
Rapid prototyping and verification of hardware
modules generated using HLS

Julián Caba1, João M.P. Cardoso2, Fernando Rincón1, Julio Dondo1, and Juan
Carlos López1

1 University of Castilla-La Mancha, Ciudad Real 13071, Spain,
julian.caba@uclm.es

2 Faculty of Engineering, University of Porto, Porto 4200-465, Portugal
jmpc@fe.up.pt

Abstract. Most modern design suites include HLS tools that rise the de-
sign abstraction level and provide a fast and direct flow to programmable
devices, getting rid of manually coding at the RTL. While HLS greatly
reduces the design productivity gap, non-negligible problems arise. For
instance, the co-simulation strategy may not provide trustworthy results
due to the variable accuracy of simulation, especially when considering
dynamic reconfiguration and access to system busses. This work proposes
mechanisms aimed at improving the verification accuracy using a real de-
vice and a testing framework. One of the mechanisms is the inclusion of
physical configuration macros (e.g., clock rate configuration macro) and
test assertions based on physical parameters in the verification environ-
ment (e.g., timing assertions). In addition it is possible to change some
of those parameters, such as clock speed rate, and check the behavior of
a hardware component into an overclocking or underclocking scenario.
Our on-board testing flow allows faster FPGA iterations to ensure the
design intent and the hardware-design behavior match. This flow uses a
real device to carry out the verification process and synthesizes only the
DUT generating its partial bitstream in a few minutes.

Keywords: FPGA, verification, high-level synthesis, co-simulation

1 Introduction

High-Level Synthesis (HLS) tools are focused on reducing the design gap, as
well as the complexity of hardware digital design [1]. Ultimately, using this kind
of tools software engineers would be able to accelerate their applications with
reconfigurable hardware. In addition, with HLS hardware engineers can work
at higher abstraction levels when requirements can be fulfilled without the low-
level manual hardware design. Thus, high-level programming languages, such as
C or C++, are becoming widespread to describe and speed up user algorithms
providing some goodness such as adaptability to changes or shorter time-to-
market [2]. As a consequence, engineers are able to build different versions of
their hardware modules in a short time according to the requirements of the
project.



2 Julián Caba et al.

Although the use of HLS tools has boosted hardware design productivity,
they entail some issues which have not been solved yet. 1) Most HLS tools include
a co-simulation strategy in order to check the correctness of hardware designs
described in a high-level programming language, reusing the software test into a
co-simulation environment (software tests + simulator tool). However, when one
synthesizes the generated RTL and runs these tests in a real device, the behavior
may not match the expected results and tests may fail. This is because the co-
simulation environment does not take into account some physical aspects (e.g.,
routing paths, resource locations). 2) Performing in-hardware testing using a real
device is a hard task and typically implies the conversion of tests according to
the deployment platform. Moreover, the engineer has to build a custom hardware
platform, which entails an important development time, so the product’s time-to-
market may be affected. 3) The report given by HLS tools is not fully accurate,
since it always reports the worst case. Sometimes that worst case is not present
in practice and designs could work with higher clock frequencies, for example.
4) Although HLS vendors provide some techniques, such as pragmas, in order
to drive the translation process, engineers loss control over generated designs.
Engineer’s experience plays an important role to generate desired designs. In
addition, the visibility is lower when one works at higher abstraction levels.

Because of these limitations, current HLS tools and design flows are not
enough to fully verify and perform accurate design space exploration of designs.
Tests must be re-written and a handmade verification platform must be built
for each hardware design. In addition, simulations close to real scenarios would
be desirable in order to ensure the correctness of the hardware design generated
from a high-level programming language, both considering the effect of physical
parameters and reducing the limitations imposed by HLS tools.

The main contribution of this work is an approach to extend HLS verification,
based on software testing techniques, but including design deployment on real
hardware as part of the process. Besides the verification of the correctness of the
design, the methodology can be used to explore the different physical constraints,
and its behavior under different conditions than those used as restrictions during
the synthesis process. To achieve our main objective our approach provides the
following aspects:

– A testing framework to check Design Under Test (DUT) behavior following
the point of view of software testing frameworks and using macro assertions.

– Bring physical parameters into verification, tests support the configuration
of certain physical parameters to obtain results from a real scenario. For
instance, tests may configure the clock rate in accordance with the profiling
of HLS tools or overclocking the solution generated by these tools.

