
1

A Dynamic Programming Algorithm for High-Level
Task Scheduling in Energy Harvesting IoT
Antonio Caruso, Stefano Chessa, Soledad Escolar, Xavier del Toro and Juan Carlos López

Abstract—Outdoor IoT applications usually exploit energy har-
vesting systems to guarantee virtually uninterrupted operations.
However, the use of energy harvesting poses issues concerning the
optimization of the utility of the application while guaranteeing
energy neutrality of the devices. In this context, we propose a
new dynamic programming algorithm for the optimization of
the scheduling of the tasks in IoT devices that harvest energy by
means of a solar panel. We show that the problem is NP-Hard
and that the algorithm finds the optimum solution in a pseudo-
polynomial time. Furthermore, we show that the algorithm can be
executed with a small overhead on three popular IoT platforms
(namely TMote, Raspberry PI and Arduino) and, by simulation,
we show the behavior of the algorithm with different settings and
at different conditions of energy production.

Index Terms—Energy Harvesting Sensor Networks, Schedul-
ing, Dynamic Programming.

I. INTRODUCTION

Several Internet of Things (IoT) applications make use
of wireless sensors deployed outdoor that harvest energy by
means of solar panels and rechargeable batteries to sustain
their operations [1]. Such sensors monitor the surrounding
environment by means of on-board transducers, they process
and store locally the sensed data and they transmit the results
of their elaboration through the Internet to remote users. With
the growing capabilities of sensors (in terms of processing,
storage and communication), due to the development of
the technological platforms on which they are built, it is
now possible to embed in the sensors relatively complex
data processing functions even based on machine learning
technologies [2]. Furthermore, it is possible to make the entire
software of the sensors flexible enough to meet the constraints
coming from their energy production subsystem, and to give
them a virtually unlimited lifetime.

In the past years, research on energy harvesting sensors has
focused on developing strategies aimed at making them energy
neutral, i.e. such that, within a given time frame, their energy
consumption equals their energy production, thus leaving the
sensor with the same amount of energy it had at the beginning
of the time frame. This approach is particularly effective when
applied to environmental monitoring sensors that harvest solar
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energy, because this energy is, to some extent, predictable and
this fact fits well the typical operational mode of the sensors.
In fact, they usually sample environmental parameters with
a given duty cycle and hence have a very well predictable
energy consumption, that keeps the same pattern over time.
Thus, predicting the energy production allows to modulate the
duty cycle of the sensors accordingly and to keep the sensors
energy neutral [3]. Other works also observed that it is possible
to modulate the energy consumption of the sensors acting
on other parameters than just the duty cycle. For example,
a sensor may scale down the frequency of its processor to
consume less (although with a reduced performance) when
the energy production is lower [4], or optimize the radio
communications [5], or it may switch to a less consuming
transducer (possibly with a degraded resolution or accuracy).
A recent survey of power management technique in energy-
harvesting sensor networks is published in [6].

Most of these solutions operate at low level with a fine
tuning of the duty cycle and assume a strong integration of the
software components of the sensors application as in TinyOS
[7], for example. On the other hand, recent trends in IoT are
pushing the technology towards a (relatively) more capable
platforms, like the Raspberry PI, that run traditional operating
systems like Linux or WindowsIoT. In these cases, the IoT
applications can be modeled by tasks that are scheduled by
the operating system. Following this trend, in some of our
recent works [8], [9], [10], [11] we modeled all these possible
strategies to modulate the energy consumption of a sensor by
assuming that the software of the sensor may be structured
in several, alternative tasks, each characterized by an energy
consumption and a quality of service (QoS). The idea is in
part similar to the Multi-version Tasks System used in [12], i.e.
all the tasks respond to the same monitoring problem, but with
a different performance (and thus a different QoS), either in
terms of quality of the data produced (for example because
tasks may use different transducers with different specifications
in terms of resolution, accuracy etc.) and of quantity of the
data (for example by modulating the sampling rate). In those
works we proposed a greedy heuristic to choose the scheduling
of the tasks to guarantee the energy neutrality of the sensor
while attempting to maximize the QoS.

