
Learning Computer Structure through an
ARM-based Arduino platform

Xavier del Toro Garcı́a∗, Maria J. Santofimia†, Beatriz Garcı́a Fernández‡, Santiago Garcı́a†,
Javier Dorado†, David Villa† and Juan Carlos Lopez†

∗Institute of Energy Research and Industrial Applications, University of Castilla-La Mancha, Ciudad Real, Spain.
†Institute of Technology and Information Systems, University of Castilla-La Mancha, Ciudad Real, Spain.

‡Science Education. Department of Pedagogy. Faculty of Education of Ciudad Real, University of Castilla-La Mancha, Spain.
Email: {xavier.deltoro, mariajose.santofimia, beatriz.garcia, santiago.gtalegon,

javier.dorado, david.villa, juancarlos.lopez}@uclm.es

Abstract—This paper proposes and analyzes the use of the
Arduino Zero board as the lab platform for the Computer
Structure course that constitutes an essential part of Computer
Science studies. The understanding of the main functional blocks
of a computer, addressing the main concepts included in the
course syllabus, is reinforced by mean of the hands-on experience
acquired in the lab sessions and the completion of a project
based on a mobile robot. Special care has been devoted to link
the theoretical concepts with their practical application. The
inclusion of a debugging chip (EDBG) in the Arduino Zero board
is one of the main assets to enable exploring the architecture
and analyze the execution of programs down to the assembler
instructions level.

I. INTRODUCTION

The use of robotics for education purposes is gradually
gaining attention [1] as results in learning are being demon-
strated [2], [3]. The effectiveness of robotics programming on
developing computational thinking, logic reasoning, or sys-
tematic and structured thinking skills has been evidenced [4].
These are key skills for learning concepts in the fields of
science, technology, engineering and mathematics (STEM).

Platforms like Arduino, Lego Mindstorms NXT, or Fis-
cherTechnik, and programming environments such as Logo or
Scratch are some of the most popular tools for robotics pro-
gramming. These platforms and programming environments
have been designed with the specific purpose of providing
a simple and intuitive framework for a wide-ranging public.
For this reason, robotics programming is a discipline that
is currently being actively exploited for primary and sec-
ondary education. Besides, the so-called maker movement
is becoming very popular in the last decade. As for the
tertiary education, robotics programming has been evaluated
as a complimentary tool [5] since, somehow, students at this
stage have already acquired the aforementioned skills. For
undergraduate studies, robotics programming has traditionally
been considered as a tool to promote motivation and student
engagement, specially in those more technical engineering
studies.

The use of software-based simulators is widely extended
for labs in different courses of engineering studies. Real
platforms are normally too complex for students facing the

learning of foundational concepts and they generally involve
an important economical investment. Moreover, real hardware
requires maintenance and can be easily damaged. The use
of such platforms may lead students to lose focus from the
important concepts and get overwhelmed with details that are
totally out of the scope of such courses. On the contrary,
simulators are normally specifically designed for teaching
purposes and, for that reason, some simplifications are adopted
which helps maintaining the focus on the important aspect of
the course. In this sense, learning the principles of courses
like computer architecture, computer structure, or computer
organization would be difficult to face from today’s laptops
or PCs. Nevertheless, students attitude towards the use of
simulators is not very positive [6] and the learning by doing
experience is somehow limited when only simulators are used.

This paper describes the experience implemented in the
Computer Structure course, taught during the first year of
Computer Engineering studies, in the University of Castilla-
La Mancha. In average, 150 new students enroll in this course
for the first time every year, whereas around 80 students
are retaking the course at least for the second time. The
majority of the first-year students are exposed for the first
time during this course to low level and very technical details
of computer structure. We have experienced how students
struggle to connect theoretical concepts to platform-specific
aspects. For this reason, it is our perception that the platform
used for the hands-on experience has an impact not only in
the student performance but also in their motivation.