– An on-board platform to handle the verification process on real hardware,
providing real timing results, and able to configure the clock rate using
software instructions in order to observe the design behavior under over-
clocking/underclocking conditions. This platform is remotely accessible and
should decouple the testing framework from the hardware prototype.



Verification of HLS modules 3

This paper is organized as follows. Section 2 describes the current progress in
hardware verification. Section 3 describes the proposed development flow, which
is implemented on the architecture presented in Section 4. In Section 5, we
present some results using our approach in the context of a case study. Finally,
Section 6 summarizes this paper and proposes directions for future work.

2 Related Work

During the last decade, FPGA vendors have introduced new HLS tools in order
to reduce the complexity of hardware design, thus allowing engineers to work at
higher abstraction levels. However, problems arise when engineers try to check
the correctness of their designs. The accuracy of the simulation depends on the
different levels of abstraction used during the modelling of a SoC [3]. The highest
simulation effort is required at High-Level Modelling, but it usually results in
inaccuracies. On the other hand, the prototype is the perfect environment to
carry out the verification process, but it usually is very hard and costly.

One of the advantages of working at high levels of abstraction is that veri-
fication tasks, such as writing Non-Regression Tests (NRT), can be performed
much easier (see, e.g., [4]), and can benefit from the use of higher productivity
tools such as testing frameworks. Some research efforts (see, e.g., [6] and [5])
propose formal methodologies, such as UVM (Universal Verification Methodol-
ogy) [8]. As this methodology entails a complex and hard effort, researchers have
focused on techniques to make it simpler and reduce the effort needed ([6] and
[5]). As randomized stimuli are considered to be undesirable and difficult for in-
experienced engineers, authors [7] propose to reuse the C test cases in the UVM
environment. Thus, tests are kept over all the verification levels. Nevertheless,
high abstraction techniques are focused on testing the functional behavior of a
design, applying a verification methodology or not, into a particular scenario
because most of those tests do not take physical parameters into account.

On the other hand, other approaches propose the use of real devices for
verifying hardware designs. For instance, [9] introduces a hardware verification
platform in order to overcome RTCA/DO-254 verification challenges. However,
their solution requires the synthesis of the whole system. Conversely, [10] in-
cludes partial reconfiguration and validates synthesized hardware designs with
the original model, using a black-box verification approach. In the same context,
[11] proposes a verification framework to verify hardware designs directly in an
FPGA instead of using simulations. They do not consider the synthesis process
and use a Network Storage which contains the bitstreams, the input test vectors
and the golden reference. It is clear that using a real device for the verification
and exploration of the performance of a design entails new challenges, such as
building a platform, its synthesis, or communication between the test framework
and the DUT, among others.

Indeed, from high-level simulation to in-hardware simulation there is an im-
portant gap. In order to narrow that gap, some efforts provide intermediate ap-
proaches overcoming several physical parameters from HLS tools. The authors in



4 Julián Caba et al.

[12] consider multi-cycling in HLS contexts and use software profiling to guide
multi-cycling optimizations. In [13], they perform multi-cycle optimization on
chained functional operations. Their approach couples HLS and logic synthesis
synergistically so multi-cycle paths can be identified and optimized coherently
across both behavioral and logic levels.

Our approach relies on a mixture of high abstraction levels with low ones to
ensure the correctness of hardware designs generated from a high-level program-
ming language through HLS, allowing physical modifications, such as clock rate
and check the design with overclocking/underclocking configurations.

3 On-board testing flow

Our proposed testing flow is based on the three typical steps. The flow starts from
C or C++ code written by the user, plus some functional tests. In the software
domain, including embedded systems, testing frameworks to verify the software
artifacts are very widespread, so we propose the use of Unity testing framework
[14]. Unity can easily be expanded building new macros. Most frameworks have
a variety of assertions which are meant to be placed in the test to verify the pro-
duction code. For instance, the TEST ASSERT EQUAL(expected, value) macro
checks the equality between the expected value and the one returned.

Once the module is tested in a purely software domain, we consider that
an HLS tool is used to translate the high-level code into an RTL description.
Although the flow could be easily adapted to any other tools such as LegUp [1]
or AUGH [11], in this work we use Vivado HLS from Xilinx [15]. At this stage,
we can run the tests again without any change (co-simulation stage).