In this work, we reconsider the algorithms used to solve
the problem of finding an optimal, energy neutral scheduling
of the tasks (which is NP-hard), and we propose a new
algorithm based on dynamic programming. Differently from
our previous works, which adopt greedy algorithms (and
thus, in general, they do not find the optimal solution), this
new approach based on dynamic programming actually finds
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the scheduling of the tasks that maximizes the QoS within
the constraint of energy neutrality. This result is possible
because our dynamic programming algorithm explores the
entire space of possible solutions, but it consequently has
a pseudo-polynomial complexity. However, we show that in
realistic platforms and conditions, where the space of possible
solutions is restricted because it depends on the number of
slots and on the number of battery levels that are both limited,
our algorithm results feasible and has a small overhead even
when implemented for low-power platforms.

The remainder of this paper is organized as follows. After
reviewing the related work in Section II, we present in
Section III the design of a real-world sensor node platform
connected to a solar cell-based energy harvesting system and
provide its energy production model as well as the energy
consumption model of the applications. Section IV describes
the system model that supports the scheduling of applications
and formulates the QoS energy-neutral optimization problem.
In Section V we present an algorithm aimed at optimally
solving the scheduling problem on the basis of the solar
energy prediction model proposed and in Section VI we
provide the simulation results. Finally, Section VII discusses
the conclusions and further research.

II. RELATED WORKS

The idea of energy harvesting from the environment is
studied in several papers [13], [14], [15], [16] and more
recently in [17], [6], [18], [19]. A good survey on scheduling
for battery powered sensor nodes is in [20].

In general, energy harvesting in IoT devices can be achieved
by different energy sources, which are classified in [3] based
on their controllability and/or predictability. An example of
controllable source is that based on radio-frequency energy
transmission, where the energy harvested by a node is that
emitted by other special nodes in the same environment. An
interesting issue that rises in devices using this kind of energy
harvesting is that of relay selection [21], [22], [23], [24], [25].
This problem is a special case of the more general problem of
selecting a source-to-sink path in a multihop network of IoT
nodes, and it consists in finding the next hop of a path that
optimizes some parameter like the throughput or the energy
efficiency.

Our work instead, focuses on uncontrollable but predictable
energy sources, namely on solar power, and on the problem
of managing the nodes activities tasks, and thus on their
energy expenditure, so that the nodes’ lifetime can be extended
indefinitely. Most works on energy management deal with the
problem of scheduling tasks: A task takes low-level decisions
like when to sense the environment, the level of duty-cycle of
the radio [3], [26] or on the power used in sending packets [27],
[28]. In [29] a control-theoretic model selects the best sensing
rate according to the estimated future production of the panel.

Kansal et al. [30], [31], [32], [3], [33] model the intuitive
notion of Energy Neutrality. In [3] the problem of selecting
the optimal duty-cycle of a node while maintaining an energy-
neutral schedule is considered, and formalized using a linear
programming model. The model is solved using a heuristic

based on a greedy approach, i.e. the finite horizon (a day) is
divided in slots and, according to the knowledge of the expected
future harvested energy, slots are classified as dark or sunny.
The initial duty-cycle assignment is simple: the maximum
possible duty-cycle in sunny slots and the minimum in dark
slots. Then a greedy-style adaptation phase changes the initial
assignment based on the difference between the expected and
the real production of the panel, by increasing or decreasing
appropriately the value of the duty-cycle while maintaining
a feasible (i.e. energy neutral) schedule. Our model is an
extension of the Kansal model, since it uses a more abstract
quality associated to each schedulable task. The resulting model
is more general and complex (solving it optimally is Np-Hard),
but we do not use an heuristic or a greedy algorithm to solve
it, instead we propose a dynamic programming algorithm that,
even if pseudo-polynomial, can compute an optimal solution
in all practical IoT scenarios.