Before the adoption of the Arduino-based platform, for the
last 9 years, students of this course were using the Nintendo
DS as the lab platform. The benefits and results obtained
from using such platform were exposed in [7], [8]. However,
for different reasons, Nintendo DS started losing popularity
among our students and motivation dramatically dropped. This
aspect motivated us to look for a different platform that, with
similar specifications, could be adopted as a replacement for
Nintendo DS.

After an extensive and thorough analysis of the different
platforms in the market, we reduced the analysis to Arduino
Zero and Raspberry Pi. The question therefore turned into

whether to use a microcontroller or a microcomputer. In terms
of prize and popularity, both seem to be similar and perfect
candidates for our purpose. However, as a microcomputer
Raspberry Pi entails a complexity that might exceed what is
expected for this course. Furthermore, microcomputers can be
considered as a general-purpose solution which means that an
operating system should be present to take control of certain
processes. On the contrary, Arduino is a microcontroller and,
therefore, it is conceived to be programmed for a sole purpose.
In addition, it has rich input-output capabilities to interact with
sensors and actuators. The wide range of Arduino models
also required an extensive analysis to determine which one
was the most appropriate for the purposes of experimenting
with the conceptual ideas learned in the Computer Structure
course. Finally, the chosen solution was the Arduino Zero
board, which provides a perfect combination of features for
this course. The main advantages that justify the use of an
Arduino-based platform in the Computer Structure course, and
more precisely the Arduino Zero board, are:

• It is a robust and easy-to-use platform suitable for begin-
ners and advanced users.

• It is open-source in terms of not only software but also
hardware.

• It has a large international community sharing knowledge
and code.

• It is a 32-bit ARM architecture which means that it is
widely used for off-the-shelf embedded devices (smart
phones, smart watches, game consoles, etc.).

• It is well equipped in terms of available memory.
• It has a built-in debugger (the EDBG chip), which means

that no additional hardware is require for debugging
purposes.

• The Arduino IDE can run in different operating systems:
GNU/Linux, Windows and Macintosh OSX.

• It is a low-cost platform, making it more feasible for
students to afford buying their own board.

• It is a low-energy board that can be used for Internet of
Things (IoT) applications. This provides and interesting
field of application with a wide variety of projects that
can be addressed.

• It is possible to use a broad variety of boards with specific
functionalities, the so-called shields, with a compatible
form factor.

This paper is intended to describe how the Arduino Zero
board has been adopted as the lab platform for the Computer
Structure course. The paper is organized as follows. First, the
platform description is provided in Section II. Next, Section III
analyzes the syllabus of the Computer Structure course in
order to identify the platform features that will be exploited to
address the main concepts under study. Section IV describes
the exercises and the project that were proposed for the
2016/2017 course. Finally, Section V summarizes the most
relevant conclusions drawn from the adoption of the Arduino
Zero board in the course and proposes future lines of work.

Fig. 1. Image of the Arduino Zero board and its main components

TABLE I
ATMEL SAMD21G MCU CHARACTERISTICS

Parameter Value

Processor ARM Cortex M0+ 32 bits
Architecture ARMv6

Instruction Set Thumb-2
Clock maximum frequency 48 MHz

Operating voltage 3.3 V
Flash Memory 256 KB

SRAM Memory 32 KB
Analog-to-digital channels 14 (12 bits)
Digital-to-analog channels 1 (10 bits)

PWM outputs 10 (8 bits)
Real-Time Clock Yes

Interfaces USB, I2S, I2C, SPI, TWI

II. PLATFORM DESCRIPTION

A. Microcontroller

Arduino Zero1 is a microcontroller-based board (see Fig. 1)
launched in 2015, that belongs to the Arduino family and,
more precisely, to the group of boards with enhance features
for more advanced users and complex projects. The main
features of the microcontroller SAMD21G that the Arduino
Zero board incorporates are summarized in Table I.