The third step generates the configuration file (partial bitstream) and de-
ploys it to the on-board platform. In order to carry out an in-hardware testing
process, our platform contains a dynamic area and we use Dynamic Partial Re-
configuration (DPR). Hence, we provide a reference synthesized platform with
some checkpoints in order to synthesize only the logic that is programmed into
the dynamic area. For this, we include a TCL script following the Xilinx ap-
proach for the overall generation process management. This TCL script imports
a reference platform and adds RTL description files, customizing a new configu-
ration. Summarising, our TCL scripts automate the partial bitstream generation
process from high-level descriptions. Thus, developers do not have to build a new
platform or regenerate their IPs, moreover, our approach allows testing designs
in a real devices in few minutes (FPGA iterations) as our case study shows.

This stage introduces testing novelities, the tests can be modified to annotate
the physical parameters, such as the clock rate to be used or the number of cycles
the clock enable must be set active (lines 4 and 5 of Listing 1.1). To carry out
these tasks we have extended the Unity testing framework with the inclusion
of a number of configuration macros (see Table 3). In addition, to ensure that
sequential processes of our DUT starts in a known state, we add a special macro
that resets the whole module (DUT) before exercising it (line 6 of Listing 1.1).



Verification of HLS modules 5

Table 1. Configuration macros of Unity extension.

Macro Description

UNITY RESET Sends a reset signal to the DUT (dynamic area)
UNITY START Enables the dynamic area during the cycles depicted in

CONFIGURE UNITY CLK EN macro
CONFIGURE UNITY HW ADDR(addr) Configures the hardware address where is mappped the Hard-

ware Manager component. By default 0x41000000

CONFIGURE UNITY IGNORE INPUT(words) Configures the input 32-bit words that should be ignored. By
default 1

CONFIGURE UNITY IGNORE OUTPUT(words) Configures the output 32-bit words that should be ignored.
By default 1

CONFIGURE UNITY CLK EN(cycles) Configures the number of cycles that the clken signal is active-
high. 0 means that the clken signal is always active-high

CONFIGURE UNITY CLK RATE(clk) Configures the clock frequency. Allowed inputs are: 33, 66,
100, 200 and 400. By default 100 MHz

On-board verification entails another important problem: the communication
between different domains. As in this case the module is running in a real device,
our approach includes a special function for the transfer of stimuli between the
testing environment and the hardware module, the input and output sizes are 16
32-bit words in accordance with a 4x4 window (line 7 of Listing 1.1). Following
the testing framework philosophy, we have also added new macros to measure
the time in clock cycles spent by the module (line 8 of Listing 1.1). Therefore,
Unity extension keeps the same testing technology independently of the module
abstraction level, and therefore, the development status. Indeed, macros are
added to tests when one wants to check or configure some physical parameters.

Listing 1.1. Example of on-board test with Unity extension
1 void
2 test_module (){
3 #ifdef HW_TEST
4 CONFIGURE_UNITY_CLK_EN (200); // 200 cycles active -high
5 CONFIGURE_UNITY_CLK_RATE (100); // 100 MHz
6 UNITY_RESET (); // Reset Module
7 result = moduleDUT(stimuli)
8 TEST_ASSERT_TIME_LT (50); // Checking time
9 #else

10 result = moduleDUT(stimuli);
11 #endif
12 for(int i=0; i!=16; i++)
13 TEST_ASSERT_EQ(reference[i], result[i]);
14 }

4 Architecture overview

One of our goals is to provide an on-board platform for testing the modules
generated by HLS tools, and improve the static analysis provided by them. Our
on-board platform relies on a SoC platform which integrates an FPGA and a
hardcore-processor in the same device. In our case, we use a Zedboard from
Xilinx [16].



6 Julián Caba et al.

This platform allows an easy communication between the hardcore-processor
and the logic part. In addition, the Zedboard is connected to a computer network
via Ethernet in order to communicate with the workstation where hardware
modules have been developed using HLS tools. The testing framework is remote
too, thus an FPGA plays the role of a remote service.

4.1 Hardware Architecture

Fig. 1 shows the Programmable Logic (PL) architecture layout of our on-board
platform environment in the Zedboard. The module to verify, the DUT, is pro-
grammed in this side and its communication with the Processing System (PS)
side is done through two FIFO channels connected to an AXI interface. This AXI
bus connects both PS and PL sides, tunneling a master-slave communication,
where PL is the master and the components programmed in PL area are slaves.

