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Abstract—The Internet of Things (IoT) paradigm envisions a
world of interconnected objects in which every object or thing
can be univocally addressed and accessed, independently of its
inherent technology and location. To the date, most of the state-
of-the-art solutions proposed to realize the IoT vision employ a
cloud-based approach. This means that, independently on where
objects are physically located, their interconnection relies on a
cloud-based solution. In a daily life situation it is like requesting a
call-center operator to get us in contact to someone that is nearby
us. Common sense tells us that it is not only simpler, but more
efficient, to directly talk to him/her minimizing delays, failing
points, and unnecessary intermediaries. This paper presents
a protocol for IoT, named IDM (Inter-Domain Messaging),
intended to overcome the limitations of cloud-based solutions
for IoT. The IDM approach consists in offering an abstraction
layer upon which different technologies can interact in a seamless
and efficient manner. This paper also provides an experimental
validation consisting in the implementation of a prototype inter-
connecting five different domains, with technologies like ZigBee,
Bluetooth, RS485 or WiFi.

I. INTRODUCTION

Actuation for the Internet of Things (IoT), more specially
for Industrial IoT, is gaining attention as it remains challenging
to effectively operate on IoT objects under requirements of real
time, scalability, security, or interoperability [1] [2]. Tradition-
ally, efforts have been addressed to solve the sensing aspect
overlooking the importance of supporting acting and smart
behavior capabilities. In other words, we can say that, to date,
IoT has mainly been applied to data collection purposes [3].
When applied to actuation or smart behavior, there exist ad-
hoc solutions in which gateways assume the responsibility
of translating cloud invocations into actuator commands [4].
Needless to say, such solutions are highly coupled to the
technology and the purpose they are devoted to, which is not
what the IoT vision is on about. The reason why actuation
still remains a challenge is because seamless integration of
technologies is far from being a reality [5]. Despite efforts
like CoAP [6] or ZigBee [7] connectivity issues still remain
unsolved mainly because these type of solutions are built over
IP. Resorting to IP is not always the best solution because
of restrictions imposed by scarce-resource devices, timing or
constrained networks.

The IoT paradigm is mainly grounded in the capability
of the network to support seamless interoperability among
objects, independently of their technology or network de-

tails [8]. A revision of the state-of-the-art solutions for IoT
shows that most of them are mainly based on cloud-like
approaches. In these solutions, the management of both the
IoT network and the data/information is delegated to a remote
server. In this scenario, the Cloud typically assembles a set
of repositories in which sensors publish their values, and
then the server applications retrieve and understand these data
and take a centralised decision. Such architecture enables the
interoperability between different IoT networks only at the
cloud level without any direct communication between the
information sources, consumers or actuators.

By itself, the use of cloud-based solutions for IoT is not
bad. It makes sense when data collected from different sources
has to be aggregated and therefore a comprehensive view is
required. Also, the Cloud offers a simple way (although not
the most efficient one) of addressing the heterogeneity (in
terms of devices and networks) in IoT. However, there are
situations in which the interconnection of IoT objects should
be accomplished in a peer-to-peer manner, without having to
resort to third-party intermediaries. This new trend is being
referred as an effort to bring the Cloud to the Edge [9] [10]
as a way of overcoming some of the limitations of the cloud-
based approaches, as listed underneath:

• High latency. Delegating all communications to cloud-
based applications, working as intermediaries, entails
unnecessary delays. On the contrary, a more efficient
approach would consist in the producer handling the data
directly to consumers (actuators, for example). The high
latency involved in cloud-based solutions might have se-
vere consequences in actuation and device management.

• Not a network. We cannot say that this cloud-based
solution is really enabling a network of interconnected
objects. On the contrary, this type of solution does not
support one-to-one communication between the platform
nodes. For this reason, we claim that cloud-based IoT
platforms, by itself, are not actually networks of inter-
connected objects.

• Many simple services support their responses on local
information, without needing aggregated or historic data.
For these services, it makes no sense for the information
sources to communicate the local data to a remote repos-
itory, and then transfer them to the service which will



conveniently command the actuator. The most sensible
approach is to directly connect the information source to
the service that employs it (like watering and humidity
sensors).

• Low fault tolerance. Using the Cloud for transferring
data between two nearby objects might increase the risk
of being affected by a temporal network unavailability
(and also by privacy concerns). If a direct connection of
objects is supported, these in-site services will not be
affected.