B. Debugging

As a novelty in the Arduino family of boards, the Arduino
Zero incorporates an embedded debugging chip: the EDBG
from Atmel. As mentioned before, this is one of the most
interesting features of this board, providing the possibility
to explore the architecture and gain practical experience and
understanding of the main concepts related to the course.
The EDBG chip allows the remote debugging of the program
during execution. Debugging tasks can be done in GNU/Linux
systems by connecting to the board by means of OpenOCD2

1www.arduino.cc/en/Main/ArduinoBoardZero
2www.openocd.org

Fig. 2. Memory map of the SAMD21G microcontroller employed in the
Arduino Zero board

and using the gdb debugger. Additionally, KDbg3, a graphical
interface for gdb, is used due to its ease of use and the
possibility to visualize and execute the assembly code step
by step.

C. Memory

The Arduino Zero board implements a hybrid Harvard
architecture in which the program instructions and data are
separated into different memory technologies, the internal
Flash (256 KB) and SRAM (32 KB) memories, respectively.
Both memories, however, are part of the same memory map
of the SAMD21G microcontroller, as shown in Fig. 2.

D. Input/output

The Arduino Zero board has 20 general purpose I/O pins.
The operating voltage for these pins is 3.3 V, and a maximum
of 7 mA can be sourced or drained from them. The function-
alities of these pins are described in Table II and, as shown,
some of them can have multiple functionalities depending on
the configuration. The precision in terms of bits of the analog
inputs and output, and the PWM outputs is provided in Table I.

Different I/O transfer techniques can be used, namely inter-
rupts and DMA. Interrupts can be generated from changes in
the state of all the digital inputs, except for input 4. The MCU
also includes a 12-channel DMA controller. The Arduino IDE
incorporates a serial monitor that can be used to print messages
as the standard output, and a serial plotter to graphically show
the value of a variable. In addition, a built-in LED is connected
to pin 13.

E. Programming

Arduino boards are generally programed using the Arduino
IDE. Once the program is compiled it can be loaded using
the USB connections available at the programming and native
microUSB ports. The Arduino programming language is based

3www.kdbg.org

TABLE II
ARDUINO ZERO I/O PINS

Pin Functionality Extra Interrupts

0 Digital I/O Serial RX Yes
1 Digital I/O Serial TX Yes

2, 7 Digital I/O - Yes
3, 5, 6 and 8 to 13 Digital I/O PWM Yes

4 Digital I/O PWM -
A0 Analog input Analog Output -

A1 to A5 Analog input - -

on Wiring, which is derived from C/C++. This language
is much more user-friendly than programming in assembly
language, and many libraries and examples are available to
ease the learning process. An introduction to C programing is
given to the students at the beginning of the course.

F. Robotics kit

To enhance the practical experience of the students, the
Arduino Zero platform has been interfaced with a robot kit
incorporating several sensors and actuators. This will allow
the development of projects and a deeper understanding of the
input/output concepts of the course. There are many low-cost
robotic kits in the market and we have selected among them
the PrintBot Evolution Kit by BQ4. The Printbot Evolution
is a two-wheel mobile robot with a methacrylate chassis
that incorporates several sensors integrated in the so-called
ZUMbloqs. The plastic parts of the structure are printed with
a 3D printer and the designs are open and available for users.

The sensors (i.e. inputs) available are:
• 2 infrared (IR) sensors for line-follower applications.
• 2 light sensors based on LDRs, to detect light sources.
• 1 ultrasound sensor, to measure distances to objects.
Regarding outputs, the actuators included in the robot are:
• 2 continuous rotation servomotors, attached to the wheels

to control speed and direction.
• 1 180◦servomotor to orientate the ultrasound sensor.
• 1 buzzer, to generate sounds.
The PrintBot Evolution robot originally incorporates an 8-

bit Arduino-compatible microcontroller board, the BQ Zum
Core. This board has been replaced by the Arduino Zero board.
In order to improve the control of the servomotors and provide
the required power, a 16-channel 12-bit PWM servo shield
from the company Adafruit5, has been incorporated in the
design. Additionally, a sensor shield has also been included
to ease the connection of sensors and actuators. The resulting
platform is depicted in Fig. 3.