An alternative scheduling algorithm for rechargeable sensor
nodes and with tasks deadlines is LSA (Lazy Scheduling Algo-
rithm) [34]. LSA introduces the concept of energy variability
characterization curve (EVCC), which captures the dynamics of
the energy source, and an offline schedulability test. Given the
EVCC, the battery capacity and the power requirement of tasks
it determines whether all the deadlines can be met or not. The
paper [35] from the same authors presents an on-line scheduling
algorithm that dynamically assigns power to arriving tasks. The
performance of the scheduler is evaluated with simulation and
compared, similarly to this paper, to a greedy approach as
the base case. The task model with deadlines used in LSA
is more appropriate to a scenario with real-time scheduling,
with a scheduling algorithm that act frequently. In our work
instead, we follow a different approach to study and design a
high-level scheduler that acts much less frequently (usually at
least every 5 or 10 minutes) and that is based on a different
task model without deadlines. From the point of view of the
scheduling algorithm, the LSA scheduler is based on a dynamic
programming approach as in our proposed scheduling algorithm.
However, the LSA model of utility of tasks is significantly
different than ours. In particular, it assumes a single task with
continuously adaptable service levels and with concave reward
functions (this assumption enables an analytic study of the
algorithm). In our model instead, we assume several tasks with
discrete levels of allowable utility, which provides a simpler
abstraction for a programmer since it needs to specify just a
discrete value of utility for each task implemented.

Following the concept of energy neutrality, in one of our first
works on the problem of efficient tasks scheduling in energy
harvesting sensors [10], we introduced a multiversion task
programming model, with each task associated with a quality
metric measured in terms of its maximum sampling frequency.
The work studies how to maximize the QoS, i.e. the extent of
the period in which the sensor operates at the user’s desired
sampling frequency. The paper presents a scheduling algorithm
that selects a version of the application to be executed in each
duty cycle, according to the QoS metric, the estimation of the
battery level, and the expected energy production in each duty
cycle. Based on this work, an extended model is presented
in [11], considering for each task its execution time, its cost
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and its duration. The scheduler produces an energy neutral
schedule, built from a first initial assignment of tasks to slots.
After this first assignment, the algorithm, which is based on
a greedy approach, considers the actual energy production to
upgrade or downgrade the schedule.

The works [9], [36] extend the above model and scheduling
algorithm to deal with a networked scenario where all the
sensors in the network are powered by solar panels (the
first paper considers only a sender and a receiver, while
the second considers a star connected network with several
slave nodes and a sink). These papers introduce a protocol
that exchanges information about the battery levels of the
nodes, and the scheduling algorithm, which is a variant of
the Upgrade/Downgrade algorithm, uses this information to
schedule the tasks in the nodes.

Compared to the above work, this paper considers a more
general task model with different, alternative tasks imple-
menting a single application and that abstracts from the task
execution time and duration. In this model we focus on the
problem of finding the optimum tasks scheduling, which we
prove to be Np-Hard, and we propose a scheduling algorithm
that is provably optimal and that can be efficiently executed in
low-power nodes in realistic conditions (despite the problem
being Np-Hard), while the Upgrade/Downgrade algorithms
used in the above works are suboptimal and, in general, do
not find the optimum tasks assignment.

III. SOLAR PRODUCTION AND CONSUMPTION MODELS

In solar energy harvesting, an IoT node is equipped with
solar panels able to harvest the energy from the solar light,
and convert it into electricity to recharge their batteries, with
the goal of prolonging their lifetimes. The amount of energy
that a solar cell may transform into electricity by means of the
photovoltaic effect depends on several factors, mainly related
to the manufacturing technology and the geographic location
where it is installed. Thus, a solar panel operates by taking
as input a certain solar irradiance D (W/m2), which is the
density of incident power on the surface of the solar cell and
provides a maximum power output Pout = D × η × S, where
η is the efficiency (energy conversion efficiency percentage
absorbed by the cell under standard conditions) and S is the
surface of the solar panel. Given a certain Pout, we compute
the energy produced, E, as the time integral of it. Since the
energy produced by the solar panel is stored in a battery in the
IoT applications under consideration, it is common to use the
state of charge of the battery, C (typically measured in mAh),
that can be derived from the energy produced by the panel as
C = E

Vmp
, where Vmp is the maximum power point voltage in

which the solar module operates. Note that the solar charger
and battery losses are neglected in the previous equation. In the
next subsections we detail the hourly solar production model
and the energy consumption model of an IoT node.