All these inconveniences eventually lead to poor solutions
to address actuation and smart behaviour in IoT. Ideally, the
aforementioned limitations of current solutions for IoT could
be overcome by a universal network protocol, meaning that
all network parties should implement that protocol (this is the
6LowPAN approach). This does not, however, seem plausible
in the light of devices being manufactured to date (not all sup-
port IP). Additionally, non-IP protocols are integrated through
stateful bridges. These bridges have to be hand and hard-coded
to address the nodes (different protocols) after the bridge. This
is a big limitation for dynamic deployment, configuration and
fault tolerance.

An alternative consists in providing a mechanism for object
interconnection and awareness, aimed to be totally decoupled
from the communication technology aspects. This feature is
especially important for industrial protocols like CAN bus,
RS485, I2C, etc., because these protocols are normally im-
plemented by scarce-resource devices in which the imple-
mentation of the TCP/IP stack is not feasible. Moreover,
these protocols have not been designed considering domain
interconnection supports.

Our vision is that every IoT network should support the con-
struction of real “inter-networks”, thus horizontal frameworks,
enabling the collaboration of different-technology devices that
can intercommunicate in a direct and symmetric manner, with-
out requiring any transformations or the use of intermediaries
or handlers.

In this vision, every Internet resource or IoT “Thing”
can be seen as part of the same inter-operable environment.
Figure 1 depicts how we envision the network topology,
accordingly to the IoT paradigm exploiting an “Inter-Domain
layer”. This layer is based on a virtual-network protocol,
called Inter-Domain Messaging (IDM). IDM supports peer-
to-peer communication between devices connected using any
network technology. It is shaped to be similar to IP, since
it enables the addressing of connected elements seamlessly
integrating heterogeneous networks, thus enabling the IoT
network interoperability at every logical point of the proposed
architecture and the deployment of distributed in-network
algorithm. In this scenario, IDM routers are the managers of
the interaction and inter-operation between different protocols
at different levels.

II. BACKGROUND

IDM is built upon conceptual ideas discussed in the follow-
ing subsections.

Fig. 1. Sensor and Actuator and Inter-Domain layer

A. Cross layering

Generally, every layer of a conventional protocol stack is
conceived with a very specific purpose in mind. For example,
in the OSI model [11] the data-link layer is in charge of
enabling neighbor communication whereas the network layer
supports communication between any network nodes. The
fact that the protocol stack is implemented by the operating
systems implies that, independently of the application, all the
features of the whole protocol stack will have to be included.
The local delivery, for example, despite not requiring the
network-layer features will have to consider them because it
is how a stack-based protocol works.

IDM is envisioned to work as an abstraction layer that
interconnects different network domains. However, despite
using the term layer, IDM is not coupled with any layer of
a stack-based protocol. As it can be seen in Figure 2, the
IDM layer can be projected over any of the host-to-network
layers (transport, inter-net, or data link). In fact, IDM can use
the services provided at the different layers of the stack. For
example, IDM is capable of delivering a message to a LAN
neighbor by encapsulating the message directly over Ethernet.
This saves the router from having to handle layers that do
not add any additional feature. For example, when sending
a message to an Ethernet neighbor, the IP encapsulation is
useless.

The main disadvantage of this traditional approach of stack-
based protocols comes into light when limited-resource de-
vices have to implement such protocol stack. Normally, the
most common solution consists in weight-up the most complex
or dynamic features, generating a light version of the protocol
stack, like microIP or 6lowPAN. The main limitation of this
solution is that, despite being conceived as a light version, it
is, usually, a different protocol stack. For this reason, bridges
are needed to translate messages from the light version to the
standard one. This solution basically moves the overhead from
embedded devices (resource constrained) to the bridges.

IDM offers a more efficient way of doing so by encapsulat-
ing its messages directly over the needed layer. For example,
Figure 3 represents the interconnection of a ZigBee domain



Fig. 2. IDM encapsulation over any layer of the stack

Fig. 3. IDM router forwarding an IDM message

with a TCP-based one. In the ZigBee network, IDM can
encapsulate its messages directly over the data-link layer,
rendering unnecessary the network and transport layers or the
need of ad-hoc bridges that do the protocol conversion. On
the contrary, the IDM router is the one that encapsulates the
input IDM message (ZigBee) into an output message (TCP)
accordingly to the next hop and without applying any change
or modification to the original IDM message.

