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Abstract—Scheduling tasks appropriately in an IoT device
powered by multiple energy-harvesting sources is a challenging
problem. In this paper, we model this problem, and we present a
scheduling algorithm that optimally sets the overall node power
consumption based on the utility, and on the energy required
by tasks. The algorithm schedules high-level tasks, it uses the
weather forecast informations available at the beginning of each
scheduling period (typically a day), and the level of the battery, to
define an optimal schedule. The main goal is to find a schedule
that is energy neutral on average, over a period longer than
the single scheduling window, for example a week. We test our
scheduler on a simulated platform with the same specs of an
Arduino node, equipped with a small (portable) solar panel, and
attached to a small wind turbine. We see from the simulations
that the scheduler performs as expected and that the utility of the
scheduling improves as the error between the expected forecast
and the real harvested energy is reduced.

Index Terms—Hybrid Energy Harvesting Sensor Networks;
Scheduling; Dynamic Programming.

I. INTRODUCTION

Energy harvesting [1] is an effective method to provide a
virtually unlimited lifetime to environmental IoT devices that
remain unattended for long periods. The usual approach is to
provide a device with a single energy harvesting technology,
often related to a source that is predictable (even if often
uncontrollable), so that it is possible to forecast the amount
of energy the harvester can provide in order to appropriately
design the system. One source often used is the Sun, whose
cycles of irradiance can be predicted even in cloudy days
by using weather forecast [2], and whose irradiance can be
transformed into electricity by solar panels to charge the battery
of the device. Here designing the system means choosing a
battery capacity and the type and size of the solar panel so
that they can match the consumption of the device and thus
make the battery depletion an unlikely event. Over the recent
years, the technologies for energy harvesting are improving and
making accessible more and more sources like wind, rf-signals,
vibrations, etc. [1], and researchers are now addressing devices
equipped with multiple energy harvesters [2]. This work follows
this research trend. Specifically, we consider devices equipped
with several energy harvesters that extract energy from different
sources found in the natural environment (for instance from
the Sun and from the wind) and that contribute simultaneously
to charge the battery of the device. On the other hand, since
the different sources are independent and uncontrollable, there

is still the chance that their energy production interrupts (for
example harvesters of sun and wind will not provide any
charge in a night without wind). For this reason, a device with
energy harvesters usually adopt strategies aimed at dynamically
modulating its power consumption [3], [4], [5], [6], [7], [8]
in order to be energy neutral (i.e. its energy budget between
its energy production and consumption is greater or equal to
zero in a reference period, so that it never stops working). In
particular, some approaches [9], [10], [11] modulate the energy
consumption of the device by choosing between alternative
tasks, each with different power consumption and utility, by
choosing a scheduling of the tasks over that optimizes the
overall utility while keeping the device energy neutral.

In this paper we reconsider the latter approach in the case
of devices equipped with multiple energy harvesters and we
propose a dynamic programming algorithm that finds the
scheduling of the tasks with optimum utility, under a constraint
of statistical energy neutrality, which is a relaxation of the
energy neutrality concept. In the next Section we review works
related to this, in Section III we present how we model tasks,
their parameters and the model for the harvesters, in Section
IV we present the scheduling algorithm, finally in Section V
we present the results of simulations for the case of an Arduino
connected to a solar panel and a wind turbine, and conclude
with some comments in Section VI.

II. RELATED WORK

The notion of energy neutral scheduling introduced in Kansal
et al. [6] is of fundamental importance, for all the research work
in this area. Kansal shows how to properly design the battery
size as a function of the energy harvested by the node. The
proposed methodology is at the base of our system model
and scheduling problem. However, they only consider the
optimization of a single power-management policies, i.e. the
duration of the duty cycle of the node, while in this paper
we prefer to optimize a high-level utility parameter, that is
much simple to manage from the user level (or API level), like
a nice level in POSIX systems, but representing a complex
combination of several low-level power-management policies.
In [12] the authors present an experimental testbed of a set
of sensor nodes equipped with a solar panel and, similarly to
this work, use the data from public weather forecast services
to optimize the operation of the nodes. However, they use



an approach based on different machine learning strategies
while we use the error between the expected seasonal average
power output of the panel, the data from the weather prediction
and the effective power output of the panel to optimize the
scheduling of tasks, without at this stage using any form of
machine learning. Other surveys related to energy harvesting
are in [13] and in [14], [15], [1] and more recently in [16],
[17], [18], [19]. Usually the scheduling algorithm does not use
the instantaneous output of the harvesting source and the battery
level but a prediction scheme [20], that gives some information
(deterministic or stochastic) about the energy harvested in the
future. All authors emphasize that good prediction schemes
are a key ingredient for the robustness and quality of the
scheduler. The duty cycle is not the only parameter optimized,
for example in [21] a control-theoretic model selects the best
sensing rate according to the estimated future production of
the panel. A common tool to describe the scheduling problem
is usually a mixed integer programming to model. Some papers
use a dynamic programming [20] approach similar to us. Other
papers deal with global, network-wide optimization problems
like the integration of duty-cycling and routing [22]. In the
next sections we present our model of energy production, then
the task model that runs in an IoT node, and the scheduling
problem.

III. SYSTEM MODEL

We consider energy-harvesting devices equipped with several
energy-harvesters, able to extract energy from different sources
found in the natural environment, for instance from the Sun or
from the wind, thus making use of unending energy sources,
with the purpose of keeping the operation of the device. In
this paper, we are considering multiple energy harvesters
that contribute simultaneously to increase the overall energy
production. On the other hand, since the energy that is extracted
is hardly controllable, one or several of these productions could
be interrupted for short periods of time, which makes still
necessary to recharge the devices’ batteries, with the purpose
of sustaining the minimal operation of the device even in
periods of scarce or null production.

The operation of the device can be defined in terms of
tasks. Let us define a task as an instance of an application
that comprises several activities like computing some function,
sampling sensors, or sending messages to other devices. We
denote as T to the set of n tasks belonging to one application,
i.e. T = {t1, t2, . . . , tn}. Each task ti, i ∈ [1, n] is associated
with a utility ui, which is defined as the utility gained by the
device when ti is executed, and a cost ci which is defined
as the charge expenditure due to the execution of ti. In order
to indefinitely prolong the execution of the application, we
discretize a fixed finite time of window T (for example, a day)
into k slots of duration τ = 60×24

k minutes, which we assume
to be an integral fraction of an hour. The system scheduler
should be periodically executed at the beginning of each time
of window to find the best assignment of tasks to slots such
that the maximal overall utility is achieved at the end of the
reference time T .