Fig. 1. Programmable Logic architecture layout

The PL side is divided into two parts, a static one which contains those
components that do not change independently of the Design Under Test (DUT),
and the DUT, which could be a part of an image filter, a cypher algorithm,
etc. The DUT is also deployed into a dynamic reconfigurable area, while the
rest of the layout does not change. One of the advantages of the use of DPR
is that it reduces the synthesis process and improves synthesis tasks [17] due
to working with partial bitstreams. Another benefit motivated by DPR is the
fact that engineers can dynamically insert new functionality without redesigning
the whole system or moving to a bigger device. Furthermore, it is possible to
adapt an FPGA to different scenarios, by just modifying the functionality or the
performance of some related tasks [17].

The zipFactory component programs (physically deploys) a partial bitstream
into the dynamic area available in our on-board platform without the micro-
processor intervention. It retrieves bitstream data from the DDR which would
have been previously stored into a memory location. This component is able to
recognize a desynchronization bitstream word, so it stops reading at that mo-
ment. The retrieved data is stored into an internal small buffer, handling them
as batched data. The ICAP bandwidth is 32-bits, which matches the internal



Verification of HLS modules 7

buffer width. The component knows the type of 32-bit word sent to the ICAP at
each transaction, thus when the 32-bit word is the desynchronization word the
reconfiguration process is finished, although we attach some NOPs to flush the
command pipeline properly.

As we mentioned above, the DUT is connected to an AXI bus through two
FIFO channels. This is a typical configuration of most accelerators where they
read a stream of input data and produce an output data stream. Anyway, this
interface could be replaced by another protocol/interface such as AXI-Stream or
AXI-Lite, or we could even add our own protocol over a streaming channel. The
current platform bridges the AXI data whose hardware address matches with
the address where the dpr bridge component is mapped, thus the data is stored
into an input FIFO when the operation is a write. On the other side, when the
operation is a read, the dpr bridge component retrieves data from the output
FIFO and sends it through the AXI bus. Besides, a clock enable signal has been
added in the dynamic area interface in order to manage when the DUT should
be active. This enable signal does not affect the dpr bridge component, so it
is able to carry out its tasks independently: fill the input FIFO and empty the
output FIFO. Indeed, a start macro is executed during the moduleDUT function
to enable the DUT.

The Hardware Manager component carries out the following hardware tasks
(each task is controlled from the test using the macros mentioned in the previous
section) that would not be feasible or would result in a poor accuracy when
performed in the software testing environment.

– It resets the dynamic area in order to assure that internal signals of our
DUT start from a well-known state. In addition, one can send a reset in the
middle of a DUTs operation in order to know its behavior in that scenario.

– It sets active-high the clock enable signal during the cycles related to the
configuration of the test (e.g., line 5 of Listing 1.1). It is active-low until
the macro UNITY START() is called upon. Engineers can set the number of
cycles that the clock enable must be active-high using the CONFIGURE UNITY

CLOCK EN(cycles) macro.
– It sets the clock rate of the dynamic part and those static modules that in-

teract with it at runtime, such as clk rd of input FIFO. The available clock
speed rates are: 33MHz, 66MHz, 100MHz, 200MHz and 400MHz. Thus, en-
gineers have only to indicate which clock rate will be used through the
CONFIGURE UNITY CLK RATE(clk) macro. This feature provides a flexible en-
vironment in which engineers do not need to build a new platform or modify
a previous one for the verification of their designs.

– It measures the time elapsed by the tasks performed by a DUT. The Hard-
ware Manager component observes transactions between the input/output
FIFOs and the dynamic part as a spy. Thus, this component is able to
know how many transactions take place between both parts and when they
happen. It works increasing an internal counter which plays the role of a
chronometer. This chronometer is triggered by transactions that take place
between the input FIFO and the DUT (input transactions), whereas it is



8 Julián Caba et al.

stopped by transactions that take place between the DUT and the out-
put FIFO (output transactions). The extension of Unity testing framework
allows us to configure the number of input transactions and output transac-
tions that may be ignored. Therefore, the Hardware Manager component
must be configured from the test denoting the number of 32-bit words
to be ignored during input transactions and, on the other side, the num-
ber of 32-bit words of output transactions which must also be ignored. By
default, both values are one and we can explicitly configure them in the
test source code, e.g., Listing 1.1, the following two configuration macros
CONFIGURE UNITY IGNORE INPUT(words) and CONFIGURE UNITY IGNORE OUT

PUT(words).