Additionally, thanks to the cross layering feature, IDM can
also avoid unneeded or unwanted features which, sometimes,
increase complexity. In this sense, if only a specific feature
of an upper layer is required, like delivery assurance, there is
no need to unnecessarily support the rest of features. On the
contrary, a simple confiability protocol like RATP [12] could
be implemented directly over the data-link layer.

This is the idea that Figure 2 tries to capture. IDM is capable
of being encapsulated in any protocol of the stack. This feature
therefore enables IDM to provide additional functionality over
the underlying layer. Figure 2 uses the gray bars over the
stack layers to represent that any additional functionality can
be provided there, like the confiability over the data-link layer.
The only requirement is that the message recipient (normally
an IDM router) also implements the same extension.

It is important to highlight that this additional functionality
is only provided where it is needed and not elsewhere in
the network. For this reason, only the parties involved in the
communication need to know about the use of such extensions.

B. IoT objects

The different layers of a network stack hold specific infor-
mation to “address” different conceptual entities (IP addresses,
TCP ports, HTTP resources, etc.). Under the IoT vision it
would make sense to identify objects (rather than any of
the aforementioned entities) and address them, individually.
Ideally, every object will provide an API that will determine
the terms of the interaction.

Under the IoT vision, an object or thing is the minimal-
addressable unit. In constrast, in IP the minimum-addressable
unit is the host. The main implication of having an object
network, rather than a host network, is that different objects
can be addressed, in a peer-to-peer manner, independently on
whether they are physically deployed in the same or different
resource. This means that we can address different object
(services, for example) in the same sensor node since each
of the services are considered individual objects.

C. Virtual networks

A virtual network is a distributed application in which the
services somehow resemble the devices of a physical network.
The fact that IDM is a virtual network entails a flexibility in
terms of software deployment. For example, when a router is
required at a certain location where software can be deployed,
it is more convenient to do so by software rather than adding
new hardware.

An additional implication of being constructed over a virtual
network is that the existing network infrastructure can be
reused (without having to deploy specific network hardware).
Moreover, the physical network topology is also a detail that
can be overlooked.

D. Software-defined networking

The main implication behind the idea of a Software-Defined
Networking (SDN) [13] is the possibility of using production
networks for experiments and tests of new protocols, routing
mechanisms, etc. When this idea was implemented, it was soon
evident that it offered a tremendous flexibility for different
type of network users who could adapt the network behavior
to their preferences.

This flexibility is achieved thanks to the interconnection
devices that replace gateways, routers and commuters. The
interconnection devices not only offer these functionalities but
they can also offer more advanced functionalities. It is the
network user who determines the routing rules stating.

The way how these interconnection devices are managed
has inspired the idea of the IDM routers. Based in the
OpenFlow [14] philosophy, the following listing shows the
simplified interface for remote management of IDM routers.
module Routing {

enum ActionType {Forward, Drop, Log};

struct Matcher { string address; };

struct Action {
ActionType action;
dictionary<string, string> arguments;

};

struct Flow {
int identifier;
Matcher m;



sequence<Action> actions;
};

interface RouterAdmin {
void flowAdd(Flow f);
void flowDelete(int identifier);
sequence<Flow> flowList();

};
};

In our case, the IDM router holds a set of flow specifications
(installed by the controller) determining what to do with every
message. A flow is comprised of a matcher and a set of actions.
When a message satisfies a flow matcher, the router executes
the corresponding actions.

The most basic action is to forward the message to the next
hop or destination. Other actions could be to drop the message,
log the event, etc.

III. PROTOCOL SPECIFICATION

This section will describe the technical details of the IDM
protocol. It is important to highlight that IDM does not replace
IP or any other standard protocol. On the contrary, it sup-
ports device interconnection, independently of their network
technology. Moreover, IDM enables the creation of a tailor-
made network without the overheading of using all the existing
underlying protocols. This solution, indeed, just uses what it is
required for the specific purpose at which it is being applied.

A. Addressing and routing

Any network protocol intended to provide peer-to-peer con-
nectivity requires a common and unique addressing scheme.
In other words, every node of the network has to implement
the same addressing rules (address size, specific-purpose ad-
dresses, etc.). Addressing schemes like IP or IPv6 implements
a hierarchical approach based on the use of network masks.
These masks can be used to divide any network into smaller
sub-networks. The division criteria might respond to different
administrative reasons.