A. Solar Energy Production Model

We have proposed in [36] an hourly solar energy generation
model that enables to compute the hourly irradiance D(h),
with h ∈ [0, 23], in any geographic location on the Earth. This

model is based on distributing the irradiance that is accumulated
during a day among 24 hours of the day. The output of the
model provides a curve of solar production similar to a parabola,
with null production at the beginning of the day; approximately
at the sunrise, the solar production starts to grow up to reach
its maximum at noon and then starts to decrease until the
sunset is reached, when the production becomes 0 again. The
problem is that such a parabola depends on the current climatic
conditions and the solar zenith angle (ΘZ), i.e. the angle
drawn by the Sun and the vertical axis of the Earth surface.
In order to compute ΘZ , we take into account the geographic
position where the solar module is deployed (latitude), the
solar declination angle, and the hour of the day. Knowing the
zenith angle and the daily irradiance, which is measured in
some specific location (for instance, obtained from the NASA
program RETScreen [37]), we proceed computing the hourly
irradiance D(h) as D cos ΘZ where ΘZ is the zenith angle
in any h ∈ [0, 23]. After computing D(h) and by assuming
the specifications of each solar panel manufacturer, we can
calculate what is the hourly energy E(h) delivered by any
solar module. To this purpose, we have used the KL-SUN3W
solar module [38] as energy harvester that, according to its
manufacturer, delivers a maximum efficiency η = 12.8% and
supplies a maximum output power of 3 W (voltage at maximum
power Vmp = 5.82 V ; current at maximum power Imp =
0.52 A; short-circuit current Isc = 0.55 A), and whose active
surface is 0.0168 m2. Therefore, the hourly charge that it
provides is C(h) = D(h)×η×S

Vmp
, h ∈ [0, 23]. We use this module

because it can be connected to different sensors and it is
available in our laboratories. However, note that any other
module could be used instead.

B. Energy Consumption Model

A battery is discharged at a rate that depends on the
application being executed, specifically, on the currents of
the hardware components required (e.g. radio, transceivers,
microcontroller) and the time being used. Thus, the time
to deplete a battery as consequence of the execution of an
application is Bmax

I , where Bmax is the battery capacity (in
Ah) and I is the sum of the current consumptions of the
components involved in the execution (in A) in an instant of
time. Analogously, the energy that is produced by the energy
harvester is destined to recharge the battery of the sensor. The
amount of hourly solar charge C(h), expressed also in Ah, is
accumulated in the battery up to achieve its maximum capacity
Bmax, which cannot be exceeded.

IV. IOT PROGRAMMING MODEL

A standard IoT device comprises a microcontroller, a volatile
memory for data and code, a radio for wireless communication,
a set of environmental sensors and/or actuators and in the case
of more complex devices the possibility to access external
storage (i.e. sdcards or other non-volatile storage). The node
is powered by a battery or supercapacitor of finite capacity,
moreover we also assume energy harvesting, hence the node
is equipped with a renewal energy harvesting unit that extracts
power in some way from the environment, for example a solar
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panel. The battery is characterized by an initial level of charge
B1 and a minimum and maximum level Bmin and Bmax where
the first is the minimum level that could operate the node, while
the latter is the maximum capacity of the battery.

A. Tasks in IoT Programming

The application executed by an IoT node can be usually spec-
ified as a finite automaton that executes predefined operations.
For example, if the node is a simple sensor, the application may
repeatedly execute the operations of data sampling, processing,
storage and transmission. The way in which an application is
implemented depends on the underlying platform and operating
system: in a TinyOS-class sensor node an operation can express
an asynchronous operation occurring inside the runtime; while
in a complex node like a Raspberry PI the same concept can
be mapped to a kernel thread in Linux.

On the other hand, an application may have several alterna-
tive implementations, which may differ in the quality and kind
of specific activities performed. For example, an application
that has to sense and send sensed data to a base station may
be implemented just with sense and transmit operations, or it
may also store sensed data in order to improve the reliability
of communications. In this case, the second implementation
may prove to be more energy-expensive but it would provide
a better service. Similarly, a sensing operation may use a
high-resolution, high-frequency and energy-costly transducer,
or it may use a low-resolution, low-frequency transducer that
however consumes less energy. This suggests that alternative
implementations of an application (hereafter called tasks) can
be used to modulate the energy load of a device, so to meet the
constraint of energy neutrality in energy harvesting devices.