In order to spy the transactions between both FIFOs and the DUT, our
platform adds two special signals: flagRD and flagWR. In our case study both
are connected to the input FIFO and output FIFO, respectively. However, both
signals can be connected to another sources, modifying the wrapper which adapts
the dynamic area interface to the DUT interface.

4.2 Software Architecture

Fig. 2 shows the PS architecture of our on-board platform, the developer’s work-
station side and the communication between them. Messages are sent through a
computer network using the zeroC Ice communication middleware [18].

Fig. 2. Communication overview

On the FPGA side, the PS contains an ARM processor which runs an embed-
ded operating system (in the experiments we use an OS based on Linaro Ubuntu
distribution from a SD card). Over this OS, we deploy three services that enables
the use of internal hardware components from outside. For instance, when the
partial bitstream is ready we can send it to the FPGA. We choose the network
as the channel to carry out this task since the FPGA can be a shared resource,
thus we provide the mechanism to share transparently a hardware resource, in-
creasing its availability and accessibility. In addition our reconfiguration engine
(zipFactory component) is faster than other proposals as shown in the results
section. Hence, to send a partial bitstream we may use the transfer service,



Verification of HLS modules 9

that stores the data sent into a default memory address. Then we may trigger
a reconfiguration process through the DPR service. Finally, we may run the
test on-board mode (step 3 of flow proposed), in this case the GCommand ser-
vice translates the communication messages into AXI messages whose hardware
address matches that of the DUT.

In the engineer’s workstation, one may use software wrappers of these three
services in order to marshall and unmarshall the messages. These services are
shown as functions from the testing framework point of view. Indeed, the moduleDUT
function in Listing 1.1 serializes stimuli into zeroC Ice messages. In addition,
moduleDUT function deserializes data retrieved from the FPGA too. Note that
stimuli and result are streaming data that will be retrieved and stored from the
input FIFO and to the output FIFO respectively.

5 Use Case

Our approach has been developed under a GNU/Linux environment, and has
been implemented on a Xilinx Zedboard platform. We use here a case study
based on the histogram of oriented gradients (HOG). By default, the platform
works at 100 MHz, but the dynamic area and other components can modify
this clock speed rate at runtime. The HOG is a feature descriptor used in com-
puter vision and image processing for object detection, particularly suited for hu-
man detection in images. The algorithm implementation is divided into different
steps: gamma and color normalization, gradient computation, block normaliza-
tion among other. In our case study, the step chosen is the vector normalization
block with several normalization factors and solutions, e.g., single or double pre-
cision [19]. Each solution has been developed in the C programming language
and using Vivado HLS in its version 2015.4.

We consider two block normalization factors: l2-norm and l2-hys with a 4x4
window as input and output. Thus, the input and output of both algorithms
are 16 pixels. Table 2 shows the hardware resource comparison between the
results reported by Vivado HLS and the results after place and route process
for both algorithms. In addition, we considered some improvements in order
to achieve higher performance without a high hardware resource cost. For in-
stance, the difference between original and improved versions are not very far
in hardware resources, whereas the latency is much lower in the second version.
The improved solution contains some pragma in order to pipeline and unroll the
solution. Moreover, we consider implementations with single and double floating-
point precisions.

Table 3 timing and frequency summary of each solution that Table 2 shows.
The table campares the HLS report with the on-board report. The maximum
frequency is controlled using the UNITY TIME CLK RATE macro, while the latency,
throughput and execution time are measured from the flagRD and flagWR sig-
nals which are connected to FIFO channels and are activated when the first
transaction happens. All versions are tested with the same hardware platform,
generating each partial bitstream, sending them through the network using the



10 Julián Caba et al.

Table 2. Comparison between Vivado HLS and after Place and Route reports

HLS report P&R report

Solution BRAMs2 DSPs FFs LUTs BRAMs2 DSPs FFs LUTs

l2
-
n
o
r
m

3
2
b
1 Original 0 5 1904 2628 0 5 1710 1764

Improved
6 5 2039 2777 6 5 1942 1886

(II=1, Factor=2)
6
4
b
1 Original 4 14 6403 8123 4 14 6124 5942

Improved
10 14 6834 8415 6 14 6758 6373

(II=1, Factor=2)

l2
-
h
y
s 3
2
b
1 Original 0 5 2129 3160 0 5 1851 2040

Improved
4 5 2334 3416 2 5 2144 2320

(II=1, Factor=2)