Similarly to IP, IDM uses hierarchical numeric addresses
(expressed as hexadecimal strings) to identify source and
destination. The only difference is that the IDM addresses
are object identifiers instead of host identifiers. Hence, in
the IDM address the prefix (net-id) determines the network
location whereas the suffix (object-id) identifies the object
itself, independently on whether the objects are physically
located in the same computational device or in a different
one.

The addressing scheme implemented by IDM has very
important implications for object migration. Objects can be
migrated from one node to a different one (as long as they are
in the same network), in a very straightforward manner, as
the IDM router will eventually know the new node address. It
is important to highlight that the IDM address is not coupled
to the node and that there is no correspondence between the
object and the node address. For this reason, a new object can
use its previous IDM address on a new node.

The current implementation of the IDM protocol adopts
a manual address-assignment approach. Every object register
itself in the local router and, automatically, the router knows
the underlying addressing scheme. The IDM address, that

works as a logical address, should be mapped to the specific
node address, that plays the role of a physical address in
a typical protocol stack. For example, in a ZigBee network
the IDM addresses will be mapped into ZigBee hardware
addresses. The IDM router will eventually use these hardware
addresses when delivering message to these objects. IDM
routers are, therefore, capable of managing very different
protocols: TCP, UDP, Bluetooth, ZigBee, etc., with the sole
restriction of having the specific hardware transceiver.

Finally, another interesting feature of the IDM addressing
scheme is its implementation of variable-length addresses
(from 8 to 128 bits). Constrained networks can benefit from
having small addresses, saving message space, that can be
therefore employed for the message payload.

B. Message format
The wide spectrum of IoT applications requires more

flexible communication mechanisms that, under certain cir-
cumstances, support the omission of optional features for
performance purposes. IDM considers the following request-
message format:

• One-way message: This is the most basic message,
employed for those situations in which an answer is not
required. For example, a sensor notifying its state or an
actuator receiving a command. Under this approach there
is no reply nor error notification. This message has the
following fields:

1) Object identifier: The destination IDM address.
2) Method name: The name of the remote object

method, according to the user API.
3) Parameters: The invocation arguments, if any.
4) Hop count: The maximum number of allowed

routers to reach the destination.
• Two-way message: This message is employed whenever

the source expects an answer from the destination or an
error report. In addition to the previous format fields, the
Source Address has to be added to the message.

• QoS-enabled message: Advanced-routing decisions are
supported on one of the following fields:

1) ToS profile: This is a number that identifies a type of
service. The router will provide a tailored behavior
based on that identifier. For example, when a high-
priority message is handled to the router, it will try
to prioritize it over others. The only requirement
is that the router should know, beforehand, how to
react to that identifier.

2) QoS profile: This is an alternative way of stating
the expected router behavior. The only difference is
that this field includes the information regarding the
message management. This is more convenient for
sporadic messages.

IV. EXPERIMENTAL VALIDATION

A. Description of a validation prototype
IDM can be used to tackle different problems. Nevertheless,

the proposed prototype has been specifically designed to



Fig. 4. Prototype IDM topology

evaluate its homogenization capabilities. As a result of such
homogenization process, IoT objects are considered virtually
equal inside an IDM infrastructure, although their communi-
cation and architecture details are different.
This prototype encompasses 5 domains:

• RS: 3 RS-485 Moth nodes
• ZB: 3 ZigBee Moth nodes (Arduino FIO + XBee)
• WF: 3 WiFi Moth nodes and one SonOff (ESP8266)
• ITSI-office: 5 SonOff nodes (ESP8266)
• The Internet (just for communication purposes)
• The Node-RED cloud
The first three domains are located at our laboratory, referred

as ARCO, and the fourth domain at the ITSI laboratory.
We have designed the Moth prototypes and, despite having

different controllers and network interfaces, they all have the
following sensors/actuators:

• Relay for controlling a power load
• Red, green, and yellow LEDs
• PIR sensor (for detecting presence)
• LDR sensor (light sensor)
• Temperature sensor
• Microphone
Every domain has its own IDM router. The IDM routers for

the ZB, RS, and ITSI-office domains are run on a Raspberry Pi
whereas the router for the WF domain is run on a conventional
PC. The Figure 4 shows the logic topology of the described
prototype.

