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Abstract
This paper presents an IoT architecture for Smart Homes that specifically targets service composition and
reconfiguration as enablers for the actuation and smart behavior capabilities. To this end, the main challenge
that has to be addressed is the support to a seamless integration, composition, and reconfiguration of
IoT objects. Two enabling technologies are proposed here: a planning strategy based on a common-sense
reasoning approach for service composition and a virtual-network protocol for Inter-Domain Messaging (IDM).
The planner will identify the services that, properly connected, will cater for arisen, and therefore, unexpected
needs. The virtual-network protocol will provide the support for this interconnection to take place in a
transparent and orthogonal manner. This is particularly important to enable autonomous systems to instantiate
composite services. To demonstrate the capabilities of the resulting framework two use cases are presented,
which under real circumstances demonstrate the potential of the proposed approach.
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Introduction

Traditionally, research efforts in IoT have been addressed
to support data-collection applications, overlooking the need
for actuation and smart behavior. The main challenge these
data-collection applications has to face is how to deal
with data-source heterogeneity. Two main approaches can
be identified in the literature and the market, namely: the
use of the Cloud and the use of gateways. Cloud-based
applications delegate the management of IoT networks and
data to remote servers. Under this perspective, the Cloud
typically assembles a set of repositories in which sensors
have published their values. These data are, afterwards,
retrieved and processed to take a centralized decision. Such
architecture enables the interoperability between different
IoT networks only at the Cloud level without any direct
communication between the information source and those
that use it. The use of gateways, as technology translators,
is also a common solution, although as stated in Tao et al.
(2018), the conversion among protocols also entails an
important overload that affects performance.

The acting side of IoT systems has been traditionally
overlooked, mainly due to the inherent complexity of
supporting interoperability among IoT objects. A review
of the state of the art for IoT interoperability support
brings about solutions classified into the following five
groups Tayur and Suchithra (2017): standards Alliance
(2016), reference architectures and frameworks Shelby
and Chauvenet (2012); Datta and Bonnet (2015); Datta
et al. (2015); Mulligan (2007), protocols and media-
type standards Shelby et al. (2014); Hunkeler et al.
(2008); Fielding et al. (1999), and definition languages
and ontologies Compton et al. (2012); Alaya et al. (2015).

The work of Tayur and Suchithra (2017) concludes that
interoperability has to be addressed at the application layer
by combining the aforementioned techniques.

From our point of view, acting in IoT does not solely
depend on enabling interoperability at the application layer
but, additionally, on the capability to understand the context
and the objects that populate it. To this end, we point out
the need for two enabling elements: 1) a model that captures
the semantics of the system and human behavior and 2) the
capability to automatically compose or reconfigure service
functionality.

Regarding the need for semantic models, the most
complex ones are those involving humans. We cannot obviate
that modeling human behavior is far from being a trivial
task due to the inherent complexity of human aspects such
as cognition, psychological preferences, or emotions Nunes
et al. (2015). The main reason behind this complexity lays
in the unstructured and large-scale characteristic of the
knowledge that rules human behaviour. Our approach to
tackle this complexity consists in using the mental state
abstraction. All that information regarding humans that is
relevant for the system performance is modelled in terms
of concepts such as beliefs, knowledge, free will, intentions,
consciousness, ability, or wants Mccarthy (1973). Then, the
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use of a common-sense knowledge base as it is Scone Chen
(2009); Fahlman (2011); Chen and Fahlman (2008) will
support inference, search, and reasoning processes over
that information. The Scone project∗, led by Scott E.
Fahlman at the Carnegie Mellon University, represents
an opensource knowledge-based approach in which the
focus is not on collecting common-sense knowledge but
rather at providing the means for supporting common-
sense reasoning mechanisms. The Scone system therefore
pays special attention to providing an expressive, easy
to use, scalable and efficient approach for accomplishing
search and inference operations.

Regarding the capability to automatically compose or
reconfigure services, it is our believe that the service
semantics has to be decoupled from the service itself and its
programming interfaces in order to be modelled and stored
as knowledge about the service. By decoupling services from
their semantics, service composition and reconfiguration can
be automated and therefore delegated to a standardized
computation system. In contrast to traditional approaches
used for service composition, such as web services, in
our approach the programmer does not have to explicitly
state how services can be composed. On the contrary, this
information is implicit in its semantic description, from
which an advanced inference mechanism can derive how
services can be composed to offer a composite functionality.
This is a disruptive approach to service elicitation since
the information about how services can be composed is
not handcrafted by the programmer or service designer.
On the contrary, it is infered from the service description.
Moreover, the composition or reconfiguration process is
normally motivated by an arisen need. In this sense, our
approach is also disruptive because this need is not foreseen
in advanced. In other words, there is no need for a previous
declaration in terms of tuples {need, services}. In contrast,
our approach consists in describing the service, from a
semantic point of view, and then look for the service
configuration whose semantics matches the arisen need. For
example, think of a situation in which a need for illumination
arises (during a blackout for instance). Since no power
is available none of the services specifically designed for
that purpose are available. Our architecture provides the
mean for the system to conclude that switching on the cell
phone screen will satisfy that need. This scenario illustrates
how an understanding of what a cell phone is, and how it
works, leverages more flexible capabilities for dealing with
unexpected needs.

The main contribution of this paper is the proposal
of an architecture for IoT that explicitly targets acting
and smart behavior. The proposed architecture provides
support for seamlessly integrating heterogeneous devices
and technologies and for understanding and reacting to
ongoing context situations. These capabilities will be
grounded in a novel modeling approach that combines
human behavior and a novel IoT information model.
Additionally, the proposed architecture faces the technology
heterogeneity issue proposing a virtual protocol that supports
communication among different technology domains. To
demonstrate the acting and smart behavior capabilities of
the proposed architecture we have evaluated the platform
performance in a testbed scenario in which different use

cases have been carried out. The testbed has considered
the deployment of different sensors and actuators and the
retrofitting of already-deployed appliances to incorporate
communication and acting capabilities. The IoT system
considered in this test-bed scenario is aimed at improving
the well-being conditions of its inhabitants and the energy
efficiency of the building, all that following a low-cost
approach.

This paper will be organized as follows. First, the Previous
Work section reviews previous solutions for Smart Homes,
specially those provided by the market, paying special
attention at how those solutions target the problem of
understanding and acting in IoT. The next section describes
the lexical approach we propose for service composition and
reconfiguration. The Proposed Architecture section describes
the insights of our proposal, describing the different layers
comprising the architecture. The Experimental Evaluation
section describes the hardware prototypes that have been
designed and deployed in the testbed scenario. Finally, the
Conclusions section summarizes the main ideas withdrawn
from this work.

Previous works
The introduction of Internet of Things (IoT) paradigm
and the proliferation of ubiquitous Wireless Sensor
Network (WSN) have enabled machine to machine (M2M)
connectivity in the Smart Home. In the work of Hui et al.
(2017) the authors identify the major requirements for
building Smart Home systems in which multiple people
interact with the environment. The device heterogeneity
is, once again, pointed out as the main challenge to be
addressed. The long list of network protocols and data
structures currently in use makes it difficult to integrate
different solutions.