Let us also characterize the battery of the device by a minimal
Lmin and a maximum Lmax level of charge, where the first
is the minimal level that could keep the node operating while
the latter is the maximum capacity of the battery. We denote
as Li to the level of the battery at the beginning of slot i,
with i ∈ [1, k] and we denote with Lk+1 to the battery level
at the end of slot k. Ignoring for the moment the use of
energy harvesters that could increase the battery level, the
device’s battery will be discharged at a rate that depends on
the consumption of the task being executed, specifically the
time to deplete the battery will be Lmax

I , where I is the integral
of the current consumptions of the components involved in the
execution of the scheduled task.

In our system, we consider the simultaneous usage of
multiple energy-harvesters able to recharge the battery level
of the device. To this purpose, let us define S as the set of m
energy-harvester sources (with m ≥ 1) attached to the device.
In a given slot of time i, each energy-harvester source s ∈ S
provides an amount of charge φi(s). Thus, we denote as Φi to
the overall charge in slot i computed as the sum of the charges
provided by each individual source:

Φi =
∑
s∈S

φi(s)

where Φi can be accumulated into the battery up to achieve
the maximum capacity Lmax, which cannot be exceeded. For
a practical use of our system, we trust in some service of
forecasting of the energy that can be produced by each energy-
harvester device, which could differ from the actual charge.
We denote with ψi(s) to the expected charge from the source
s ∈ S in the slot i. Thus, the overall expected charge Ψi(s)
comes given by the sum of the contributions of all of them:

Ψi =
∑
s∈S

ψi(s)

Usually the weather forecast service has limited accuracy,
but could provide information from which we can derive the
expected production of each harvesting source with a bounded
expected error between the production that is forecasted and
the real one. Let us define with ξi(s) to the relative error of
the source s in a specific slot i with regard to the expected
amount of charge, that is computed as:

ξi(s) =
φi(s)− ψi(s)

ψi(s)

An upper bound of ξi(s) is ε(s), which is the maximum
relative error of the source s with high probability; then we
denote with εi to an upper bound of the absolute error of Ψi

and we compute it in the following way:

εi =
∑
s∈S

ε(s)Ψi

The values of εi are upper bounds of the absolute error. As
we will see in the next section, we use those values to set the
level of the battery that we want to achieve at the end of the



scheduling period, or for a longer period of time, like an entire
week.

IV. SCHEDULING PROBLEM AND ALGORITHM

The proposed model of energy harvesting, battery and
consumption is used by the device to schedule the tasks in
order to maximize the overall utility and, at the same time, to
keep the battery at a level of charge that can keep the device
operative for an indefinite time. The algorithm is executed by
the device at the beginning of a time window and to assign
the appropriate task to each slot. The size of the time window
can be arbitrary, but, considering that solar panels are widely
used and that they have a cycle of production of 24 hours, it is
convenient to describe the algorithm referring to time windows
of one day, and slot duration that are integral fraction of hours.
We also assume that the device runs the scheduling algorithm
every day at midnight, using weather forecast available for the
next day, and starting at the beginning of slot 1.

The scheduling problem consists in finding an assignment
of one task for each slot so that the sum of the utilities of
all the tasks is maximum, subject to some constraints due to
the battery. In particular, the battery level Li ≥ Lmin for all
slots i in the day and the final battery level Lk+1 should be
greater or equal to a given Short-term Target Level STL. Let
A = [ai,j ] be the k × n matrix that represents the assignment
of a task to a slot, so that ai,j = 1 iff task tj is assigned to
slot i, and ai,j = 0 otherwise.

The scheduling problem can thus be formulated as:

Problem 1 (Max Utility Task Scheduling).

maximize u =

k∑
i=1

n∑
j=1

ai,juj (1)

n∑
j=1

ai,j = 1 (2)

ai,j ∈ {0, 1}∀i ∈ [1, k], j ∈ [1, n] (3)

Li+1 = min

{
Lmax, Li + η[(Ψi − εi)−

n∑
j=1

ai,jcj ]+

−[

n∑
j=1

ai,jcj − (Ψi − εi)]+
}
∀i ∈ [1, k] (4)

Lmin ≤ Li∀i ∈ [1, k] (5)
Lk+1 ≥ STL (6)

where [x]+ = max(x, 0)

Where the objective function (1) is the sum of the utilities of
the scheduled tasks, under the constraints (2-6). In particular,
constraints (2) and (3) state that to a slot can be assigned
exactly one task; constraint (4) relates the battery level at the
beginning of slot i + 1 to the battery level at the beginning
of the previous slot, to the expected charge provided to the
battery and to the consumption due to the execution of the task
in the slot [6]; the value of η ∈ [0, 1] models the efficiency of
the battery, while constraint (5) states that the battery level in
each slot cannot be smaller than the minimum battery level
Lmin and, finally, constraint (6) states that the battery level

at the end of the day should be at least the Short-term Target
Level STL.

Note that, in this formulation we consider the pessimistic
case in which the battery charge expected in each slot equals
the minimum possible, i.e. it is η(Ψi − εi) for each i, which
is a lower bound to the actual battery charge Φi with high
probability. This guarantees that the system will meet the
constraints even with the actual battery charge.

The formulation of problem is similar to the problem in [23],
which is known to be NP-complete, for which we propose an
algorithm based on dynamic programming. In the following,
if n is the number of tasks in the system, and STL is the
short term level, we consider the problem of statistical optimal
scheduling, energy neutral with respect to STL, i.e. the residual
energy level in the battery, at the end of the period, must be
greater than STL, and define the system state as a pair of
integer (i, l), we associate to each pair a subproblem with
value opt(i, l) that considers the slots from i to K and with
initial battery level l. Note that the solution of the complete
problem is given by opt(1, L0), this function is defined in the
following Lemma:

Lemma 1. The optimal solution of Problem 1 is given by
Q∗ = opt(1, L1) with opt defines as the following backward
recursive Bellman’s equations:

opt(K, l) = max
t=1...n

{ ut | l − ct + η ∗ (ΨK − εK) ≥ STL } (7)

opt(i, l) = max
t=1...n

{ ut + opt(i+ 1, g(l, t)) | g(l, t) ≥ Lmin }

with: g(l, t) = min{Lmax, l − ct + η ∗ (Ψi − εi)}

Proof. The base case is the subproblem with only one (last)
slot to schedule. In this case, we select the best feasible tasks,
if l is (by definition) the energy at the beginning of this slot,
the overall energy available is l+η ∗ (ΨK − εK), with ΨK the
forecasted total production and εK an estimated upper bound
to the average error in the forecast. Since we are in the last
slot and the entire schedule must be energy neutral, we must
save at least STL. Hence we schedule the higher utility task
t with ct ≤ l − STL+ η ∗ (ΨK − εK).