Following this observation, we consider an application
that admits n alternative implementations (tasks) T =
{t1, t2, . . . , tn}, each characterized by a different quality qi, i.e.
the utility that a node gains when task ti is executed, and an
energy cost ci that measures the overall power consumption of
the task. Note that this concept of tasks may map over a Linux
thread in a Raspberry PI platform, while it is slightly different
than the concept of task in TinyOS or from the concept of
tasks adopted by other works, such as [8], [9], [36], which
instead define a task as a component of an application.

Given an application and its corresponding set T of n
alternative tasks, we study the problem of scheduling from a
high-level perspective. In particular, we assume that a node
contains the code implementing all the tasks in T , and that,
depending on the energy budget available, the scheduler of the
node can decide at any time to switch from one task to the
other.

We assume that the scheduler operates by dividing the time
in discrete time slots and by assigning a single task to each slot.
Considering that the system under consideration is an energy
harvesting node powered with a solar cell, which have a cycle
of production of 24 hours, it is natural to consider a time frame
T of 24 hours divided in K slots of duration ∆T = dT/Ke.
In this condition the scheduler can be executed once per day
to assign the tasks to the slots based on the expected energy
production of the solar cell, on the expected residual energy

charge in the battery and on the energy costs of the available
tasks, with the objective of maximizing the overall quality of
the tasks executed and with the constraint of keeping the node
energy neutral. Note that, if the conditions of the production
and of the battery charge change in the course of the day, the
scheduler can be executed again to update, for the remaining
part of the day, the task scheduling defined in its previous
execution.

Concerning the quality of a task, we note that it is an
application specific measure, while the cost of the task is a
low-level measure that depends also on the choice of ∆T . This
abstract view captures different low-level operations used to
reduce the power consumption of a task. In [3] the utility is
considered as a linear function of the node duty cycle, and the
authors proceed in optimizing the duty cycle to maximize the
utility, with the constraint that the obtained schedule must be
energy neutral. In this work instead, we consider the utility of
a task as a more abstract measure since duty cycling is just a
way to optimize the node energy consumption together with
other possibilities.

Finally, note that in our model we have deliberately avoided
the definition of the specific functionality for each task executed
on the IoT platforms. Our task model is generic enough to
represent any IoT application with a certain cost and quality.
Note also that both cost and quality are directly related to
the functionality, i.e., the larger complexity degree of the
task, the larger quality and, subsequently, the higher cost.
Consider for instance a specific IoT application composed
of n = 4 tasks, that monitors the environmental temperature
and humidity of a field. This means that there exist n = 4
alternative implementations of the same application. Each task
t0 . . . t3 performs the same functionality but with a certain
quality qi and with a certain energy cost ci. For example, t0
could implement the most basic functionality, by sampling both
sensors at a slow rate (say every 10 minutes) and transmitting
the aggregated sampled data once per day; t1 may sample the
sensors and transmit with a higher frequency, for instance, each
minute; t2 could also store the set of sensed data into the flash
memory of the IoT device for logging purposes. Finally, t3
could also use a more sophisticated version of the humidity
and temperature sensors with an accuracy meaningfully higher
than the basic sensors used by t0 . . . t2. In this example, it
would be c0 ≤ c1 ≤ c2 ≤ c3 and q0 ≤ q1 ≤ q2 ≤ q3.