The analysis of the state-of-the-art solutions for device
heterogeneity brings about the following approaches.
A Server Centralised Architecture (SCA) is proposed
by Xuemei and Gang (2008) as a solution to connect
devices in the home space, using to this end a home
gateway. SCA addresses the incompatibility issues that arise
when trying to communicate protocols like 6LoWPAN,
Bluetooth LE, ZigBee or Z-Wave. The proposed solution
consists in a hub server in which these protocols have been
implemented. That same approach has been followed by
some companies like Wink† or Samsung Smartthings Hub‡.
The use of gateways, despite being a widely employed
solution, leads to incompatibility issues when trying to
integrate devices that implement protocols different from
the ones initially considered by the manufacturer. On the
contrary, open-source automation platforms like OpenHab§,
Home Assistant¶ or Domoticz‖ are specifically aimed at

∗http://www.cs.cmu.edu/˜sef/scone/
†https://www.wink.com/
‡https://www.samsung.com/us/smart-home/
how-it-works/
§https://www.openhab.org/
¶https://home-assistant.io/
‖http://www.domoticz.com/
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facing this problem. These platforms are supported in open-
hardware devices such as Raspberry Pi, which enables the
control and automation of different technologies in Smart
Homes.

The increasing complexity of services and devices has
called for new paradigms that assure aspects such as
scalability, interoperability and reliability. The Service
Oriented Architecture (SOA) is one of these approaches
intended to provide a number of software services re-mapped
in a typical Software-as-a-Service (SaaS) cloud architecture
for reshaping home services and applications. Moreover,
these architectures have, traditionally, paid great attention at
the automation of the composition task.

The Cloud Computing paradigm has gained attention as a
solution to address interoperability among different vendor
devices, easing the process of interconnecting different
services and therefore leveraging the expansion of smart
environments. The use of the Cloud also provides a new
solution to integrate on-board network modules in home
devices which connect the devices to Internet, simplifying
the process of mapping, encapsulating and composing the
services that provide. There are some solutions such as Apple
Homekit∗∗, Samsung Smartthings†† or Google Home‡‡,
which provide a platform to integrate different vendors
devices to control them through cloud infrastructures. Some
platforms such as Ambient OS∗ or Amazon Alexa† provide
a framework for developers, in order to integrate speech
recognition and natural language understanding (NLU)
capabilities to simplify the user interactions with the devices.

The device integration capabilities are restricted by the
cloud platforms because they have a limited number of
calls defined through an API which communicate the user
operations with the devices. In spite of the SOA approach,
the service composability does not work properly in cloud
platforms due to the lack of uniform treatment of services.

Interconnecting heterogeneous devices and services
provided by different vendors and providing seamless
interoperations across the available platforms still remains
a big challenge. Tao et al. (2018) describe a multi-layer
cloud architecture model and an ontology-based security
framework to integrate the different common cloud-based
platforms using ontologies to address data, knowledge, and
application heterogeneity in the available devices.

The IoT paradigm is generating an unprecedented volume
and variety of data and although the Cloud computing has
many advantages, it requires a high bandwidth to exchange
the vast amount of data between the devices and the Cloud
infrastructure. This leads to increase the latency in the time
response of services and spreading the data to other locations
different from the source. It is in this point where the Edge
computing paradigm has the aim to push computation on
acquired data away from the core of data centers and get
closer to the data sources.

Projects such as iSapiens Cicirelli et al. (2017) propose a
platform which implements the Edge computing paradigm
through both the exploitation of the agent metaphor and a
distributed network of computing nodes directly scattered
in the smart environment. The current vision of Smart
Homes is focused on the management and control of
devices. Nevertheless, the raw data produced by those
devices does not provide any meaningful value. It is in this

situation where the context-aware computing brings value by
deducing knowledge and providing better understanding of
raw data. The work of Lalanda et al. (2017) and Rahman
et al. (2017) takes advantage of the Edge computing and
pervasive applications to propose context-aware platforms
to provide a reasoner in charge of deducing knowledge and
dealing with the environment by using context management.
The design of these platforms is based on a service
component model or OSGi specification that describes
a modular system and a service platform for the Java
programming language. Frameworks such as Apache Felix
or Eclipse SmartHome provide the necessary tools for
building Smart Home solutions based in the principles of
modularity, component-orientation, and service-orientation.
Lukas Smirek et al. Smirek et al. (2016) evaluate the Eclipse
SmartHome framework to address backend technologies
and personalized user interfaces in a Smart Home. These
solutions, despite being very convenient for basic service
composition lacks the flexibility demanded by the IoT vision.

A three-stage process for service
composition and reconfiguration
The architecture proposed in this paper is mainly intended to
support actuation and smart behaviour in IoT. To this endeav-
our, it should be equipped with the appropriate mechanisms
for enabling service composition and reconfiguration, while
assuring high-flexibility and low coupling in the process.
These requirements are imposed because the composition
or reconfiguration process has to be automatically driven
and accomplished and, therefore, no human intervention has
to be required before, during, or after the composition or
reconfiguration process.

The proposed approach consists in a three-stage process
in which the semantic, syntactic, and lexical compatibility
is verified before accomplishing the composition or
reconfiguration process. Whereas the lexical compatibility
concerns about providing the programmatic support for
service composition and reconfiguration the syntactic
compatibility concerns about the assurance that the data
provided and consumed by the bound services match in
the expected format and content. Finally, the semantic
compatibility concerns about the functionality provided by
the bound services.

One of the main characteristics of the spaces envisioned
by the IoT paradigm is that they tend to be driven by events.
In this sense, most of the IoT objects populating these spaces
are intended to capture the reality into messages or events.
IoT objects are eventually intended to perceive the activities
that are taking place and, consequently, react to them. The
mechanisms therefore provided for supporting composition
and reconfiguration capabilities count on the premise that
services implement an event-driven approach. This is totally
compliant with what sensor services are expected to do, as

∗∗https://www.apple.com/es/ios/home/
††https://www.samsung.com/us/smart-home/
smartthings/
‡‡https://developers.google.com/actions/smarthome/
∗ttps://www.essential.com/home
†https://developer.amazon.com/alexa/smart-home
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Figure 1. Physical and virtual sensor services

known: wait for an event to take place and then, notify its
occurrence in a reactive way.

It is important to highlight that most of the services
considered in our architecture follow this reactive-system
approach. Nonetheless, other approaches can be considered
and supported by the architecture with the only difference
that those that do not comply with the reactive approach are
not considered for automatic composition or reconfiguration.

The mechanism proposed here for service composition
and reconfiguration is eventually based on the idea that
events can be virtually propagated, in a transitive manner,
without having to propagate the external stimulus that caused
it. Services can be connected in a short of pipeline with these
transitive events working as the linking element. Figure 1
depicts this idea. The first case scenario describes the
situation in which a bouncing ball is the stimulus captured by
a motion-sensor service, which turns it into a motion event.
This event, for example, can be the trigger for a lighting
service to illuminate the room. The second scenario in the
same figure replicates the first one but rather than using a
single service it uses a composite one. This composit service
provides the same functionality by binding a video-camera
service and a motion-algorithm service, that implement
video content analysis, capable of detecting motion. The
bouncing ball stimulus is captured by the video recording
service. The stimulus is therefore captured in a video that
is transmitted to the motion algorithm, which will, as result,
notify of a motion event.

Service composition or reconfiguration is based in the
capability to build this service pipeline, whose triggering
is determined by the occurrence of a given event. As it
can be observed from the example outlined in Figure 1 it
is essential that effects of events can be propagated in a
transitive manner without having to propagate the stimulus
itself. Only by supporting this transitiveness, services can
be automatically composed or reconfigure without affecting
its normal behaviour. This approach for composition and
reconfiguration also assures that there is no difference, not
even in the way the are used, between services provided
by physical sensors and those pipelines, resembling virtual
ones.