The second definition gives the recursive form of the dynamic
programming approach: We consider slot i with an initial level
of battery l, let g(l, t) = l + η ∗ (Ψi − εi) − ct be the level
of the battery if we schedule task t; if g(l, t) ≥ Lmin task t
is feasible and the utility of the schedule with t assigned to
slot i will be ut plus the optimum schedule that we obtain
(recursively) starting from slot i + 1 with a battery level of
g(l, t). In the definition, we consider all possible feasible t
and select the best one. So evaluating opt(1, L1) we obtain
the optimal schedule.

The above equations lead directly to the following pseu-
docode of a dynamic programming algorithm that finds in
pseudo-polynomial time the optimal schedule.

One important aspect in the configuration of the algorithm
is the value assigned to the Short-term Target Level STL. In
conventional approaches, the objective is to keep the device
energy neutral, i.e. the battery level at the end of the day



Algorithm 1: Dynamic Programming Procedure to op-
timally solve the Statistical Energy Neutral Scheduling
Problem.

Data: Battery Levels, Estimated Solar Output, Estimated
Error Averages

Result: Short Term Level Neutral Scheduling

1 function OptSchedule(Tasks,K,Lmax,Lmin,STL,ε)
2 begin
3 opt ← schedule ← 0;
4 for i← K − 1 to 0 by −1 do
5 Evaluate Ψi from the weather forecast data;
6 for l← 1 to Lmax do
7 opt[i][l]← schedule[i][l]← 0;
8 umax ← −100; idmax ← −1;
9 for t ∈ Tasks = {1, . . . , n} do

10 if (i = K and
11 l − ct + η ∗ (Ψi − εi) ≥ STL and
12 M [i][l] < ut) then
13 opt[i][l]← ut;
14 schedule[i][l]← t;
15 else
16 lr ← min(l− ct + η ∗ (Ψi− εi), Lmax);
17 if lr ≥ Lmin then
18 u← opt[i+ 1][lr];
19 if (u 6= 0 and u+ ut > umax) then
20 umax ← u+ ut;
21 idmax ← t;
22 end
23 end
24 end
25 end
26 opt[i][l]← umax;
27 schedule[i][l]← idmax;
28 end
29 end
30 end

should be greater or equal to the level that the battery had at
the beginning. If we set STL following the same approach, i.e.
STL ≥ L1 , then taking the case of a week of operation, the
scheduler is forced to provide an energy-neutral schedule for
each day, i.e. the battery will be always over L1, even if, the
real goal of the system is to be energy neutral on the longer
time window of one-week.

Moreover, since our scheduling algorithm assigns the tasks
to the slots under the worst-case hypothesis that the actual
battery charge will always be equal with the minimum possible,
the result will be that, in presence of a charge Φi > Ψi − εi
(which will happen with high probability), the possibility that
the battery reach Lmax, wasting energy from the harvesters,
without properly increasing the utility of the tasks.

The approach that we propose in this paper, is to set the
value of STL taking into account the knowledge about the
bounded error between the forecasted energy and the real
production. Setting a long-term level LTL = L1 and STL =
LTL−

∑
i∈[1,k] εi we produce a schedule that optimizes the

utility of tasks and is on the average above or equal LTL
anyway.

V. EVALUATION

Given the abstract energy harvesting model defined in
Section III, we show now how it can be instantiated in a specific
case. We consider the Arduino UNO-class IoT device powered
with two energy harvesting sources, namely a solar panel (s1)
and a wind turbine (s2). The Arduino UNO is also attached to
a battery, with minimum battery level Lmin = 100mAh and
maximum battery level Lmax = 1000mAh.

The production of the solar panel follows the model
introduced in [24]. The model computes the hourly irradiance
for every day in the year, in any geographic location on the
Earth, assuming a day perfectly clear of clouds. On the other
hand, this model can be generalized by considering different
weather conditions concerning the density and height of the
clouds.

Concerning the wind turbine, the amount of charge it can
provide depends on the rotation speed of the rotor that is
proportional to the wind speed. For this reason, the charge per
hour can be obtained by a simple model leveraging on the
forecast of the wind speed. We adopt the same model as in [2],
in which the power generated by a wind turbine is proportional
to the cube of the wind speed (provided the wind speed is
within the operational range), with the following equation:

power = a× (WindSpeed)3 + b

where a and b are two constants depending on specific
properties of the actual turbine in use.

We have evaluated our proposal by means of a simulator
developed in Python. The objective of the simulation is to
demonstrate the continuous operation along the time for an
IoT device equipped with multiple energy-harvesters when the
energy-neutrality condition is relaxed. For this purpose, our
simulator determines the assignment of tasks to slots for a
long-term execution of an application under different error
levels, and then computes the average remaining battery level
and the corresponding average utility provided at the end of
the considered period. We are also interested in knowing how
far is the final average battery budget from the optimal value
given by LTL.

Since the solar energy production has a natural cycle of 24
hours, we consider a time frame of T = 24 hours, which we
discretize in a number of k = 24 slots per day of duration τ =
1 hour. Then, we generate the expected charge due to s1 and s2
and the actual charge such that, the latter will have a maximum
relative error (equal for both sources) as ε ∈ {5%, 10%, 15%}

The energy production from a wind turbine s2 attached to
an Arduino device is computed by using the data provided by
the forecast website Weather Underground 1, which provides
a complete list of weather data for any location around the
world, including the wind speed (in Km/h). We obtained the
average, maximum, and minimum daily wind speed in Ciudad
Real (Spain). Thus, for a specific day of the year, we defined
an scenario where we assign to each slot i ∈ [1, k] an energy
production computed by using the average wind speed.

1Weather Underground: https://www.wunderground.com/.
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Fig. 1. Battery level at the end of each day with ε = 0.05 (above), with
ε = 0.1 (center) and with ε = 0.15 (below)

Our simulator generates a large set of A = 50 applications,
where each application is composed by a random number of
tasks n ∈ [6, 10]. Each task is provided with a random utility
ui ∈ [0, 100] (in percentage) and a cost ci (in mAh), which is
a function of a duty cycle dci ∈ [0.01, 1] randomly generated;
i.e. ci = dci × Iactive + (1 − dci) × Iidle, where Iactive and
Isleep correspond to the average currents (in milliamperes) in
active and idle state, respectively, of the platform where the
task is executed (specifically for Arduino UNO, Iactive = 50
and Isleep = 30). The cost of the task per slot in mAh is then
computed as ci

24 . Each application is provided with an idle task
t0, with a utility u0 = 1 and a duty cycle dc0 = 0.01, which
guarantees the sustainable operation of the application under
conditions of scarce production. Without loss of the generality,
we assume that the higher utility, the higher cost, i.e. given two
tasks t1 = 〈u1, c1〉 and t2 = 〈u2, c2〉, if u1 < u2 and c1 ≥ c2,
then t1 is inefficient and it could be excluded a priori.