B. An ILP Model for Energy Neutral Task Scheduling

Considering the K slots of time, the energy production
captured by the energy harvesting unit is represented by the
values ei with i ∈ [1,K], and assumed to be constant in a slot.
The battery is represented with a set of battery levels, from
Bmin to Bmax. We denote with Bi the level of the battery at
the beginning of slot i. In this context, our problem is to find
an optimal assignment of tasks to the different slots from 1
to K such that it is feasible, i.e. the battery level never goes
below Bmin, and the overall schedule is energy neutral, i.e. if
the node starts with a level of battery of B1 > Bmin, at the
end of the time window (at time (K + 1)∆T ), its residual
energy must be at least B1. This problem can be formulated
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as an integer programming problem as follows. Let xij be
Boolean variables, such that xij = 1 iff task j is selected to
be scheduled in slot i. The problem can be stated as:

Problem 1 (Max Energy Neutral Plan Scheduling).

maximize z =
K∑
i=1

n∑
j=1

xijqj (1)

n∑
j=1

xij = 1 (2)

Bi+1 = min

{
Bmax, Bi + η[ei −

n∑
j=1

xijcj ]
+−

−[
n∑
j=1

xijcj − ei]+
}
∀i ∈ [1,K] (3)

Bmin ≤ Bi∀i ∈ [1,K] (4)
B1 ≤ BK+1 (5)

xij ∈ {0, 1}∀i ∈ [1,K], j ∈ [1, n] (6)

where [x]+ = max(x, 0)

The objective function (1) is the sum of the quality of the
tasks selected in all slots, the constraint in (2) implies that
only one task per slot can be scheduled; Equation 3 [3] gives
the battery level at the end of the slot as a function of the
battery level at the beginning, the scheduled task and the energy
produced by the panel. Note that the new battery level is limited
from the above by Bmax, hence if the energy production for
the given slot is greater than the energy cost of the task (cj)
we increase the level of the battery by η(ei − cj); otherwise
we consume all energy produced in that slot and decrease
the residual value (cj − ei). Note that this equation, together
with Inequality 4, guarantees that the battery level cannot go
below Bmin. Inequality 5 is the energy neutrality constraint, it
requires that the value of BK+1 (i.e. the battery level at the
end of our time window of K slots) cannot be lower than the
initial value B1.

This model could be considered an extension of the model
of Kansal [32], [3], but it is more complex. The formulation of
Kansal finds the optimal duty cycle, and expresses the energy
cost and quality directly as a function of the level of duty
cycle used in a given slot. This direct formulation has pros and
cons: on one hand, it directly finds a low-level parameter of
the system (duty cycle); on the other hand, it assumes that the
energy cost is simply a constant Pc times the level of duty cycle
used, this is less general than our model. In fact, we do not
have a single task of which we optimize its duty cycle, but we
schedule different tasks, and the energy consumption of each
task can be different. The problem of Kansal can be solved
with a greedy approach, which starts from the observation that
the slots can be partitioned in two sets: the ones with more
production than consumption and the others, and it assigns a
maximum and minimum duty cycle to the two sets, respectively,
then it reassigns the excess of energy of the sun slots to the
dark slots with a greedy approach. Instead we prove now that
our problem is computationally hard, and no polynomial greedy
algorithm can be used to solve it exactly. Note that a proof

of this theorem has already been presented in [36], but here
we provide a proof based on a different (in some way easier)
reduction.

Theorem 1. The Problem Maximal Energy Neutral Task
Scheduling is NP-Hard.

Proof. We prove the NP-Hardness of Problem 1 by showing
that its decision version is NP-complete. Introducing a positive
constant Q, the decision version of Problem 1 asks for the
existence of a feasible solution with quality at least Q. Since
any feasible solution must be energy balanced (BK+1 ≥ B1),
assuming Bmax = ∞, it must consume at most the energy
produced by the harvesting source, thus if we sum over all
constraints in (3) we obtain that:

n∑
i=1

ci ≤
n∑
i=1

ei

This inequality suggests to start the reduction using a version
of Knapsack. Since in our problem tasks can be used more than
one time, we start the reduction from Unbounded Knapsack
(UBK) [39]. The decision version of UBK is stated as: given
a class of items S = {s1, s2, . . . , sn}, with an unbounded
number of items for each class, and for each item a value
vi > 0 and weight wi > 0, is there a subset of them with total
weight at most W and total value at least Q?

