated Circuits and
Systems, 2011.

[2] L. Gong and O. Diessel ”Functional Verification of Dynamically Re-
configurable FPGA-based Systems”, Springter, 2015.

[3] H. Foster ”The 2016 Wilson Research Group Functional Verification
Study”, Mentor Graphics, 2016.

[4] F. Rincón et al. ”Transparent IP Core Integration Based on the Dis-
tributed Object Paradigm”, Intelligent Technical Systems, 2009.

[5] J. Barba et al. ”OOCE: Object-Oriented Communication Engine for SoC
Design”, DSD, 2007.

[6] N. Dalal and B. Triggs ”Histograms of Oriented Gradients for Human
Detection”, CVPR, 2005.