There are, however, some important requirements that
need to be satisfied in order to enable the automatic
generation of service pipelines, as known:

1. A mechanism to support the pipeline links, in terms
of programming interfaces and event propagation
support.

2. A mechanism to verify the syntactic compatibility of
services to be linked.

3. A mechanism to determine the semantic compatibility
of services.

The following subsections address each of these require-
ments.

Support for service binding: lexical compatibility
Figure 1 depicts the way how service composition and
reconfiguration is carried out by establishing a pipeline of
services linked by unidirectional messages, propagated all
along the pipeline. The service pipeline is supported on
the fact that every service points to its next element in the
pipeline using, to this end, the service-reference address.
Additional support is required for the binding process so that
the following requirements can be met:

• No human intervention should be required in the
process of configuring a service to send (in a one-way
fashion) the results it produces to the next service in
the pipeline.

• It should support on-runtime configuration, meaning
that there is no need for a predefined list of possible
connections.

• Bindings can be modified any time.
• One service can be bound to more than one consumer:

One-to-n relations are supported and made transparent
for the pipeline builder, known here as the scheduler.

To address these requirements, we propose that all
services that can, eventually, be part of a reconfiguration
or composition work, implement a common interface.
This interface, named Linkable, provides a method for
establishing the reference to the next service. The method is
named linkTo, as described in the following code listing:

interface Linkable {
void linkTo(string next);

};

Despite its simplicity, the implementation of this interface
assures that any service can be bound, automatically (without
human intervention), to other services. It is important to
recall that the binding process S1 → A implies the creation
of a unidirectional channel from S1 to A through which
service S1 communicates a message to service A.

It is the role of the scheduler to determine which services
are going to be part of the pipeline, and the order in which
they will be bound. It is therefore its responsibility to invoke
the linkTo method of the first service with the reference
of the next service in the pipeline, as argument. By doing
so, the scheduler is stating that the first service is being
observed by the one whose reference has been provided with.
Figure 2 depicts the linking process. First, the scheduler
notifies service S1 the reference of the service to link to,
in this case service A. This is accomplished through the
invokation of the linkTo method, reciving as argument
the reference to service A, depicted in Figure 2 using the &
symbol.

This mechanism assures that any service can be part,
eventually, of a service pipeline as long as it implements the
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Figure 2. Process of linking two services

Linkable interface. Additionally, the pipeline construction
can be delegated to a computation entity (no human
intervention required) that can, on runtime, decide the
services that will comprise the pipeline. The fact that
the binding process is orthogonal assures that it can be
accomplished automatically, without requiring any type of
presetting.

There will be situations in which the information provided
by one service can be of interest to more than one services.
For example, more than one services can be interested in the
information provided by temperature sensor. The mechanism
described in Figure 2 cannot be used, as it is, because it is
limited to having just one consumer. Binding service S1 to a
hypothetical service B would imply the replacement of the
previous reference A.

An additional mechanisms for supporting this one-to-n
connection is therefore required. To this end, we propose the
implemetation of the traditional solution to this problem, as it
is an event-propagation mechanism based on communication
channels. Figure 3 describes this process. As it can be
observed, there is an intermediary service, referred here as
the wiring service, in charge of decoupling the sheduler
(or other services interested in the linking process) and the
services involved in the pipeline.

The wiring service takes care of the channel creation,
management, and elimination (once they are not needed any
more). This service also tracks the list of subscribers to each
channel. This knowledge enables the wiring service to create
a channel only when more than one service is consuming
events, or it can delete the channel when less than two
consumers are subscribed to the channel.

Compatibility at the syntax level
The second stage of the composition or reconfiguration
process verifies that the service pipeline is valid in terms of
the sintactic correctness of the unidirectional messages used
as linking elements. The validity concept refers here to the
expected data type or format and content. Due to the fact that
service pipeline has to be dynamically constructed (without
requiring human intervention), an appropriate mechanism
has to be provided to automatically verify this compatibility.
In other words, referring to Figure 2, it is necessary to
provide a way to assure that the method S1 invoked on A
is, indeed, provided by A.

Figure 3. Process of linking one service to several ones

Despite the fact that at first, this can be considered a simple
type-checking problem, the need for checking other aspects
rather than just types calls for more advanced mechanisms.
For example, in the same case depicted by Figure 1, consider
that the motion algorithm consumes images in jpg format.
However, in terms of data type, the service is described
as consuming Byteseq (a sequence of bytes). A basic
type-checking compatibility will permit the binding of a
service providing a png image with the aforementioned
motion algorithm that consumes jpg images, since both are
Byteseq.

The paradigm of design by contract (DbC) or contract
programming provides the means to state and verify these
type of constraint checking. Languages like Ada provide
native support for DbC. However, these are programming
languages and not service or interface description languages
so this would not be totally appropriate. In fact, the interface
description language employed, at the middleware level, is
not expressive enough to support the statement of these types
of constraints. This is not, however, a particular problem of
the employed language, on the contrary, the most commonly-
used description languages (WSDLChristensen et al. (2001),
IDLCleary et al. (1998), Protocol buffers Buffers (2011),
etc.) suffer from this limitation. This calls for a way to
enhance service descriptions so that the correctness, at the
syntax level, of the service binding can be automatically
assured.

Therefore, following a DbC approach, and due to the
limited expressiveness of the service description languages,
we propose to model these type of restrictions at the
knowledge-base level, in which the flexibility provided by
the description language is enough to capture the clauses of
contract.

According to the semantic model described in more
detail in the next section the capability concept is the one
employed for modeling these type of constraints. Then, at
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the knowledge-base level, Scone provides a close-to-natural-
language description language in which the constraints
employed in the example of Figure 1 can be captured as
follows:

(new-type-role {required-cap} {service} {thing})
(new-type-role {provided-cap} {service} {thing})
(new-indv {jpg} {image format})
(x-is-a-y-of-z {jpg} {provided-cap} {PullSnapshotService})
(x-is-a-y-of-z {jpg} {required-cap} {MotionAlgorithmService})

Following the Scone semantics, both required-cap
and provided-cap, have been defined as roles or
properties of service. Then, the function x-is-a-y-of-z
is used in Scone to assign a particular value to a
given role. In this case, the jpg image format is
the provided-cap of the PullSnapshotService
service, as well as being the required-cap of the
MotionAlgorithmService.

The scheduler, in charge of deciding the services
comprising the pipeline, will just have to verify that provided
and required capabilities, if any, match for the bound
services.

Apart from the capability-matching checking, it is also
necessary to verify that the services to be bound are
compliant in terms of provided and required interfaces. From
the middleware perspective, since all services implement
the Linkable interface the programmatic compatibility
is assured. The next parameter of the linkTo method,
intended to hold the reference of the next service in the
pipeline, does not force any specific type, for two reasons:

• This is the most flexible way to support service
binding, given that the service semantics is moved to
the knowledge base where more advanced verification
works can be carried out.
• This is an addressing-agnostic approach that decouples

the type of address from the referred service. In
this work, indeed, two addressing schemes are
employed: one based on the middleware built-in proxy
representation and other based on the addresses used
by our protocol for Inter-Domain Messaging or IDM.

It is important to highlight that the alternative to the use of
a common and empty interface, as the one we propose, is to
have an interface for any type of connection we would like to
support. For example, to support a hypothetical reference to
a B-type service or a C-type service the following interfaces
would be required: linkTo(B* next) and linkTo(C*
next).