Given an instance of UBK, the only real difficulty to reduce it
to our problem is the choice of K, i.e. the number of slots, since
we select exactly K tasks, while in UBK there is no constraint
on the size of the solution. Note, however, that the maximum
number of items is bounded by k∗ = W/minwi, let the
number of tasks be n+ 1, with qi = vi, ci = wi ∀i = 1, . . . , n
(so quality maps to value, and energy cost to weight) and
cn+1 = wn+1 = 0, i.e. we add an empty task with cost and
quality set to zero, this task is eventually selected when the
optimal schedule comprise less than k∗ tasks. The initial and
minimum battery levels are set to B1 = Bmin = 0 and the
production is e1 = W and ei = 0 for i > 1. This instance
can be created in polytime, now consider a Yes instance of our
problem: if we remove from the solution all the occurrences
of the empty plan we obtain a set of items with total energy
consumption (i.e. weight) at most W and quality (i.e. value)
greater than Q so this is a Yes instance of Multiple Knapsack,
and the reduction is complete.

V. A DYNAMIC PROGRAMMING ALGORITHM

We propose a solution to the optimization problem (1) based
on dynamic programming. We define the state of the system
as a pair of integer values (t, b), and associate to each pair a
subproblem defined as the optimal energy balanced schedule
of the n tasks into slots in the range [t,K], starting with an
energy level of b. Let Q∗ be the optimal solution of problem
1: it can be calculated using a function of the state opt(t, b),
i.e. Q∗ = opt(1, B1). The function opt can be defined using a
formulation as in the following Lemma (note that, for the ease
of notation and without loss of generality, we assume that the
charging efficiency is η = 1):
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Lemma 1. The value that solves Problem (1) is given by
Q∗ = opt(1, B1) with opt defined as the following backward
recursive Bellman’s equations:

opt(K, b) = max
i=1...n

{ qi | b−B1 + eK ≥ ci } (7)

opt(t, b) = max
i=1...n

{ qi + opt(t+ 1, B′(i)) | B′(i) ≥ Bmin }

with: B′(i) = min{Bmax, b− ci + et} (8)

Proof. The base case is the subproblem with only one (last)
slot to schedule. In this case, we select the best feasible tasks,
if b is (by definition) the energy at the beginning of this slot,
the overall energy available is b+ eK but since we are in the
last slot and the entire schedule must be energy neutral, we
must save at least B1. So we schedule the higher quality task
with ci ≤ b−B1 + eK .

The second definition gives the general form of the dynamic
programming recursion: We consider slot t with a level of
battery b, let B′(i) = b + et − ci the level of the battery if
we schedule task i; if B′(i) ≥ Bmin task i is feasible and
the quality of the schedule with i assigned to slot t will be qi
plus the optimum schedule that we obtain (recursively) starting
from slot t+ 1 with a battery level of B′(i). In the definition,
we consider all possible feasible i and select the best one. So
evaluating opt(1, B1) we obtain the optimal schedule.

1 def solve(Tasks,K,Bmax,Bmin,Bstart,E):
2 opt = schedule = np.zeros((K,Bmax+1))
3 for i in range(K−1,−1,−1):
4 for B in range(Bmax+1):
5 opt[i][B] = schedule[i][B] = 0
6 qmax = −100
7 idmax = −1
8 for t in Tasks:
9 if (i == K−1 and

10 B−t[’energy’]+E[i] >= Bstart and
11 qmax < t[’quality’]):
12 opt[i][B] = t[’quality’]
13 schedule[i][B] = t[’id’]
14 else:
15 Br = min(B−t[’energy’]+E[i],Bmax)
16 if (Br >= Bmin):
17 q = opt[i+1][Br]
18 if (q!=0 and q+t[’quality’]>qmax):
19 qmax = q + t[’quality’]
20 idmax = t[’id’]
21 opt[i][B] = qmax
22 schedule[i][B] = idmax
23 return (opt,schedule)

Table I
DYNAMIC PROGRAMMING ALGORITHM THAT SOLVES PROBLEM 1 IN

PYTHON

The equations in Lemma 1 define a recursive function that
solves Problem 1 but with an exponential amount of work. A
dynamic programming algorithm is presented in Table I with
pseudo-polynomial complexity.