III. COMPUTER STRUCTURE SYLLABUS

The Computer Structure course is taught during the second
semester of the first year of the Computer Engineering degree.

4www.bq.com/es/printbot-evolution
5www.adafruit.com/product/1411

Fig. 3. Robot platform incorporating the Arduino Zero board and two
additional shield boards

The course introduces students to the essential functional units
of a computer and how they are interrelated.

The course is organized in five separate sections, as follows:

• Section 1. Introduction
• Section 2. Memory system
• Section 3. Machine Language
• Section 4. Datapath
• Section 5. Input/Output system

Section 1 is intended to provide students with an overview
of the different concepts that will be studied in the following
sections and get an overall view of the course. The different
elements comprising a computer will be presented in this
section from a very general perspective. The introduction also
discusses elementary concepts, such as stages in an instruction
execution, type of architectures (differences between a Harvard
and a von Newman architecture), or the main characteristics
of a computer (memory and word size, frequency, transference
rate, etc.).

Section 2 analyzes the memory system from the point
of view of the memory hierarchy (registers on the top of
the hierarchy and mass storage at the bottom). Learning the
different purposes of the memory hierarchy levels (instructions
and operands at the top, long-term data at the bottom) is
specifically addressed in this section. Additionally, this section
also covers the stack and the role it plays in a call procedure or
the separate memories used for storing data and instructions in
a Harvard architecture, in contrast with the common memory
used for data and instructions in a von Neuman architecture.

Section 3 deals with the Instruction Set Architecture (ISA),
and the assembly and machine languages. This course does
not expect students to learn assembly programming, but they
are expected to gain a general understanding of different
instruction formats and addressing modes. Additionally, this
section also introduces students to the concept of Application
Binary Interface (ABI). The ARM ABI is used to explore some
aspects such as the call procedure and data alignment.

Closely related to section 3, section 4 explores the datapath
concepts. Students are expected to understand and identify the

path followed by data during the execution of an instruction.
Instructions like CALL, RETURN, PUSH, or POP are particu-
larly interesting because, in order to identify the path that data
follow, it is necessary to understand how the call procedure
and the stack work.

Finally, Section 5 addresses the input/output system from
the point of view of the different techniques that can be
implemented for the data transfer process, namely: pooling,
interrupts and DMA. Students are expected to understand the
strengths and weaknesses of each technique and the different
context in which their use is appropriate.

IV. LAB SESSIONS AND PROJECT

The course is organized in 4 tutored sessions. Each of these
sessions is followed by an evaluation session in which students
assess their understanding of the content covered. Finally,
during the last 4 sessions students work on a project to apply
the previously acquired knowledge.

A. Session 1: Testing the Arduino Zero Harvard architecture

This first session is mainly intended to get students familiar
with the hardware and software that they will be using during
the course. Following the common practice when starting with
a new programming language, students will be illustrated with
the Hello, World! application. The result of this exercise
consists in printing the message Hello, World! in the
standard output. This exercise needs to be adapted to the
Arduino Platform in which there is no predefined standard
output. For this reason the necessary adjustments will be
applied so that a message can be sent to the serial port to be
displayed in the serial port monitor provided by the Arduino
IDE.

After studying the differences between the Harvard and the
von Neuman architectures, students are expected to analyze
the type of architecture implemented by the Arduino Zero plat-
form. Eventually, they will gain knowledge about the Arduino
Zero memory map. Students are prompted to demonstrate that
instructions and data are located in different regions of the
memory space that physically correspond to different memory
technologies, according to Fig. 2. The use of pointers will be
introduced here as a mechanism to access memory addresses
that correspond to data of interest. To verify that data are
stored in the internal SRAM memory students are suggested
to declare two variables, one of them automatic and the other
static. At this stage, students will be introduced to the fact that
different types of variables are located in different memory
regions. In any case, both types are expected to be located in
a memory address starting with 0x2....

The result of executing the program that follows yields that
both variables are stored in memory positions starting with
0x2..., but not in contiguous memory positions.