We are interested in knowing the battery levels and the
average utility for A applications at the end of each day along
a timeframe fixed to be 1 week, and for the different values of
ε considered. Figure 1 shows three box plots corresponding to
three different values of ε = 0.05 (above), ε = 0.1 (center) and
ε = 0.15 (below). They show the distribution of the ending
battery levels for each day of the week in the month of January
(one of the months with most scarce solar production). The
axis x of the figure shows the days and the axis y shows
the battery levels in the range [Lmin, Lmax]; STL and LTL
are also highlighted with horizontal red lines. As observed,
the larger the ε, the larger the difference between STL and
LTL. In each plot, the seven boxes represent the minimum
and maximum value of the battery level each day of the week,
as well as the quartiles Q1, Q2 (median) and Q3. The atypical
values or outliers are represented with the symbol ’+’. As
observed, the larger the ε, the larger the distance between
the minimum and maximum value. For small values of ε, the
deviation between the forecasted and the real production is
also small, and the values of STL and LTL are closer, since
STL = LTL−

∑
i∈[1,k] εi (note that if the last term is 0 we

will have a perfect forecast). When ε increases, the deviation
between the forecasted and the real production also increases,
which means that the accuracy of the forecast is lower. Since
we are using an upper bound on the error, the utility returned
by the scheduler decreases with respect to the same experiment
with lower errors. In the three boxplots, the ending battery
values are larger than STL and LTL.

Finally, in Figure 2 we compare the average utility (in
percentage) achieved after running the set of A applications
each day of the week. As observed, ε impacts meaningfully
on the overall utility achieved: the larger the ε, the lower the
average utility. Specifically, utility ranges between [80, 85] in
the best case (with ε = 5%), and between [60, 75] in the worst
case (with ε = 15%).

VI. CONCLUSIONS AND FUTURE WORKS

In this paper we presented a scheduling algorithm that
produces an optimal schedule of tasks to run in an IoT device
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Fig. 2. Average utility obtained in the month of January, after the execution
of A applications, for three different ε.

equipped with multiple energy-harvesting devices. The schedule
is LTL-energy neutral on the long run on average, and STL-
energy neutral after each day. We defined that value of STL as
a function of the final LTL level and the total expected error
in the forecasted production (based on weather forecast data).
As a future work, we will investigate on learning algorithms
to better capture the error between the forecasted and the real
harvested energy, and the tradeoff concerning costs/lifetime
due to different hardware configurations with solar panels with
different capacities.
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\begin{abstract}
Scheduling tasks appropriately in an IoT device powered by multiple energy-harvesting sources is a challenging problem. In this paper, we model this problem, and we present a scheduling algorithm that optimally sets the overall node power consumption based on the utility, and on the energy required by tasks. The algorithm schedules high-level tasks, it uses the weather forecast informations available at the beginning of each scheduling period (typically a day), and the level of the battery, to define an optimal schedule. The main goal is to find a schedule that is energy neutral on average, over a period longer than the single scheduling window, for example a week. We test our scheduler on a simulated platform with the same specs of an Arduino node, equipped with a small (portable) solar panel, and attached to a small wind turbine. We see from the simulations that the scheduler performs as expected and that the utility of the scheduling improves as the error between the expected forecast and the real harvested energy is reduced.
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\section{Introduction}\label{section:intro}
Energy harvesting~\cite{sudevalayam2011} is an effective method to provide a virtually unlimited lifetime to environmental IoT devices that remain unattended for long periods. The usual approach is to provide a device with a single energy harvesting technology, often related to a source that is \emph{predictable} (even if often uncontrollable), so that it is possible to forecast the amount of energy the harvester can provide in order to appropriately design the system. One source often used is the Sun, whose cycles of irradiance can be predicted even in cloudy days by using weather forecast~\cite{Sharma10cloudycomputing}, and whose irradiance can be transformed into electricity by solar panels to charge the battery of the device. Here designing the system means choosing a battery capacity and the type and size of the solar panel so that they can match the consumption of the device and thus make the battery depletion an unlikely event. Over the recent years, the technologies for energy harvesting are improving and making accessible more and more sources like wind, rf-signals, vibrations, etc. \cite{sudevalayam2011}, and researchers are now addressing devices equipped with multiple energy harvesters~\cite{Sharma10cloudycomputing}. This work follows this research trend. Specifically, we consider devices equipped with several energy harvesters that extract energy from different sources found in the natural environment (for instance from the Sun and from the wind) and that contribute simultaneously to charge the battery of the device. On the other hand, since the different sources are independent and uncontrollable, there is still the chance that their energy production interrupts (for example harvesters of sun and wind will not provide any charge in a night without wind). For this reason, a device with energy harvesters usually adopt strategies aimed at dynamically modulating its power consumption~\cite{kansal2003environmental,Kansal05,Kansal2006,Kansal:2007,Kansal:DAC,amato2009application} in order to be \emph{energy neutral} (i.e. its energy budget between its energy production and consumption is greater or equal to zero in a reference period, so that it never stops working). In particular, some approaches~\cite{escolar2014neutral,escolar2012optimization,escolar2013energy} modulate the energy consumption of the device by choosing between alternative tasks, each with different power consumption and utility, by choosing a scheduling of the tasks over that optimizes the overall utility while keeping the device energy neutral.

In this paper we reconsider the latter approach in the case of devices equipped with multiple energy harvesters and we propose a dynamic programming algorithm that finds the scheduling of the tasks with optimum utility, under a constraint of statistical energy neutrality, which is a relaxation of the energy neutrality concept. In the next Section we review works related to this, in Section \ref{section:system} we present how we model tasks, their parameters and the model for the harvesters, in Section \ref{section:algorithm} we present the scheduling algorithm, finally in Section \ref{section:evaluation} we present the results of simulations for the case of an Arduino connected to a solar panel and a wind turbine, and conclude with some comments in Section \ref{section:conclusions}.