Compatibility at the semantic level
The simplification of the service-binding and type-
verification process is a requirement for the service
composition and reconfiguration task to be automatically
carried out in an unsupervised manner. This simplification
has been achieved, as described in this section, by migrating
all the service semantics to a level in which higher
expressive power and advanced reasoning mechanisms can
be supported.

We propose the use of Scone‡, an open-source knowledge-
based system written in Common Lisp. It implements
efficient search algorithms, based in the marker-passing
algorithm proposed by Fahlman (2006), mainly intended

to provide answers in reasonable time, even when the
answers are not optimal. Scone supports a higher-order logic
language very convinient for describing the domain-specific
and context knowledge as well as the insights of IoT services,
in terms of the actions and events they are related to and the
interfaces they implement, require, or use.

The following code listing shows the flexibility and
expresiviness of the considered description language. The
motion sensor service is described as follows:

(new-indv {MotionSensor-service-instance} {MotionService})
(x-is-the-y-of-z {EventSinkInterface} {used-interface} {MotionService})

(new-statement {MotionSensor-service-instance} {causes event through}
{motion detected} :c {EventSinkInterface})

(new-indv {motion_sensor -t -e 1.1:tcp -h localhost -p 9000 -t 60000} {proxy})
(x-is-the-y-of-z {motion_sensor -t -e 1.1:tcp -h localhost -p 9000 -t
60000} {service-proxy} {MotionSensor-service-instance})

The x-is-the-y-of-z function is used in Scone to
state a certain role of a given concept. In this case, it states
that the used-interface of the MotionService is
the EventSinkInterface, meaning that the motion
sensor service can be bound to a service that provides
that same interface. For example, the motion sensor service
could be bound to a snapshot service, described underneath,
because one uses the same interface implemented by the
other:

;; SnapshotInterface
(new-type {SnapshotInterface} {interface})
(new-is-a {SnapshotInterface} {LinkableInterface})
(new-is-a {SnapshotInterface} {EventSinkInterface})

;; SnapshotService
(new-type {SnapshotService} {service})
(x-is-the-y-of-z {SnapshotInterface} {implemented-interface} {SnapshotService})

Actions and events are also two essential concepts
for a complete description of a service. In this case, a
tertiary relationship is employed to describe that the motion
sensor service causes a motion detected event through the
EventSinkInterface. This means that when this type of event
is required the motion sensor service can be bound to a
service implementing the EventSinkInterface to cause that
event to take place.

Finally, certain services also provide or require a
capability, or a set of them. For example, in the following
code listing, the SnapshotService is described as
capable of providing a jpg file format.

(x-is-a-y-of-z {jpg} {provided-cap} {SnapshotService})

This means that a service, as the following one, requiring
a jpg file could resort to it to semantically satisfy that
requirement:

(x-is-a-y-of-z {jpg} {required-cap} {PersonRecognizerService})

The semantic compatibility of two services to be bound is
determined considering the following aspects:

• The interfaces that one of them provides and that the
other uses have to be compatible.
• The capabilities that one of them requires and that the

other one provides should also be compatible.

‡https://github.com/sfahlman/scone
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Figure 4. Proposed architecture

The compatibility of interfaces and capabilities is
something more ellaborated than a simple verification of the
equality of source and target. Scone employs a semantic-
network approach, which means that properties inherits
from general types to specific ones. This is very powerful
because semantic compatibility offers more posibilities for
service composition and reconfiguration than forcing strict
semantic equality. Moreover, Scone provides native support
for semantic compatibility checking offering functions such
as can-x-be-a-y or is-x-a-y among some.

Proposed architecture
This paper proposes an achitecture for IoT-based Smart
Homes that specifically targets support for actuation and
smart behaviour. Two capabilities are identified as enablers
for this endevaour, namely:

1. The capability to automatically understand ongoing
situations and the available means for undertaking
responses. This capability is mainly based on
information about the services deployed in the context,
and the knowledge about how the world works, also
known as common sense.

2. The capability to seamlessly integrate, compose,
and reconfigure IoT objects. This capability relies
on a mechanism for managing the underlying
heterogeneity, by providing an abstraction layer upon
which objects can communicate to each other in a
symmetrical way.

Figure 4 outlines the different elements that comprise the
proposed architecture, organized in layers. At the bottom
layer we can identify the service oriented architecture (SOA).
Current systems for IoT involve services implementing
different computational models, like the Edge, Fog, or
Cloud Computing. It is important to highlight that all these
services have to be equally treated, independently of their
implementation details. An abstraction layer is provided
by IDM to homogenize the underlying heterogeneity.
On top of this there is the middleware layer, built
upon a general-purpose object-oriented middleware, whose
core functionalities have been extended with advanced
capabilities. The most important aspect of this layer is the
implementation it does of the semantic model proposed at
the semanticware layer. This semantic model is common to
all the layers of the proposed architecture and it is what
supports service interoperability in a transparent manner.
The knowledge base is also part of the semanticware layer
which, along with the scheduler, is where composition and
reconfiguration capabilities reside in. Finally, the awareness

layer holds the behavioral models that determine how IoT
systems have to behave as result of their understanding of
what situation is taking place. The following subsections
describe the details of the modules comprising the proposed
architecture.

Service layer
Services are located at the bottom layer of the proposed
architecture, as the most basic building blocks. As it can be
observed from Figure 4 all services are equally considered
independently on the underlying communication technology
they employ or the computational model they implement.
This represents a disruptive approach in the sense that the
proposed architecture assures a symmetrical treatment to
services independently on how or where they are being
deployed or implemented. To be more precise, in any IoT
system we can identify the following service types:

• Those provided at the Edge-computing level, generally
implemented in IoT devices. This implies that the
device and the service it provides are totally coupled.
Among some of the most important features of these
services, one can highlight their low latency, since the
data source and target are directly connected, or the
high privacy level they provide since there is no need
for data transportation.

• Those provided at the Fog-computing level, generally
implemented as application gateways or hubs. We
refer here to services that perform some data
aggregation, manipulation, or any type of interaction
that cannot be carried out at the Edge level. For
example, the Fog approach is suitable for some video-
processing applications, highly demanding in terms of
required resources.

• Those provided at the Cloud-computing level which,
by the way, are the most widely spread. Some
applications are offered at the Cloud level for cost-
efficiency purposes (do it once and provide it to
many users) or for resource optimization (specially
for machine learning applications which demand large
datasets for training purposes, for example), exploiting
the most relevant advantages of this computing model.

Whereas traditional SOA have considered services at the
same level (either the Edge, Fog, or Cloud) our proposal
does not make that distinction and pursues service homog-
enization, independently on the computational approach
they follow. Leveraging automatic service composition or
reconfiguration is the motivation behind this homogenization
effort. The fact that all services can be equally treated
enables a computation entity, as it is the scheduler in our
case, to automatically compose or reconfigure services, in
an unsupervised manner.

Providing for this transparency is specially important
when we are dealing with Edge services because, as it has
already been mentioned, they are usually highly coupled
to the underlying communication technology. Nonetheless,
IoT devices tend to be constrained in terms of memory
or processing capabilities which typically lead to the
unfeasibility to implement the full TCP/IP stack. In fact,
sometimes it is not desirable, nor even possible, to replace
specific-purposes protocols with a standard one. Therefore,
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relying on TCP/IP for communication purposes is not always
a choice.