1 s t a t i c c h a r cad [] = ” Hel lo , World ! ” ;
2 vo id s e t u p () {
3 c h a r t e x t [3 2] ;
4 S e r i a l . b e g i n (9 6 0 0) ;
5 i n t a =1 ;

6 s p r i n t f (t e x t , ” Address o f cad : %x\n Address o f a : %x\
n ” ,&a ,& cad) ;

7 S e r i a l . p r i n t (t e x t) ;
8 }
9 vo id loop () {

10 }

On the other hand, instructions are stored in the internal
Flash memory, so this means that all instructions will be
located in memory positions starting with 0x0.... To verify
this point, students are introduced to a debugging tool. More
specifically, they are encouraged to use the gdb debugger with
a graphical interface front-end: the KDbg. This tool is very
convenient for first year students that face, for first time, the
task of code debugging. Despite being traditionally oriented
to detect the causes of program malfunctioning, a debugger
is an excellent tool for exploring the computer architecture.
Moreover, KDbg offers a very intuitive way of exploring the
assembler code that corresponds to every single high-level
programming statement (see Figure 4).

Students are provided with detailed information about the
configuration of the Arduino IDE and KDbg to support remote
debugging. Please note that up to our current knowledge, the
Arduino IDE does not provide support for debugging and
for this reason, despite having a board with an embedded
debugger, as it is the EDBG, this task has to be externalized to
a remote tool. The OpenOCD tool offers a server for our gdb
debugger to connect and transfer the control commands. The
debugging tasks will therefore be supported on these two tools.
Students will use the debugger to explore the memory region
in which machine instructions are stored. KDbg offers the
possibility of exploring the memory content and format it as
strings, yielding the assembler code instructions. Additionally,
the binary format can be used allowing students to observe the
correspondence between assembler and machine instructions.

B. Session 2: Arduino Zero Memory layout

This session employs the ABI rules regarding the call proce-
dure and data alignment to analyze how these are implemented
by the processor of the Arduino Zero board. Students will
be introduced to the use of the processor registers (both
general and special purpose registers) and the stack. These two
levels of the memory hierarchy have traditionally remained as
abstract and intangible elements for first-year students. This
sessions is intended to demonstrate the important role that
both, registers and the stack, play in the program execution.
Once again, KDbg offers us a very useful tool for exploring
both registers and the stack. Their content can be easily
visualized since general and specific-purpose registers are
conveniently labeled and, for the stack, a separate tab is
provided.

The Cortex M0+ implements a stack that grows downwards
(i.e. decrementing memory addresses) from the topmost of the
SRAM memory, which is the memory position 0x20007FFF.
The first exercise students have to complete is the demonstra-
tion of the downwards-growing implementation of stack. The
KDbg will be used again to explore how, when calling the
loop() function, the stack pointer decrements its value.

Fig. 4. Exploration of the assembler code instructions from the KDbg
debugger

The next exercise consists in analyzing how the call pro-
cedure is implemented regarding the argument passing and
the returned values. General-purpose registers are used for
these operations and students are prompted to analyze what
the ARM ABI states on this regard and to demonstrate that
the Arduino Zero processor implements those rules correctly.
KDbg will be used to place breakpoints before and after a
function has been called. Students have to analyze the register
bank in order to determine whether the rules are satisfied.

Finally, the last set of exercises consists in analyzing the
ABI alignment rules, specially when applied to data structures.
This exercise is intended to demonstrate to the students the
importance of writing efficient code, particularly when dealing
with scarce-resource devices like the Arduino Board. Several
data structures are provided to them, so that they analyze
whether such structures are organized in the most efficient way
or there is still room for improvement. Finally, students are
prompted to write a program that forces a stack overflow and
to identify the number of iterations required for the program to
crash. This exercise provides students with a clear perspective
of how limited is the stack and how important is to make an
appropriate use of it. The compiler optimization level is set to
0 in these exercises to force the use of the stack in the call
procedure.