6
4
b
1 Original 6 14 6828 9149 6 14 6343 6312

Improved
12 14 7460 9685 8 14 7250 7036

(II=1, Factor=2)

1Float-Point precision. 2BRAM18K.

services deployed in the FPGA where, they finally are exercised. Contrasting the
results in Tables 2 and 3, we can observe some differences between the results
provided by the HLS tool and the real results provided by our platform.

Table 3. Summary of latencies, execution times and throughput

Solution
HLS On-board

Latency2
Max. Freq. Latency

Latency2 Throughput2
Exec Time/

Freq.3 Used3 1stOutput2 Freq. Used

l2
-
n
o
r
m

3
2
b
1 Original 329 122 200 295 385 385 1925

Improved
141 114 200 111 171 155 855

(II=1, Factor=2)

6
4
b
1 Original 507 116 200 457 577 577 2887

Improved
166 60 100 152 242 210 2420

(II=1, Factor=2)

l2
-
h
y
s 3
2
b
1 Original 602 122 200 568 658 658 3290

Improved
234 112 200 219 279 263 1395

(II=1, Factor=2)

6
4
b
1 Original 910 122 200 860 980 980 4900

Improved
316 60 100 302 392 360 3920

(II=1, Factor=2)

1Float-Point precision. 2In clock cycles. 3In MHz.

On the other hand, we can change the clock period in the HLS tool in order
to force it to fulfill the specified time requirement. Then we can use our platform
independently of the clock period target to ensure that the design works, or we
can even overclock or underclock the DUT.

Engineers can use our platform and design flow based on TCL scripts to
verify their designs, or new design versions modifying the target clock period or
adding new optimizations through pragma directives, in a real device waiting a
few minutes. Any of the solutions of our case study takes about 2 min. and 30
sec. to generate one partial bitstream from its high-level description. In addition,
the processes for configuring the FPGA and sending the stimuli take only three
seconds. Thus, engineers can make faster FPGA iterations to ensure their designs
intention and their hardware-designs behavior match.

Our approach allows measuring the real throughput of streaming designs
and the related time of each result. For instance, the l2-norm original solution



Verification of HLS modules 11

of our case study for single precision version takes 295 cycles to generate the
first result (execution time), as shown in Table 2. The output rate of this version
is 6 cycles, thus the second pixel is written at cycle 301 and so successively to
complete the output window. Therefore, this solution takes 385 cycles to process
an input window of 16 pixels (latency). In this solution, the throughput is 385
cycles because we do not apply any improvement to build a dataflow.

One important part of our platform is the reconfiguration engine. This com-
ponent enables to run tests very fast since the hardware module may be sent to
an FPGA through the network. Comparing our approach with other controllers
(e.g., the ones presented by [20], [21], [22] and [23]) we achieve a configuration
rate about 387.59MB/s, very close to the theoretical (400MB/s), using the half
of resources - zipFactory core uses 272 FFs, 586 LUTs and 2 BRAMs - that the
best solution [22].

6 Conclusion

In this paper we presented a development flow and on-board platform to provide
unit testing to hardware modules, considering both functionality and timing is-
sues. Our approach is well-suited for both software and hardware developers.
We propose the use of software macros embedded in test cases to program phys-
ical parameters such as operating clock frequency. Hardware modules depicted
in a high-level programming language are translated into a programmable file
automatically through some TCL scripts. In addition, our proposal provides a
remote and transparent dynamic reconfiguration service, offering FPGA as a
verification service. Thus, we can exercise a design under test (DUT) remotely,
breaking down the test from the hardware prototype.

Engineers only need to add a few physical parameters into their tests in order
to check their hardware modules on a real device. Engineers should be able to
modify the clock speed rate without a high effort, thus the correctness of their
hardware modules can be verified in the context of an overclocking or under-
clocking environments. This can be very useful as it can test if a design works
with a higher speed clock rate than the one reported by HLS tools, especially
when all input values to be used do not trigger the worst case. In addition, in
our approach the original software tests are kept as much as possible during the
development life-cycle of hardware modules based on HLS.