\section{Related Work}\label{section:related-work}

The notion of \emph{energy neutral scheduling} introduced in Kansal et al. \cite{Kansal:2007} is of fundamental importance, for all the research work in this area. Kansal shows how to properly design the battery size as a function of the energy harvested by the node. The proposed methodology is at the base of our system model and scheduling problem. However, they only consider the optimization of a single power-management policies, i.e. the duration of the duty cycle of the node, while in this paper we prefer to optimize a high-level \emph{utility} parameter, that is much simple to manage from the user level (or API level), like a \emph{nice} level in POSIX systems, but representing a complex combination of several low-level power-management policies.
In \cite{kraemer2017solar} the authors present an experimental testbed of a set of sensor nodes equipped with a solar panel and, similarly to this work, use the data from public weather forecast services to optimize the operation of the nodes. However, they use an approach based on different machine learning strategies while we use the error between the expected seasonal average power output of the panel, the data from the weather prediction and the effective power output of the panel to optimize the scheduling of tasks, without at this stage using any form of machine learning. Other surveys related to \emph{energy harvesting} are in \cite{Basagni2013} and in ~\cite{gilbert2008comparison,stojvcev2009power,sudevalayam2011} and more recently in ~\cite{jayakumar2014powering,Khan2015,Babayo2017,merrett2017energy}. Usually the scheduling algorithm does not use the instantaneous output of the harvesting source and the battery level but a \emph{prediction scheme}~\cite{zhang2016solar}, that gives some information (deterministic or stochastic) about the energy harvested in the future.
All authors emphasize that good prediction schemes are a key ingredient for the  robustness and quality of the scheduler. The duty cycle is not the only parameter optimized, for example in~\cite{moser2007real} a control-theoretic model selects the best \emph{sensing rate} according to the estimated future production of the panel.
A common tool to describe the scheduling problem is usually a mixed integer programming to model. Some papers use a dynamic programming~\cite{zhang2016solar} approach similar to us. Other papers deal with global, network-wide optimization problems like the integration of duty-cycling and routing~\cite{han2015cross}. In the next sections we present our model of energy production, then the task model that runs in an IoT node, and the scheduling problem.


\section{System Model}\label{section:system}

We consider energy-harvesting devices equipped with several energy-harvesters, able to extract energy from different sources found in the natural environment, for instance from the Sun or from the wind, thus making use of unending energy sources, with the purpose of keeping the operation of the device. In this paper, we are considering multiple energy harvesters that contribute simultaneously to increase the overall energy production. On the other hand, since the energy that is extracted is hardly controllable, one or several of these productions could be interrupted for short periods of time, which makes still necessary to recharge the devices' batteries, with the purpose of sustaining the minimal operation of the device even in periods of scarce or null production. 

%A.	Energy Consumption Model, %How the battery is decreased
The operation of the device can be defined in terms of tasks. Let us define a task as an instance of an application that comprises several activities like computing some function, sampling sensors, or sending messages to other devices. We denote as $\mathcal{T}$ to the set of $n$ tasks belonging to one application, i.e.  $\mathcal{T}=\{t_1, t_2,\ldots, t_n\}$. Each task $t_i$, $i\in[1,n]$ is associated with a utility $u_i$, which is defined as the utility gained by the device when $t_i$ is executed, and a cost $c_i$ which is defined as the charge expenditure due to the execution of $t_i$. In order to indefinitely prolong the execution of the application, we discretize a fixed finite time of window $T$ (for example, a day) into $k$ slots of duration $\tau=\frac{60\times 24}{k}$ minutes, which we assume to be an integral fraction of an hour. The system scheduler should be periodically executed at the beginning of each time of window to find the best assignment of tasks to slots such that the maximal overall utility is achieved at the end of the reference time $T$. 

Let us also characterize the battery of the device by a minimal $L_{\min}$ and a maximum $L_{\max}$ level of charge, where the first is the minimal level that could keep the node operating while the latter is the maximum capacity of the battery. We denote as $L_i$ to the level of the battery at the beginning of slot $i$, with $i\in[1,k]$ and we denote with $L_{k+1}$ to the battery level at the end of slot $k$. Ignoring for the moment the use of energy harvesters that could increase the battery level, the device's battery will be discharged at a rate that depends on the consumption of the task being executed, specifically the time to deplete the battery will be $\frac{L_{\max}}{I}$, where $I$ is the integral of the current consumptions of the components involved in the execution of the scheduled task. 
%B.	Energy Production Model
% how much energy is produced and how it increases the battery level

In our system, we consider the simultaneous usage of multiple energy-harvesters able to recharge the battery level of the device. To this purpose, let us define  $\mathcal{S}$ as the set of $m$ energy-harvester sources (with $m\geq 1$) attached to the device. In a given slot of time $i$, each energy-harvester source $s\in\mathcal{S}$ provides an amount of charge $\phi_i(s)$. Thus, we denote as $\Phi_i$ to the overall charge in slot $i$ computed as the sum of the charges provided by each individual source:

\[ \Phi_i=\sum_{s\in \mathcal{S}} \phi_i(s) \]

where $\Phi_i$ can be accumulated into the battery up to achieve the maximum capacity $L_{\max}$, which cannot be exceeded. 
For a practical use of our system, we trust in some service of forecasting of the energy that can be produced by each energy-harvester device, which could differ from the actual charge. We denote with $\psi_i(s)$ to the expected charge from the source $s\in\mathcal{S}$ in the slot $i$. Thus, the overall expected charge $\Psi_i(s)$ comes given by the sum of the contributions of all of them:

\[ \Psi_i=\sum_{s\in \mathcal{S}} \psi_i(s) \]

Usually the weather forecast service has limited accuracy, but could provide information from which we can derive the expected production of each harvesting source with a bounded expected error between the production that is forecasted and the real one. 
Let us define with $\xi_i(s)$ to the relative error of the source $s$ in a specific slot $i$ with regard to the expected amount of charge, that is computed as:
\[ \xi_i(s)=\frac{\phi_i(s)-\psi_i(s)}{\psi_i(s)} \]

An upper bound of $\xi_i(s)$ is $\varepsilon(s)$, which is the maximum relative error of the source $s$ with high probability; then we denote with $\varepsilon_i$ to an upper bound of the absolute error of $\Psi_i$ and we compute it in the following way:
\[ \varepsilon_i=\sum_{s\in S} \varepsilon(s)\Psi_i\]

The values of $\varepsilon_i$ are upper bounds of the absolute error. As we will see in the next section, we use those values to set the level of the battery that we want to achieve at the end of the scheduling period, or for a longer period of time, like an entire week.

\section{Scheduling problem and algorithm}\label{section:algorithm}

The proposed model of energy harvesting, battery and consumption is used by the device to schedule the tasks in order to maximize the overall utility and, at the same time, to keep the battery at a level of charge that can keep the device operative for an indefinite time. The algorithm is executed by the device at the beginning of a time window and to assign the appropriate task to each slot. The size of the time window can be arbitrary, but, considering that solar panels are widely used and that they have a cycle of production of 24 hours, it is convenient to describe the algorithm referring to time windows of one day, and slot duration that are integral fraction of hours. We also assume that the device runs the scheduling algorithm every day at midnight, using weather forecast available for the next day, and starting at the beginning of slot $1$.