C. Session 3: Machine Language

It is out of the scope of this course to learn how to
write a program in assembler code due to the limited time.
However, students are expected to have some basic notions
about assembler programming. This session will therefore be
intended for the students to get familiar with assembler code
with assistance of the KDbg tool.

Two types of exercises are proposed in this session. The
first one consists in analyzing how basic programming tasks
are carried out in the ARM assembler language. To do so,
students will analyze control flow operations, call procedures
and data access. The second type of exercise deals with the
use of embedded assembler instructions inside a C-language
program.

In the first exercise, students are presented with a set of
code fragments in C language, along with the corresponding
assembler instructions. Questions and modifications on these
code fragments in assembler are requested, expecting students
to understand the code and therefore gain familiarity with the
ARM assembler language.

In the second exercise, students are asked to introduce a
delay of one clock cycle. This exercise entails the need to
figure out the clock frequency and therefore the cycle duration

and to understand how the delay() function works. This
should lead students to the conclusion that the smallest delay
they can produce is of 2 µs using that function. On the
contrary, given that the processor works at 16 MHz, one cycle
needs 62,5 ns to be executed. By embedding assembler code
into the Arduino program students can achieve a 1 cycle delay
in their code. To do so, they are introduced to the use of the
asm("nop") function. The nop assembler instruction does
not perform any operation but takes one cycle to be executed.

D. Session 4: Input/Output

In this session the students are given a set of basic and
functional examples to work with all the sensors and actuators
included in the robot. In addition, an example on how to
manage interrupts is provided. In order to use the servos
connected to the Adafruit PWM shield, students have to learn
how to include new specific libraries in the Arduino IDE.

E. Project: Line-follower robot

To complete the practical experience of the students, a
project to be completed in teams is proposed. The project is
to develop a practical application with the robot. In this first
year, a line-follower robot has to be programed. A very basic
and functional version of a line-follower is provided to the
students as a starting point, as shown below.

1 # i n c l u d e <Wire . h>
2 # i n c l u d e <Adafrui t PWMServoDriver . h>
3 Adafrui t PWMServoDriver pwm =

Adafrui t PWMServoDriver () ;
4 / / P u l s e l e n g t h s :
5 # d e f i n e SERVO CCW 280 / / C o u n t e r c l o c k w i s e r o t a t i o n
6 # d e f i n e SERVO STOP 340 / / Servo s t o p p e d
7 # d e f i n e SERVO CW 400 / / C lockwise r o t a t i o n
8 i n t R i g h t s e r v o =0; / / r i g h t s e r v o c h a n n e l
9 i n t L e f t s e r v o =1; / / l e f t s e r v o c h a n n e l

10 i n t BLACK=0; / / Black l i n e d e t e c t e d
11 vo id s e t u p () {
12 pwm. b e g i n () ;
13 pwm. setPWMFreq (6 0) ; / /PWM f r e q u e n c y (60 Hz)
14 pinMode (2 , INPUT) ; / / R i g h t IR s e n s o r p i n
15 pinMode (3 , INPUT) ; / / L e f t IR s e n s o r p i n
16 }
17 vo id loop () {
18 i n t R igh t IR = d i g i t a l R e a d (2) ;
19 i n t L e f t I R = d i g i t a l R e a d (3) ;
20 i f (R igh t IR ==BLACK) {
21 pwm. setPWM (L e f t s e r v o , 0 ,SERVO CCW) ;
22 } e l s e {
23 pwm. setPWM (R i g h t s e r v o , 0 , SERVO STOP) ;
24 }
25 i f (L e f t I R ==BLACK) {
26 pwm. setPWM (R i g h t s e r v o , 0 ,SERVO CW) ;
27 } e l s e {
28 pwm. setPWM (R i g h t s e r v o , 0 , SERVO STOP) ;
29 }
30 d e l a y (1 0) ;
31 }

The teams are asked to improve the program so that the
robot can complete a given circuit and minimize the time
required to complete one lap. They are also asked to integrate
the other sensors and actuators available and to be creative
to find new functionalities and features. One of the important
lessons learned while developing the project are the issues

they come across when increasing the number of tasks to be
completed in the loop() function and how it affects the line-
follower performance.