We propose a novel approach for homogenization
purposes consisting in a virtual network protocol for inter-
domain messaging, that enables every IoT object, or thing,
to be univocally addressed and accessed, independently of
its inherent technology and location. This protocol, known as
IDM, is in essence, similar to IP, but it focuses in addressing
the IoT issues for which the use of IP is not directly an
option Villa et al. (2017). IDM is pursuing a twofold aim: 1)
providing an abstraction layer around these technologies; and
2) supporting a seamless interaction among these different
technologies.

The importance of catering for these two aims can be
more easily understood from the following example. Imagine
one has a WiFi appliance (i.e a lamp) in the living room,
and this person is also wearing a BlueTooth SmartBand.
It would therefore be very handy if the lamp functions
(switch on and off) could be controlled by different tapping
patterns in the SmartBand. Despite being a very basic
problem, it perfectly illustrates the type of challenges arisen
due to technology heterogeneity. Different solutions can be
proposed to articulate this application:

1. One may implement a WiFi/BL bridge, and translate
messages between both devices. This is a fast solution
but not the best one because it is highly coupled to
the specific devices and therefore very difficult to port
elsewhere.

2. One could also make both devices to use TCP/IP,
the de-facto standard. It cannot be obviated that
we are dealing with constrained devices in which a
full implementation of the stack (usually big) is not
feasible.

3. One could use a Cloud server, so that the SmartBand
may send messages to the Cloud whereas the lamp
may be a listener for incoming messages.

Option number 3 is probably the most accepted solution
for the considered scenario. However, it cannot be
overlooked that the use of the Cloud is very well suited when
data aggregation is required to obtain the big picture. This
is not, however, the need posed by the considered scenario.
What is demanded here is a network of IoT objects, and a
cloud is hardly a network. On the contrary, the Cloud offers
a repository of data, which is not bad by itself, but not what is
demanded here. Moreover, the use of the Cloud also involves
high latency, low fault tolerance due to temporal network
failure and a poor efficiency, since it ends up sending a value,
through the Internet, to a nearby object.

The most sensible solution therefore involves the
SmartBand directly talking to the light appliance. IDM offers
a technological solution to support this direct communication
only using a device to change the communications
technology (WiFi/BlueTooth). IDM creates a real object
network in which there is no need to use IP everywhere
and in which the Cloud is only used when it is really useful
(not as a way to work around the technology heterogeneity).
IDM provides a mechanism to interconnect objects, so that
they are able to communicate to each other in a symmetrical
way, without having to know the details of the underlying
communication technology. More importantly, with IDM

there is no need to transform messages or to set up handlers
to process the message between them.

A very important aspect of IDM is that every resource on
the IoT network (every sensor or actuator), is an object. Its
main implication is that if a single device (hardware) holds
more than one resource an individual object will be allocated
for each resource. This approach is suitable for constrained
nodes as objects can be simple.

It can be assumed that any end device (either sensor
or actuator) provides an interface (understood as a set of
well-known operations). The role of the IDM protocol is
to transport the invocation messages from the client to the
end device. These end devices can be referred as objects.
The term is inherent to the current implementation of
IDM which is based on an object-oriented middleware
(ZeroC Ice§). However, the use of this term is not totally
accurate since they are closer to a Service-Oriented
Architecture (SOA) than to an object-oriented one.

The main objective of IDM, as it has been already
stated, is to support the intercommunication between
network technologies that are, a priori, incompatibles.
The use of the name domain stems from the fact that
in the IDM infrastructure all the devices that share a
technology and addressing scheme are seen as a single
entity (a domain). Thus, the entire public Internet is a
single IDM domain.

The router does not change the messages it forwards
at all. For example, you can receive a message from an
RS485 device on one of its interfaces and forward it to
a device on a Bluetooth network. That is a key point, the
IDM router has no status, does not create device delegates
or proxies, does not transform addresses, only forwards
complete messages between its interfaces.

This is possible because the IDM message remains
unaltered from its creation at the client to its arrival
at the target object. IDM routers only change their
encapsulation, in a similar way to an IP router.
Obviously the router needs to have an interface in every
domain it interconnects, but the specific details of that
network’s technology are hidden from the rest. Unlike
a conventional network protocol such as IPv6, IDM
addresses refer to objects rather than nodes (a node
can hold several objects). These two features allow the
IDM message to be encapsulated even on the LAN’s link
protocol, regardless of the ”local” network protocol.

Regarding the services offered at the Fog and Cloud
level, it is necessary to provide an adapter that enables
the communication between the middleware layer and the
service itself. For example, a Cloud service that provides
a speech-recognition system, like IBM Watson, offering a
REST interface (HTTP), has to be adapted to provide the
middleware protocol. Regarding the Fog services, it has to
be taken into account that most of them are not third-party
services and they are therefore provided by the platform
itself. This means that there is no need for adapters since they
will normally use the underlying middleware technology.

§https://zeroc.com/

Prepared using sagej.cls

https://zeroc.com/


Santofimia et al. 9

The information model for the middleware
The proposed architecture is using, at the middleware layer,
a general-purpose object-oriented middleware as it is ZeroC
Ice. ZeroC Ice is a remote-procedure-call-based middleware
developed by the USA company ZeroC¶. The interfaces of
any service developed in ZeroC Ice have to be defined in the
interface definition language, known as slice. After the slice
definition, the developer can generate bindings for different
languages. Inter-operation among clients and servers is
supported independently of the underlying language or the
platform, thanks to the Ice protocol (IceP).

ZeroC Ice also comes with a complete set of tools and
services to deal with recurrent issues in distributed systems
(IceStorm, IceBox, IceGrid, etc.). These core services
provide support for event propagation, deployment, platform
or node management, etc. We have extended these core
services with some capabilities that support the service
deployment process and, eventually, the tasks involved in
composing services. The middleware has been enhanced
with the following services:

• A property service: This service is intended to
hold static information about the different elements
comprising our system (services, devices, locations,
etc.). This service is implemented as a key-value
database in which for every property (or key), like
location there is a value associated to it, room-1 for
example.
• A discovery service: This service provides a list of

services complying with a list of requirements, in
terms of locations, capabilities, properties, etc.
• A context service: It is like a directory of devices

and services. These objects are organized based on a
hierarchy, and these hierarchies can be defined by the
service users. As a user, for example, you might want
to have all services providing temperature measures
organized under the same directory.
• An advanced event service: This is an improvement

over the event service provided by the middleware.
This service supports content filtering enabling, for
example, an advanced selection of the events that one
might want be notified of, based in the area where
these take place. Additionally, this service provides
persistence capabilities.

These services cater for service composition and
reconfiguration, at a very basic level, by providing efficient
mechanisms for managing the interconnection of services
and their information exchange. It cannot be obviated
that the process of automatic service composition and
reconfiguration has to deal with more complex challenges,
for which the three-stage process has been designed to.
Recall that this process deals with compatibility issues at the
lexical, syntactic, and semantic level. The role played by the
Linkable interface is essential in supporting this three-
stage process. However, additional interfaces are required
for the normal functioning of services. For this reason and
for interoperability purposes, we propose a set of interfaces
compliant with the standard proposed by the IPSO (IP
Smart Objects) alliance which, at the same time, is based
in the object model specified in the OMA LightWeight
M2M Alliance (2015).