The scheduling problem consists in finding an assignment of one task for each slot so that the sum of the utilities of all the tasks is maximum, subject to some constraints due to the battery. In particular, the battery level $L_i \geq L_{min}$ for all slots $i$ in the day and the final battery level $L_{k+1}$ should be greater or equal to a given Short-term Target Level $STL$. Let $A=[a_{i,j}]$ be the $k \times n$ matrix that represents the assignment of a task to a slot, so that $a_{i,j}=1$ iff task $t_j$ is assigned to slot $i$, and $a_{i,j}=0$ otherwise.

The scheduling problem can thus be formulated as:
\begin{table}[h]
\begin{problem}[\emph{Max Utility Task Scheduling}]\label{optproblem}
\begin{align}
\mbox{\emph{maximize}} \quad u = \sum_{i=1}^k \sum_{j=1}^n a_{i,j} u_j  \quad& & \\
\sum_{j=1}^n a_{i,j} = 1  \quad & &\\
a_{i,j}  \in \{ 0, 1 \} \forall i \in [1,k], j \in [1,n]  \quad & &\\
L_{i+1} = \min\bigg\{L_{\max}, L_i + \eta [(\Psi_i-\varepsilon_i) -\sum_{j=1}^n a_{i,j} c_j]^+ % a_{i,j} c_j] 
\nonumber \quad   & &\\ 
- [ \sum_{j=1}^n a_{i,j}c_j - (\Psi_i - \varepsilon_i) ]^+ \bigg\} \forall i \in [1,k] \quad &&\\
L_{\min} \leq L_i  \forall i \in [1,k] \quad & &\\
L_{k+1} \geq STL  \quad & &
\label{eq:ilp}
\end{align}
\end{problem}
where $[x]^+ = \max(x,0)$
\end{table}

Where the objective function~(1) is the sum of the utilities of the scheduled tasks, under the constraints~(2-6). In particular, constraints~(2) and~(3) state that to a slot can be assigned exactly one task; constraint~(4) relates the battery level at the beginning of slot $i+1$ to the battery level at the beginning of the previous slot, to the expected charge provided to the battery and to the consumption due to the execution of the task in the slot~\cite{Kansal:2007}; the value of $\eta \in [0,1]$ models the efficiency of the battery, while constraint~(5) states that the battery level in each slot cannot be smaller than the minimum battery level $L_{min}$ and, finally, constraint~(6) states that the battery level at the end of the day should be at least the Short-term Target Level $STL$.

Note that, in this formulation we consider the pessimistic case in which the battery charge expected in each slot equals the minimum possible, i.e. it is $\eta(\Psi_i-\varepsilon_i)$ for each $i$, which is a lower bound to the actual battery charge $\Phi_i$ with high probability. This guarantees that the system will meet the constraints even with the actual battery charge.

The formulation of problem is similar to the problem in \cite{energy_PUC}, which is known to be NP-complete, for which we propose an algorithm based on dynamic programming. In the following, if $n$ is the number of tasks in the system, and $STL$ is the short term level, we consider the problem of statistical optimal scheduling, energy neutral with respect to $STL$, i.e. the residual energy level in the battery, at the end of the period, must be greater than $STL$, and define the system \emph{state} as a pair of integer $(i,l)$, we associate to each pair a subproblem with value $opt(i,l)$ that considers the slots from $i$ to $K$ and with initial battery level $l$. Note that the solution of the complete problem is given by $opt(1,L_0)$, this function is defined in the following Lemma:

\begin{lemma}
The optimal solution of Problem~\ref{optproblem} is given by $Q^* = opt(1,L_1)$ with
$opt$ defines as the following backward recursive Bellman's equations:
\begin{eqnarray}
opt(K,l)=\max_{t=1\ldots n} \{\; u_t \;|\; l-c_t +\eta*(\Psi_K-\varepsilon_K) \geq STL \;\} \\
opt(i,l)=\max_{t=1\ldots n} \{\; u_t + opt(i+1,g(l,t)) \;|\; g(l,t) \geq L_{\min} \;\} \nonumber \\
\text{ with: }  g(l,t) = \min \{ L_{\max}, l - c_t + \eta * (\Psi_i- \varepsilon_i)\} \nonumber
\end{eqnarray}
\end{lemma}
\begin{proof}
The base case is the subproblem with only one (last) slot to schedule. In this case, we select the best feasible tasks, if $l$ is (by definition) the energy at the beginning of this slot, the overall energy available is $l + \eta*(\Psi_K-\varepsilon_K)$, with $\Psi_K$ the forecasted total production and $\varepsilon_K$ an estimated upper bound to the average error in the forecast. Since we are in the last slot and the entire schedule must be energy neutral, we must save at least $STL$. Hence we schedule the higher utility task $t$ with $c_t \leq l - STL + \eta*(\Psi_K-\varepsilon_K)$.

The second definition gives the recursive form of the dynamic programming approach: We consider slot $i$ with an initial level of battery $l$, let $g(l,t) = l + \eta*(\Psi_i-\varepsilon_i) - c_t$ be the level of the battery if we schedule task $t$; if $g(l,t) \geq L_{min}$  task $t$ is feasible and the utility of the schedule with $t$ assigned to slot $i$ will be $u_t$ plus the optimum schedule that we obtain (recursively) starting from slot $i+1$ with a battery level of $g(l,t)$. In the definition, we consider all possible feasible $t$ and select the best one. So evaluating $opt(1,L_1)$ we obtain the optimal schedule.
\end{proof}

The above equations lead directly to the following pseudocode of a dynamic programming algorithm that finds in pseudo-polynomial time the optimal schedule.

\begin{algorithm}\small
%	\SetKwSty{texttt}
	\KwData{Battery Levels, Estimated Solar Output, Estimated Error Averages}
	\KwResult{Short Term Level Neutral Scheduling}
	\SetKwFunction{OptSchedule}{OptSchedule}
	\SetKw{KwBy}{by}
	\SetKwBlock{Beginn}{beginn}{ende}
	\BlankLine
	\SetAlgoLined
	