V. CONCLUSIONS

The use of the Arduino Zero board and a robot kit in the labs
of the Computer Structure course is proposed in this paper. A
better matching between the concepts presented in the theory
sessions and the labs is expected, in comparison to previous
experiences in the same course using different platforms. The
inclusion of an embedded debugger in the Arduino Zero board,
and the use of a gdb front-end such as KDbg provides a very
powerful tool to easily explore the memory or analyze the
assembler instructions that correspond to the high-level code.

Future lines of work will consist in the assessment of
this educational experience by comparing the performance
and motivation of an experimental group doing the labs with
Arduino Zero and a control group doing the previous labs
using the Nintendo DS console. Moreover, the use of this
Arduino-based lab platform will be extended to other courses
of the Computer Science degree.

ACKNOWLEDGMENT

This work has been partially funded by the Spanish Ministry of
Economy and Competitiveness under project REBECCA (TEC2014-
58036-C4-1-R), by the Regional Government of Castilla-La Mancha
under project SAND (PEII 2014 046 P) and by the University of
Castilla-La Mancha R&D Plan under the access contracts to the
Spanish system of science, technology and innovation call, which
is partially funded by the European Social Fund (31/07/2014 Reso-
lution, published in the DOCM on the 25 of August 2014).

REFERENCES

[1] S. Papavlasopoulou, M. N. Giannakos, and L. Jaccheri, “Empirical
studies on the Maker Movement, a promising approach to learning: A
literature review,” Entertainment Computing, vol. 18, pp. 57–78, 2017.
[Online]. Available: http://dx.doi.org/10.1016/j.entcom.2016.09.002

[2] G. Chen, J. Shen, L. Barth-Cohen, S. Jiang, X. Huang, and
M. Eltoukhy, “Assessing elementary students’ computational thinking
in everyday reasoning and robotics programming,” Computers and
Education, vol. 109, pp. 162–175, 2017. [Online]. Available: http:
//dx.doi.org/10.1016/j.compedu.2017.03.001

[3] M. U. Bers, L. Flannery, E. R. Kazakoff, and A. Sullivan, “Computational
thinking and tinkering: Exploration of an early childhood robotics
curriculum,” Computers and Education, vol. 72, pp. 145–157, 2014.
[Online]. Available: http://dx.doi.org/10.1016/j.compedu.2013.10.020

[4] F. B. V. Benitti, “Exploring the educational potential of robotics in
schools: A systematic review,” Computers and Education, vol. 58,
no. 3, pp. 978–988, 2012. [Online]. Available: http://dx.doi.org/10.1016/
j.compedu.2011.10.006

[5] N. Spolaôr and F. B. Benitti, “Robotics applications grounded in
learning theories on tertiary education: A systematic review,” Computers
& Education, vol. 112, pp. 97–107, 2017. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0360131517300970

[6] C. A. Canizares and Z. Faur, “Advantages and disadvantages of using var-
ious computer tools in electrical engineering courses,” IEEE Transactions
on Education, vol. 40, no. 3, pp. 166–171, 1997.

[7] M. J. Santofimia and F. Moya, “Nintendo DS: A pedagogical approach
to teach computer architecture,” in Proceedings of the 2009 International
Conference on Embedded Systems & Applications, ESA 2009, July 13-16,
2009, Las Vegas Nevada, USA, H. R. Arabnia and A. M. G. Solo, Eds.
CSREA Press, 2009, pp. 269–273.

[8] E. Larraza-Mendiluze, N. Garay-Vitoria, J. I. Martı́n, J. Muguerza,
T. Ruiz-Vázquez, I. Soraluze, J. F. Lukas, and K. Santiago, “Game-
Console-Based Projects for Learning the Computer Input / Output Sub-
system,” vol. 56, no. 4, pp. 453–458, 2013.