We can categorize the provided interfaces into two
sets: the data-centric interfaces and the message-centric
interfaces. The Linkable interface, described in detail
in the previous section, represents the message-centric
interfaces. The data-centric interfaces are intended to
communicate data, generally the data associated to sensor
events. We have considered the following data-centric
interfaces:

interface EventSink {
void notify(string source, Metadata data);

};

interface DigitalSink {
void notify(bool value, string source, Metadata data);

};

interface AnalogSink {
void notify(float value, string source, Metadata data);

};

interface DataSink {
void notify(ByteSeq data, string source, Metadata meta);

};

EventSink: This interface is intended to notify the
occurrence of an specific event. The sensed event is
determined by the device that uses the interface. For
example, if we are dealing with a glass-break detector sensor
that is supervising the state of a window. This is a one-
time event that is not revocable, which means that when
a windows glass is broken, the sensor emits an event. The
event message does not need to contain any data or measure
because it is implicit by the event itself.
DigitalSink: This interface is intended to deal with

events that have two possible states. For example, this is
the interface used by a motion sensor which is capable of
detecting two states: whether there is movement or not. An
event is notified whenever a change in the state is detected.
It means that when motion was detected an event is notified
containing a True value, and when no motion is detect an
event is notified containing a False value.
AnalogSink: This interface is intended to notify events

related to scalar measure. For example, a temperature
measure. The event contains a single measure.
DataSink: This interface is intended to notify events

containing a stream of data. Generally, it will be used for
services providing video streaming or sound streaming. It
is important to highlight that the codification used by the
streaming is not included in the event. These properties
are static and are located in the property service or in the
knowledge base.

All these interfaces have two common parameters:
Source: The source argument is a string containing the

identity of the source that generated the event. The detailed
information about the source is held by the Property Service.
Meta: This argument contains dynamic information about

the data itself. For example, the timestamp of the event.

Semanticware layer
The term semanticware has been coined to refer to the layer
that holds semantic information. Similar in functionality to a
middleware, whose main purpose is to offer an abstraction
layer to support information exchange, the semanticware
guarantees that all these exchanges work upon the same

¶https://zeroc.com/products/ice
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Figure 5. A semantic model for service composition and
reconfiguration

semantics and therefore, share the same understanding of the
information or functionality employed.

Continuing with the middleware analogy and similarly
to the role played by the programming interfaces, the
semanticware is supported on a semantic model that
identifies the concept and relationships that are relevant for
the system. This model is depicted in Figure 5.

The ultimate goal of the semanticware is to support
automatic service composition and reconfiguration. For this
reason, a mechanism for service description has to be devised
so that not only their functionality is captured, but also
the way how they should be used. Figure 5 illustrates the
concepts and relationships that have been identified to this
end.

The action concept refers to those events with a known
agent and, more importantly, that are motivated by a
primary reason that eventually rationalizes it. This approach
is, in essence, following the theory of primary reasons
of Davidson (1963) that advocates the existence of a primary
reason or a cause that motivates the realization of an action.
The event concept is similar to the action one, with the sole
difference that nothing is known about the agent that causes
it. A service is described in terms of its used and provided
interfaces. Traditionally, services have been described just in
terms of the interface they provide without paying attention
at the one they use to accomplish their task. A capability
can be required or provided by a service. For example, a
service that performs facial recognition on a png file, requires
that capability to offer its service. On the other hand, a
snapshot service that captures images in that file format will
be described as a provider for that capability. The interface
concept refers to the programming interface the service is
either providing or using. This information will determine
whether it is syntactically possible to compose two services.
The composition is first guided by the events or actions
they are capable of generating or demanding as a previous
requirement, but then it is necessary to check out whether
two services fulfilling a required enhanced functionality have
interfaces that match, as depicted in Figure 6.

It is the role of the scheduler to orchestrate the different
stages involved in the process of service composition or
reconfiguration. First, once that an arisen need has been
identified it is necessary to translate that into a pipeline

Figure 6. Syntactic matching in service composition

of services, whose configuration and functionality, will
eventually cater for that need. Next, it is necessary to
automatically connect the services involved in the pipeline
with no intervention of a programmer or a service designer.

Algorithm 1 describes the process we have devised to
select a sequence of services whose combined functionality
cater for a given need. The algorithm is intended to validate
the syntactic and semantic compatibility of the selected
services as well as, eventually, undertake the binding process,
in an automatic manner.

Algorithm 1 plan-for (event)

1: schedule = Schedule()
2: action = get-action-that-causes(event)
3: pre-events = get-preceding-events-for(action)
4: for e in pre-events do
5: schedule += plan-for(e)
6: end for
7: service = get-service-for-action(action)
8: capabilities = get-required-cap-for-service(service)
9: pre-service = get-service-that-provides-cap(capabilities)

10: schedule += pre-service, service
11: return schedule
12: return schedule

The algorithm is provided with an event the system is
interested in causing. The algorithm returns an ordered list
of services to be sequentially bound. Figure 7 summarizes
the proposed algorithm. As it can be observed, the scheduler
is built using the semantic model concepts as they are the
actions, events, services, capabilities, and interfaces. It is
important to note that we use actions and events as two
different concepts despite referring to the same reality.

According to the theory of actions proposed in Kent Bach
(1980):

“Actions are not events but instances of a
certain relation, the relation of bringing about
(or making happen), whose terms are agents and
events.”

As for events, the same auhtor states the following
assumption:
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Figure 7. Scheduler service pipeline construction process

“I assume that events exist in space and time
and that they enter into causal relations as causes
and as effects.”

The semantic model we propose complies with this theory
and makes this distinction by considering that actions are (in
a is-a relation) events with an agent (in a has-a relation)
and events can be related using a special type of inverse
relationship that connect one event with another one that
causes it or vice verse.

The semantic model is captured in the knowledge base
where the different actions and events are described in
terms of the context before and after the action takes
place. This approach lead us to relate the execution of an
action with an event (or set of them) as prerequisites that
should have occurred before the action can be accomplished.
Furthermore, the execution of an action will lead to a new
context in which several events might have been caused as
result of the action execution.

The following code listing shows how the action of
executing a command by a person authorized to do so is
described in the knowledge base following this before-after
context approach:
(new-action-type {execute_authorized_command}

:agent-type {person}
:object-type {command})

(new-context {e_a_c bc} {general})
(new-is-a {e_a_c bc} {before context})
(x-is-the-y-of-z {e_a_c bc} {before context} {execute_authorised_command})
(new-context {e_a_c ac} {e_a_c bc})
(new-is-a {e_a_c ac} {after context})
(x-is-the-y-of-z {e_a_c ac} {after context} {execute_authorised_command})

(in-context {e_a_c bc})
(new-indv {command is recognized in the scene} {command recognition})
(new-indv {person is recognized in the scene} {person recognition})

(in-context {e_a_c ac})
(new-indv {command executed by authorized person}

{command execution by authorized person})

The before and after context are identified by the e a c
bc y e a c ac respectively. In each of these context, we
have described how is the world before and after the action
execute authorised command takes place. As it can
be observed, the before context requires the occurrence of
two different events: one regarding the recognition of a
command and the other one regarding the recognition of
a person (including his/her identity). The execution of the
action leads to the occurrence (as a direct cause) of an
event that describe the execution of a command by a person
authorized to do so.

Awareness layer

Mental states or mental qualities, as referred by Mccarthy
(1973), deals with how to represent information regarding
beliefs, knowledge, free will, intentions, consciousness,
ability, or wants, which represent essential aspects of the
human rationality. In his work Bratman (1987) proposed
the BDI (Belief, Desire, and Intentions) model for human
practical reasoning, as an explanation for the human
rationality exhibiting goal-driven behaviors.