	function OptSchedule{(Tasks,K,$L_{max}$,$L_{min}$,STL,$\varepsilon$)}\\
	\Begin{
    opt $\gets$ schedule $\gets 0$;\\
	\For{$i \gets K-1$ \KwTo $0$ \KwBy $-1$}{
    	\emph{Evaluate $\Psi_i$ from the weather forecast data}\;
	    \For{$l \gets 1$ \KwTo $L_{max}$}{
			$opt[i][l] \gets schedule[i][l] \gets 0$;\\
			$u_{max} \gets -100$; $id_{max} \gets -1$;\\
			\For{$t \in$ Tasks $= \{1,\ldots,n\}$ }{
				\uIf{($i = K$ and\\
		    \mbox{}\phantom{\textbf{if} \itshape(}$l - c_t + \eta * (\Psi_i - \varepsilon_i) \geq STL$ and\\
			\mbox{}\phantom{\textbf{if} \itshape(}$M[i][l] < u_t$)}
			 {
			 	$opt[i][l] \gets u_t$;\\
				$schedule[i][l] \gets t$;
			 }\Else{
			 	$lr \gets \min(l - c_t + \eta * (\Psi_i- \varepsilon_i), L_{max})$;\\
				\If{$lr \geq L_{min}$}{
					$u \gets opt[i+1][lr]$;\\
					\If{($u \neq 0$ and $u+u_t > u_{max}$)}{
						$u_{max} \gets u+u_t$;\\
						$id_{max} \gets t$;
					}
				}
			 }
		   }
		   $opt[i][l] \gets u_{max}$;\\
		   $schedule[i][l] \gets id_{max}$;
	    }
	}
	}
\caption{Dynamic Programming Procedure to optimally solve the Statistical Energy Neutral Scheduling Problem.}
\end{algorithm}

One important aspect in the configuration of the algorithm is the value assigned to the Short-term Target Level $STL$. In conventional approaches, the objective is to keep the device energy neutral, i.e. the battery level at the end of the day should be greater or equal to the level that the battery had at the beginning. If we set $STL$ following the same approach, i.e. $STL \geq L_1$ , then taking the case of a week of operation, the scheduler is forced to provide an energy-neutral schedule for each day, i.e. the battery will be always over $L_1$, even if, the real goal of the system is to be energy neutral on the longer time window of one-week.

Moreover, since our scheduling algorithm assigns the tasks to the slots under the worst-case hypothesis that the actual battery charge will always be equal with the minimum possible, the result will be that, in presence of a charge $\Phi_i>\Psi_i-\varepsilon_i$ (which will happen with high probability), the possibility that the battery reach $L_{\max}$, wasting energy from the harvesters, without properly increasing the utility of the tasks.

The approach that we propose in this paper, is to set the value of $STL$ taking into account the knowledge about the bounded error between the forecasted energy and the real production. Setting a long-term level $LTL = L_1$ and  $STL = LTL - \sum_{i\in[1,k]}\varepsilon_i$ we produce a schedule that optimizes the utility of tasks and is on the average above or equal $LTL$ anyway.

% \section{Application of the energy harvesting model}\label{section:arduino}
% 
% Given the abstract energy harvesting model defined in Section~\ref{section:system}, we show now how it can be instantiated in a specific case. We consider an Arduino-class IoT device powered with two energy harvesting sources, namely a solar panel ($s_1$) and a wind turbine ($s_2$) (hence $\mathcal{S}=\{ s_1, s_2 \}$).
% 
% The solar panel converts the solar light into electricity to recharge the battery. In turn, the amount of charge depends on the amount of energy it can transform into electricity, that depends on physical properties of the panel like specific manufacturing technology, orientation and size, on the geographic position of the panel and on the weather conditions. The technology affects the energy conversion efficiency of the panel, the orientation and size determine the fraction of sun irradiance that the panel can receive, the geographic position determines the irradiance provided by the sun in the location of the panel, and the weather conditions determine how much of the sun irradiance is absorbed or reflected by the clouds. It is thus clear that, if all these parameters are known, it is possible to forecast with a good accuracy the actual charge given by the solar panel. To this purpose, we refer to the model of hourly solar generation that we proposed in~\cite{Escolar2016}. The model computes the hourly irradiance for every day in the year, in any geographic location on the Earth, assuming a day perfectly clear of clouds. On the other hand, this model can be generalized by considering different weather conditions concerning the density and height of the clouds. A simple generalization consists in providing a classification of the cloud conditions according to a scale, and to provide a corresponding value of residual irradiance on the panel in those conditions. Following this approach we define $\kappa_{s_1(h)}$ the charge that a specific panel in a specific place can provide in a given hour $h$, by taking into account the cloud conditions in that hour, and $\epsilon(s_1)$ an upper bound to the difference between $\kappa_{s_1(h)}$ and the real production. 
% 
% From a practical point of view, the value of cloud conditions can be obtained from any service providing local weather forecasts in a little advance and with a reasonably good accuracy (as suggested by ~\cite{Sharma10cloudycomputing} up to 3 days). In this way the device can easily produce the information about the expected energy charge from the solar panel in each hour of the day (similarly to what is also proposed in~\cite{Sharma10cloudycomputing}) and it can thus feed the task scheduling algorithm accordingly.
% 
% For what concerns the wind turbine, it converts the rotation speed of the rotor (powered by the wind) in electricity that charges the battery. The amount of charge it can provide depends on the rotation speed of the rotor that is proportional to the wind speed. Note however that the production of electricity is null if the wind speed is below a minimum threshold or above a maximum threshold (this for protection of the turbine). For this reason, also the charge provided by a wind turbine per hour can be obtained by a simple model leveraging on the forecast of the wind speed. We adopt the same model as in ~\cite{Sharma10cloudycomputing}, in which the power generated by a wind turbine is proportional to the cube of the wind speed (provided the wind speed is within the operational range), with the following equation:
% \begin{equation}
% power=a \times (WindSpeed)^3 + b \nonumber
% \end{equation}
% 
% where $a$ and $b$ are two constants depending on specific properties of the actual turbine in use. We thus define $\kappa_{s_2(h)}$ the expected charge that a given wind turbine can provide in a given hour $h$, and we let $\epsilon_i(s_2)$ be an upper bound to the differences between $\kappa_{s_2(h)}$ and the real production. Observing that the charge provided by the different energy sources cumulates on the battery, we can express the estimated charge $\Psi_i(s)$ of the battery in the slot $i$ with the source $s \in S$ as $\Psi_i(s)= \tau \times \kappa_{s(h(i))}$. Recalling that the duration of a slot $\tau$ is an integral fraction of an hour and that the number of slots per day is $k$, the slot $i$ in a day belongs to hour $h(i)= i*\frac{k}{24}$ in the same day. 


\section{Evaluation}\label{section:evaluation}


Given the abstract energy harvesting model defined in Section~\ref{section:system}, we show now how it can be instantiated in a specific case. We consider the Arduino UNO-class IoT device powered with two energy harvesting sources, namely a solar panel ($s_1$) and a wind turbine ($s_2$). The Arduino UNO is also attached to a battery, with minimum battery level $L_{\min}=100mAh$ and maximum battery level $L_{\max}=1000mAh$. 