B. Clients and objects

Both sensors and actuators can work as clients, therefore
sending invocations.

• Sensors invoke a designated receptor when their state
change (a new value has been read).

• Actuators can also invoke a third party when their state
change as result of an incoming invocation.

Sensors and actuators are also acting as objects, and can,
therefore, receive invocations. Both of them count on an
interface that will provide a method for setting the IDM
address of the object that is to receive such state changes (its
observer).

Fig. 5. IDM Controller (actual user interface)

C. Routing

IDM routers forward messages based on the hierarchy
addressing, similarly to how an IP router works. However, its
management complies with the SDN approach, highly inspired
by OpenFlow. IDM routers are also IDM objects that share a
management interface. The IDM Controller is in charge of
implementing the routing scheme by adding description flows
into the routers.

A description flow is comprised of a predicate and one
or more actions. When the predicate is satisfied, the router
executes the action/s. A forwarding flow is quite simple: if
the input message is targeting an address whose prefix matches
the predicate, the action is executed, which eventually involves
forwarding the message to the indicated address.

This way of managing routers is extremely flexible and,
most of the times, simplifies their implementation. It entitles
routers to do things like:

• Discarding certain type of messages (as a firewall would
do)

• Informing the Controller that an incoming message does
not match any rule

• Associating a time-to-live to rules
• Recording errors and statistics
• etc.
Figure 5 corresponds to a snapshot of the graphical interface

of the IDM Controller. This supports an intuitive and visual
editing of the routing flows.

D. Homogeneous integration

Once the infrastructure is deployed, objects can address
invocations between themselves by only knowing their IDM
address.

For example, the object that controls the PIR sensor on
the ZB1-Moth node (address 10:17) can be configured to
send its state changes to one of the LEDs of the RS2-Moth
node (for example, the red one has the address 12:22). This



Fig. 6. Node-red IDM

configuration will result in switching on the red LED when the
PIR sensor detects presence. This proves that the invocation
was originated in a device connected to a ZigBee network,
going through a TCP/IP network, reaching the device (red
LED) connected to an RS485 network.

It is important to highlight that objects can also be im-
plemented in conventional PCs, smartphones, or any other
computing platform that we can consider. In all these cases,
the peer-to-peer communication works in the same way.

Additionally, we have created Node-RED 1 components that
supports the visual configuration of event receptors (see Fig-
ure 6). Moreover, clients and objects can be virtually created,
hosted in the Node-RED server and therefore constituted as a
new IDM domain connected to the infrastructure.

The previous figure represents three different Node-RED
flows, with the following meaning:

• The first flow represents the configuration of the object,
with address 10:17, which corresponds to the PIR sensor
on the ZB1-Moth node, in the ZigBee domain. This
flow is being configured to forward the state-change
notifications to the object with address 12:22 (the red
LED of the RS2-Moth node, in the RS485 domain).

• The second flow involves the generation of a virtual ob-
ject, with address DD:12, which is registered in the local
IDM router. This object can be invoked from any point
of the IDM inter-net. When the invocation is received,
Node-RED prints out the output on the screen.

• The third flow can be used to send invocations with
a boolean value to that very-same object with address
DD:12. Similarly, invocations could be sent to any other
object (real or virtual) in any other place just by stating
its IDM address.

V. CONCLUSION AND FUTURE WORK

This paper describes a protocol for enabling the IoT vision.
The main feature of the IDM protocol is its capability to
directly interconnect objects from different, and initially non
inter-operable, network technologies. The main strength of
this protocol is that it can be directly deployed over the
existing network infrastructure. The only requirement is the
deployment of the IDM routers in the interconnection nodes.

1Node-RED: http://nodered.org/. Accessed: 2016-11-14.

The experimental validation shows that this a viable solution
for IoT, characterized by its low latency and its support
for peer-to-peer communication. In contrast to cloud-based
solution, our approach provides a flexible solution for enabling
actuation in IoT.

Despite the fact that no specific security aspects have been
considered in this work, the underlying technologies that IDM
uses provide basic security features such as SSL, WSS, etc.
Moreover, ciphering extensions can be easily added thanks to
the cross layering support of the protocol.

Future works should be addressed to consider transport of
other types of messages, like HTTP or CoAP.
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