Unsatisfied goals is what motivates people to devise plans
that lead to goal satisfaction, achievement or maintenance,
and therefore, the emulation of intelligent behavior should
inexorably be linked to an appropriate representation of the
mental events involved in emulating goal-driven behaviors.

Moreover, context-awareness is one of the main require-
ments for enabling Smart Spaces, since the only way of
wisely and proactively or actively reacting to context events
is by understanding what is going on in the environment. The
events or actions that take place in the context are noticed by
means of the sensing devices and services deployed in the
environment. Therefore, the only trace evidencing the occur-
rence of an event is the sensing values captured by any of
these IoT objects. Ascribing those values to the effects of an
event or an action is the only possible way of interpretation.
The accuracy in understanding context situations depends on
how extensively and thoroughly preconditions and effects of
events and actions have been described.

The Smart Home paradigm relies on its ability to notice
the situations that are taking place as well as its ability
to generate appropriate responses to undergoing scenarios.
However, on what basis does an environment conclude
that a certain action is the most appropriate one? Smart
Home systems, as humans, count on a set of goals to drive
their behavior towards the achievement, maintenance, or
desired performance of such environmental goals. In this
respect, unsatisfied or deviated goals is what encourages
Smart Home systems to devise the most appropriate way
to return to or to achieve the desired state. Rather than
using hard-coded responses to whatever circumstances that
might arise in the environment, it is more feasible to simply
dictate the environmental goals that the system is engaged
in maintaining or achieving, and try to discern among the
available actions, which of them seem more suitable in
reducing the distance to the unsatisfied goals.

The way to reduce the distance between the current
situation and a targeted one is by devising a plan, here
understood as a course of actions. Action planning is
intended to consecutively apply changes to an initial state so
as to transform it into the goal state. The world states notion
of the action planning is very similar to that of situation
proposed by McCarthy, and therefore, can be modeled by
means of the possible-worlds theory. The occurrence of a
given event or action produces changes in the current state of
the world. Under incomplete information and reasoning by
default, we can expect the world to be in a finite set of states.
Action planning, therefore, consists in successively applying
changes to the world state to get a glimpse of the future world
state.

Plans can be therefore understood as the behavioral
responses generated by the Smart Home system whenever
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unsatisfied goals arise. The device dynamism and hetero-
geneity that characterize these environments makes it unfea-
sible to statically determine how those plans should be under-
taken. On the contrary, plans should be automatically devised
grounded on the knowledge of the devices and services, or
IoT objects, available at a given moment.

The BDI (Belief-Desire-Intention) model of agency
proposed by Bratman (1987) seems to be a compelling
approach to cope with the demands involved in dealing with
the identification and management of ongoing situations.
To this end, the proposed architecture resorts to a set of
software agents in charge of supervising the events to detect
unsatisfied or deviated goals. As a result of this detection,
plans will be launched to restore the desired state. The goal-
driven agents have been built upon the semantic and the
middleware layers, meaning that the communication aspects
are totally transparent to the agents whereas the knowledge
is available at the Scone knowledge base. These BDI agents,
understand “beliefs” as the properties that an agent considers
to be true, “goals” as the properties that an agent desires to
be true, and finally “plans” as the actions that lead an agent
to a desired goal. These basic instances define what is known
as the agent’s mental state.

The agent’s beliefs in combination with contextual
information (held in the Scone knowledge base) are what
lead the agent’s behavior towards the goals that the agent
desires to achieve or maintain. Interaction between agents,
the knowledge base, services and devices is based on the fact
that all of them share the same semantic model.

Consider, for instance, the situation in which a person is
in front of an office, looking for his/her key or access card,
realizing that he/she has forgotten it at home. The system
should devise a way to grant access to this person, knowing
that he/she is authorised to access that space. The following
mental state is held by the agent supervising the context:

• Belief(a, b): Agent a believes that an authorised-access
attempt event b has taken place.
• Goal(a, g): Agent a desires to achieve the goal g that

grants access to that person.
• Plan(a, p); Agent a resorts to a set of actions or plan p

to enable the person to access the room.

Evaluation
The proposed IoT platform for Smart Homes has been
deployed for evaluation purposes in the Institute of
Information Technologies and Systems (ITSI). This building
belongs to the University of Castilla-La Mancha and hosts
around 50 people working in different research groups.

Two scenarios are considered for evaluation purposes. One
scenario is devoted to demonstrate the service composition
capabilities, in the context of access control, whereas the
other one is intended to demonstrate the reconfiguration
capabilities, in the context of room temperature control. The
scenario has been equipped with low-cost devices that avoid
expensive and closed commercial solutions.

Like every morning, Bob gets to his office at 8:00 a.m.:
Scenario 1: Standing in front of the door he checks out

his pockets looking for his badge. After a few seconds he
realizes he left it in the car. By then, the smart environment
supervisor detects the unusual circumstance of Bob standing

at the door and ask him whether he needs something. Bob
asks the system to open the door and since he is authorized
to do so, the door opens and he can enter his office.

This scenario is intended to demonstrate the system
capabilities to understand ongoing context situations and
react to them. Despite the fact that this is a predefined
scenario, no recipe-like instructions have been provided to
the system in terms of service or list of services that can
grant an access control functionality. On the contrary, based
on the knowledge about the functionality of the services
available at that location, the scheduler has to work out the
service pipeline whose composition can eventually cater for
the arisen need.

Scenario 2: As he enters his office his smartwatch
logically wires to the temperature sensor in the office to
accommodate the room to his comfort temperature. Bob’s
smartwatch holds the user preference profile including,
among some other details, the comfort temperature he has
defined or the one that has been empirically learned from his
previous actions when he has used the smartwatch to directly
operate the heating, ventilation and air conditioning (HVAC)
system console, as though it was a remote control.

This scenario shows the system capability to reconfigure,
on runtime, the behavior of IoT objects, represented here
by the temperature sensor. The HVAC system is normally
operated on the basis of a set-point manually introduced by
the user, to which end the console buttons are employed. Our
scenario demonstrates that this control can be extended to
be manually or automatically controlled in remote. The user
can resort to a smartwatch App to control the temperature
manually, by tapping the smartwatch, or automatically, by
logically wiring a temperature sensor to the smartwatch and
have this operating over the HVAC system console.

Testbed description and hardware prototypes
Temperature control is an important aspect to be considered
when attempting to improve the well-being of users and
energy efficiency in Smart Buildings. Nowadays the market
of HVAC systems is dominated by a number of traditional
manufacturers offering proprietary hardware and software
solutions. For such systems, the integration with open IoT
platforms is still far from being a reality.

Buildings, such as the ITSI, typically include a centralized
HVAC system with a proprietary configuration software.
From the end user point of view, the only interaction is
with a simple console in each room, with buttons that
allows switching on and off the heating and changing the
temperature set-point. In the hardware prototype developed
in the Smart Office, the console has been retrofitted adding
an IoT node with WiFi connectivity. This node is able to
interact with the console by means of optocouplers acting
as solid-state relays that allow bypassing the button contact.
In this way, the console can be operated both manually (i.e.
pressing the buttons) and by means of the IoT node outputs,
that electrically emulate the action of pressing the buttons.
Retrofitting allows the integration of existing products with
IoT platforms Medina and Manera (2017). Nevertheless, this
solutions should also pursue the compliance with existing
safety and quality regulations.