The production of the solar panel follows the model introduced in \cite{Escolar2016}. The model computes the hourly irradiance for every day in the year, in any geographic location on the Earth, assuming a day perfectly clear of clouds. On the other hand, this model can be generalized by considering different weather conditions concerning the density and height of the clouds.

Concerning the wind turbine, the amount of charge it can provide depends on the rotation speed of the rotor that is proportional to the wind speed. For this reason, the charge per hour can be obtained by a simple model leveraging on the forecast of the wind speed. We adopt the same model as in ~\cite{Sharma10cloudycomputing}, in which the power generated by a wind turbine is proportional to the cube of the wind speed (provided the wind speed is within the operational range), with the following equation:
\begin{equation}
power=a \times (WindSpeed)^3 + b \nonumber
\end{equation}
where $a$ and $b$ are two constants depending on specific properties of the actual turbine in use.

We have evaluated our proposal by means of a simulator developed in Python. The objective of the simulation is to demonstrate the continuous operation along the time for an IoT device equipped with multiple energy-harvesters when the energy-neutrality condition is relaxed. For this purpose, our simulator determines the assignment of tasks to slots for a long-term execution of an application under different error levels, and then computes the average remaining battery level and the corresponding average utility provided at the end of the considered period. We are also interested in knowing how far is the final average battery budget from the optimal value given by $LTL$.

\begin{figure}
\includegraphics[width=0.48\textwidth]{S-V-5}\\
\includegraphics[width=0.48\textwidth]{H-V-10}\\
\includegraphics[width=0.48\textwidth]{C-V-15}\\
\caption{Battery level at the end of each day with $\varepsilon=0.05$ (above), with $\varepsilon=0.1$ (center) and with $\varepsilon=0.15$ (below)}
\label{fig:battery-24-Jan-sunny}
\end{figure}

Since the solar energy production has a natural cycle of 24 hours, we consider a time frame of $T=24$ hours, which we discretize in a number of $k = 24$ slots per day of duration $\tau =$ 1 hour. 
Then, we generate the expected charge due to $s_1$ and $s_2$ and the actual charge such that, the latter will have a maximum relative error (equal for both sources) as $\varepsilon \in \{5\%, 10\%, 15\% \}$

The energy production from a wind turbine $s_2$ attached to an Arduino device is computed by using the data provided by the forecast website Weather Underground \footnote{Weather Underground: \url{https://www.wunderground.com/.}}, which provides a complete list of weather data for any location around the world, including the wind speed (in Km/h). We obtained the average, maximum, and minimum daily wind speed in Ciudad Real (Spain). Thus, for a specific day of the year, we defined an scenario where we assign to each slot $i\in[1,k]$ an energy production computed by using the average wind speed. 

Our simulator generates a large set of $A=50$ applications, where each application is composed by a random number of tasks $n\in[6,10]$. Each task is provided with a random utility $u_i\in[0,100]$ (in percentage) and a cost $c_i$ (in mAh), which is a function of a duty cycle $dc_i\in[0.01,1]$ randomly generated; i.e. $c_i=dc_i\times I_{active}+(1-dc_i)\times I_{idle}$, where $I_{active}$ and $I_{sleep}$ correspond to the average currents (in milliamperes) in active and idle state, respectively, of the platform where the task is executed (specifically for Arduino UNO, $I_{active}=50$ and $I_{sleep}=30$). The cost of the task per slot in mAh is then computed as $\frac{c_i}{24}$. Each application is provided with an idle task $t_0$, with a utility $u_0=1$ and a duty cycle $dc_0=0.01$, which guarantees the sustainable operation of the application under conditions of scarce production. Without loss of the generality, we assume that the higher utility, the higher cost, i.e. given two tasks $t_1=\langle u_1,c_1\rangle$ and $t_2=\langle u_2,c_2\rangle$, if $u_1<u_2$ and $c_1\geq c_2$, then $t_1$ is inefficient and it could be excluded a priori. 

We are interested in knowing the battery levels and the average utility for $A$ applications at the end of each day along a timeframe fixed to be 1 week, and for the different values of $\varepsilon$ considered. Figure~\ref{fig:battery-24-Jan-sunny} shows three box plots corresponding to three different values of $\varepsilon=0.05$ (above), $\varepsilon=0.1$ (center) and $\varepsilon=0.15$ (below). They show the distribution of the ending battery levels for each day of the week in the month of January (one of the months with most scarce solar production). The axis $x$ of the figure shows the days and the axis $y$ shows the battery levels in the range $[L_{\min},L_{\max}]$; $STL$ and $LTL$ are also highlighted with horizontal red lines. As observed, the larger the  $\varepsilon$, the larger the  difference between $STL$ and $LTL$. In each plot, the seven boxes represent the minimum and maximum value of the battery level each day of the week, as well as the quartiles  Q1, Q2 (median) and Q3. The atypical values or outliers are represented with the symbol '+'. As observed, the larger the $\varepsilon$, the larger the distance between the minimum and maximum value. For small values of $\varepsilon$, the deviation between the forecasted and the real production is also small, and the values of $STL$ and $LTL$ are closer, since $STL = LTL - \sum_{i\in[1,k]}\varepsilon_i$ (note that if the last term is 0 we will have a perfect forecast). When $\varepsilon$ increases, the deviation between the forecasted and the real production also increases, which means that the accuracy of the forecast is lower. Since we are using an upper bound on the error, the utility returned by the scheduler decreases with respect to the same experiment with lower errors. In the three boxplots, the ending battery values are larger than $STL$ and $LTL$. 

Finally, in Figure~\ref{fig:quality} we compare the average utility (in percentage) achieved after running the set of $A$ applications each day of the week. As observed, $\varepsilon$ impacts meaningfully on the overall utility achieved: the larger the $\varepsilon$, the lower the average utility. Specifically, utility ranges between $[80,85]$ in the best case (with $\varepsilon=5\%$), and between $[60,75]$ in the worst case (with $\varepsilon=15\%$).

\begin{figure}
\includegraphics[width=0.5\textwidth]{quality}
\caption{Average utility obtained in the month of January, after the execution of $A$ applications, for three different  $\varepsilon$. }
\label{fig:quality}
\end{figure}


\section{Conclusions and Future Works}\label{section:conclusions}
In this paper we presented a scheduling algorithm that produces an optimal schedule of tasks to run in an IoT device equipped with multiple energy-harvesting devices.
The schedule is $LTL$-energy neutral on the long run on average, and $STL$-energy neutral after each day. We defined that value of $STL$ as a function of the final $LTL$ level and the total expected error in the forecasted production (based on weather forecast data). As a future work, we will investigate on learning algorithms to better capture the error between the forecasted and the real harvested energy, and the tradeoff concerning costs/lifetime due to different hardware configurations with solar panels with different capacities.
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