Future work will be targeted to synthesizable hardware assertions, in order to
enhance real-time verification capabilities in our platform and raise the visibility
of internal signals, which are synthesized by HLS tools and are too difficult to
be traced from a simulator.

Acknowledgments

This work is supported in part by Spanish Government under projects REBECCA
(TEC2014-58036-C4-1R) and PLATINO (TEC2017-86722-C4-4-R).



12 Julián Caba et al.

References

1. A. Canis, J. Choi et al., From software to accelerators with LegUp high-level syn-
thesis, International Conference on Compilers, Architecture and Synthesis for Em-
bedded Systems, 2013.

2. J. Cong, B. Liu et al., High-Level Synthesis for FPGAs: From Prototyping to De-
ployment, Computer-Aided Design of Integrated Circuits and Systems, 2011.

3. L. Gong and O. Diessel, Functional Verification of Dynamically Reconfigurable
FPGA-based Systems, Springter, 2015.

4. H. Hoffman, Non-Regression Test Automation, PNSQC, 2008.
5. J. Podivinsky, M. Simkova, O. Cekan and Z. Kotasek, ”FPGA Prototyping and

Accelerated Verification of ASIPs”, International Symposium on Design and Diag-
nostics of Electronic Circuits Systems, 2015.

6. Y.N. Yun, J.B. Kim, N.D. Kim and B. Min, ”Beyond UVM for practical SoC
verification”, International SoC Design Conference, 2011.

7. R. Edelman and R. Ardeishar, ”UVM SchmooVM - I want my c tests!”, Design
and Verification Conference and Exhibition, 2014.

8. Accellera Organization, Standard Universal Verification Methodology Class Refer-
ence Manual, Release 1.1, Accellera, 2011.

9. L. De Luna, Z. Zalewski, FPGA Level In-Hardware Verification for DO-254 Com-
pilance, Digital Avionics Systems Conference (DASC), 2011.

10. Y. Iskander, S. Craven et al., ”Using partial reconfiguration and high-level mod-
els to accelerate FPGA design validation”, International Conference on Field-
Programmable Technology, 2010.

11. A. Wicaksana, A. Prost-Boucle et al.,”On-board non-regression test of HLS tools
targeting FPGA”, International Symposium on Rapid System Prototyping, 2016.

12. S. Hadjis, A. Canis et al.,”Profiling-Driven Multi-Cycling in FPGA High-Level
Synthesis”, Design, Automation, Test in Europe, 2015.

13. H. Zheng, S. T. Gurumani, L. Yang, D. Chen and K. Rupnow, ”High-level synthesis
with behavioral level multi-cycle path analysis”, FPL, 2013.

14. M. Karlesky, M. VanderVoord and G. Williams, ”A simple Unit Test Framework
for Embedded C”, Unity.

15. Xilinx Inc. ”Vivado Design Suite User Guide: High-Level Synthesis”, Xilinx, 2014.
16. AVNET, ZedBoard: Hardware User’s Guide, AVNET, 2014.
17. C. Kao, ”Benefits of Partial Reconfiguration”, Xcell, 2005.
18. https://zeroc.com/
19. N. Dalal and B. Triggs, ”Histograms of Oriented Gradients for Human Detection”,

Computer Vision and Pattern Recognition (CVPR), 2005.
20. M. Hubner, D. Gohringer et al., ”Fast dynamic and partial reconfiguration Data

Path with low Hardware overhead on Xilinx FPGAs”, International Symposium on
Parallel & Distributed Processing, Workshops and Phd Forum, 2010.

21. P. Manet, D. Maufroid et al., ”An Evaluation of Dynamic Partial Reconfigura-
tion for Signal and Image Processing in Professional Electronics Applications”,
EURASIP Journal of Embedded Systems, 2008.

22. K. Vipin and S. Fahmy, ”A high speed open source controller for fpga partial recon-
figuration”, International Conference on Field-Programmable Technology, 2012.

23. J. Tarrillo, F.A. Escobar, F. Lima and C. Valderrama, ”Dynamic Partial Recon-
figuration Manager”, Latin American Symposium on Circuits and Systems, 2014.


	Rapid prototyping and verification of hardware modules generated using HLS