The WiFi node, implemented for temperature control of
the Smart Office environment uses a low-cost NodeMCU
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Figure 8. IoT node for temperature control

device‖, which is based on the compact and low-power
Espressif ESP8266 WiFi and MCU chipset ∗∗. To interface
the node with the HVAC console a circuit has been designed
to integrate the required optocouplers. An image of the
temperature control node connected the HVAC console is
shown in Figure 8. A detail of the NodeMCU and the
designed shield that incorporates the optocouplers can be
seen in Figure 9.

Figure 9. Detail of the NodeMCU device and the designed
shield to interface the HVAC console

The integration of the temperature control system in
the proposed IoT platform for Smart Homes enhances the
possibilities in terms of comfort and efficiency management.
The designed node is able to control the on-off, temperature
increase and temperature decrease buttons. Moreover, it is
able to monitor the state of the heating system (on-off)
that is indicated with a green LED in the console. One of
the advantages of the developed temperature control node

is that, thanks to the integration with the IoT platform
proposed in this paper, it can be linked to one or various
temperature sensors distributed in the space. Furthermore,
the temperature set-point can be established by several users.
These two features enable the possibility of advanced control
strategies, in which the feedback temperature signal and the
set-point values can be obtained as by performing some
processing and calculations considering the measurements of
several sensors and the comfort of several users. An example
to illustrate this could be a scenario in which:

• The feedback temperature is obtained by calculating
the mean temperature of the sensors located in areas
where the presence of user is detected.

• The set-point is obtained calculating the mode (i.e.
the value that appears more often) among the values
configured by the users.

Another valuable advantage of the proposed temperature
control system, is the ease to perform data logging for pattern
extraction and energy estimation.

Additionally, to talk about smart building it is essential to
automatically control and manage the people that access or
leave the premises. In fact, many of the services provided
in a smart building depend on knowing how many people
are there inside the building and where are they located
in (i.e.: smart evacuation protocols, smart lighting services,
smart meeting management, etc.). One of the most common
solution is based on the use of RFID readers, deployed at
the entrance of the different rooms to be controlled. Every
user has a badge that grants or denies access to every room.
Figure 10 shows a RFID reader at the entrance of the testbed
office.

Similarly, the use of CCTV (close-circuit television)
cameras is commonly extended for surveillance purposes.
We have also equipped our testbed with a low-cost camera
FOSCAM C1.

To validate our capability to seamlessly communicate
objects employing different communication technologies
several prototypes have been specifically designed to this
end. These prototypes, as the one shown in Figure 12,
therefore demonstrate the IDM capability to homogenize
IoT objects. Despite their heterogeneous communication and
architecture details, these objects are considered virtually
equal inside an IDM infrastructure. Moreover, the door lock
has been retrofitted with an electric door lock, as it can be
observed in Figure 11 labeled as door actuator. To turn
the door actuator into an IoT node we have employed a
commercial product known as Sonoff††. These devices are
basically WiFi switches controlling electric loads (with a 10
A capability according to the specifications) that internally
has an ESP8266EX chip, all for a price of approximately 5
dollars.

Finally, the testbed area has also been equipped with some
additional sensors (presence, temperature, microphone, light,
etc.). Whereas the HVAC console, camera, microphone, and

‖http://www.nodemcu.com/index_en.html
∗∗http://espressif.com/en/products/hardware/
esp8266ex/overview
††https://www.itead.cc/smart-home/
sonoff-wifi-wireless-switch.html
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Figure 10. Camera, microphone, and RFID card reader
deployed at the door frame

Figure 11. Door configuration

door actuator employ WiFi, we have built a sensor board
prototype, as shown in Figure 12 that includes, among some,
a presence and a temperature sensor over a ZigBee (Arduino
FIO + XBee) and RS-485 domains. Every domain has its
own IDM router. The IDM routers for the ZigBee and RS-
485 domains run on a Raspberry Pi whereas the router for the
WiFi domain runs on a conventional PC. Figure 13 outlines
the considered topology.

Figure 12. Moth XBee including a presence and a temperature
sensor

Figure 13. Logic topology of the considered scenario

Experimental results

Both case scenarios described at the beginning of this
section have been reproduced in the testbed environment (the
ITSI building), using the hardware and network topology
previously described. Recall that each of the considered
scenarios has targeted a different goal: case scenario 1
pursues the validation of the composition capabilities,
whereas case scenario 2 is intended to demonstrate
its capability to manually and automatically reconfigure
services.

Figure 14 summarizes the scheduler trace yielded in the
process of building the service pipeline to cater for the user’s
issued command. The event e: open door, at the top
of the hierarchy, is provided by the awareness layer (the
BDI agent) to the scheduler. This event therefore determines
the start of the scheduling process. The knowledge base is
queried about the action or actions capable of causing that
event. It answers that the a: actuate bolt action is
capable of doing so. Then, the knowledge base is also queried
about the service or services (if any) capable of performing
that action. In this case, the s: door actuator service
has that capability. However, that action has in his before
context the prerequisite of having authenticated the identity
of the command issuer. This prerequisite is stated as an event
in the before context of the action description.

Figure 14 encloses in frames each of the scheduler
iterations. For this particular case, the scheduler is launched
five times, one for each event that has to be caused. The result
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Figure 14. Scheduler result for scenario 1

of the scheduling process is the list (or pipeline) of services
that has to be bound.

Figure 15 depicts the sequence diagram that results from
binding the service pipeline generated by the scheduler.

The service reconfiguration process is simpler than the
composition one mainly due to the fact that the scheduler
is provided with events for which there exits a single
service that causes it. There is no need to recursively
look for alternatives, as in the composition case. Figure 16
summarizes the scheduler trace. As it can be observed, it is
simpler than the one for case scenario 1.

The sequence diagram from case scenario 2 is depicted
in Figure 17. As the user enters the room, the system
looks for services that can provide a measure of the room
temperature. Based on that temperature and knowing the
comfort temperature established for that user, the thermostat
service calculates the increase or decrease (in degrees) that
should be issued to the HVAC actuator system.

The scheduler is queried about how to cause the event
of e: set to comfort temperature. This event
is caused through the action a: operate console
to comfort temperature that is carried out by the
s: HVAC system actuator which, at the same time
requires from the service s: thermostat.

Conclusions
This paper proposes an architecture for IoT-based Smart
Home that focuses in enabling capabilities for automatic
service composition and reconfiguration. This architecture
is novel in the three-stage process it proposes for the
service composition and reconfiguration. An additional
contribution of this work consists in how semantic is treated.
A common-sense reasoning approach is proposed to capture
the semantics of IoT objects and services. This semantic
knowledge has demonstrated more flexible and advanced
capabilities for the composition and reconfiguration process,
to eventually cater for unsatisfied goals or arisen needs.

This capability is what turns a normal environment into a
smart one. The three-stage process for service composition
and reconfiguration assures that the process can be carried
out in an unsupervised manner. This aspects in essential if
actuation and smart behavior can be demonstrated in this
type of environments.

To demonstrate the performance of the proposed
architecture a testbed scenario has been set up. Different
rooms of a working building have been retrofitted with low-
cost devices to turn them into IoT objects such as doors or
HVAC systems. Two case scenarios have been devised to
evaluate the response capabilities of a smart system. Results
yield that this approach supposes a low-cost and flexible
mechanism for turning homes into smart homes.
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