A. Complexity Analysis

The code in Table I implements a dynamic programming
solution, using a classic tabular approach, i.e. a matrix of
K × (Bmax + 1) is filled starting from the base case in row

K − 11. Note that the algorithm starts from the last slot (K),
in line 9, were it selects the best task among those that give
an energy balanced budget (first condition). The recursive case
is done in the else: if the algorithm schedules a task t in
slot k < K − 1 then the level of battery after the execution
Br is computed in line 14; if this value is greater than Bmin

the algorithm lookup (in line 16) the value of the optimal
solutions computed from slot k + 1 with that level of energy,
and then it computes the maximum among all feasible plan.
The computation cost is O(KBmax), that is clearly pseudo-
polynomial in the input, the space complexity is of the same
order, but it can be reduced to O(Bmax) since the value of
each row of the matrix is computed using only the values of
one row above. For a practical application of this algorithm
we observe that in most common platforms, the range of
values of the battery is constant, i.e. the value Bmax does not
increase in different runs of the algorithm, so we can consider
the algorithm as having a polynomial time complexity in all
practical applications.

VI. EVALUATION

We have evaluated the optimization algorithm described
in Section V by means of three simulations done on several
IoT platforms, whose operations are sustained by batteries
and with the capability of attaching a solar cell-based energy-
harvesting system to implement the proposed optimization
strategy. Specifically, we consider the Raspberry PI 2 Model
B v1.1 [40], Arduino UNO [41], and Tmote [42] platforms.
In the first simulation, we evaluate the execution time of the
algorithm on the Arduino and Raspberry PI platforms to assess
its feasibility; in the second we evaluate the quality of the
solution found by the algorithm under different simulated
conditions; in the third we compare the quality of the solution
obtained by our algorithm against the algorithm presented in [8].
To the purpose of the first simulation we have implemented
the algorithm in C (for Raspberry PI) and in the C-like specific
language of Arduino UNO. Instead, to the purpose of the last
two simulations, we have devolped a simulator in Python.

For evaluation purposes, we have considered using the same
battery for the three platforms: a 3.7 V Lithium-Polymer battery
with a capacity of 2000 mAh (Model 803860 manufactured
by Shenzen PKCELL Battery Co. Ltd). For simplicity, it is
considered that the state of charge of the battery (SOC) is
linearly dependent of the battery voltage. The maximum battery
level, Bmax=2000 mAh, corresponds to the maximum voltage
of the battery which is 4.2 V. In order to avoid deep discharges
and preserve the state of health of the battery, in our application,
the battery voltage will not be allowed to go below 3.4 V, which
corresponds to 10% of the total capacity (i.e. Bmin=200 mAh).
It is also considered that a voltage regulator is used to provide
the appropriate supply voltage to each platform, according to
their specifications.

In order to achieve a sustainable operation of IoT platforms
considered, the battery level should always be within the range
[Bmin, Bmax]. Additionally, we fix a starting battery level
B1 = Bmin + Bmax−Bmin

2 . The battery pack is recharged using

1Python uses zero base indexes for array or matrix.
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the KL-SUN3W solar cell-based energy-harvesting system
described in Section III. The rate in which the battery level is
increased by the panel depends on, among other factors, the
solar production in some location. To this end, we consider the
city of Madrid in Spain (latitude 40.42◦), and so we take its
values of average daily solar irradiance D (in KWh/m2/day)
provided by RETScreen [37]: 2.03, 2.96, 4.29, 5.11, 5.95, 7.09,
7.2, 6.34, 4.87, 3.13, 2.13, 1.7, corresponding to the months
of the year from January to December. Since it is known that
the solar energy production is predictable and uncontrollable,
and that its natural cycle is 24 hours, we consider a time
frame of T = 24 hours and a total number of slots per day
K = {24, 48, 72, 96, 120, 144, 240, 288}, with k = K

24 slots
per hour respectively, each one with duration ∆T = 60

k minutes.
Thus, the amount of energy generated in each slot is computed
as Eslot = D(h)×η×S

∆T , and its corresponding battery charge in
mAh per slot is then computed as Eslot

Vmp
× 1000.

In turn, battery is drained at a rate that depends on the
energy efficiency of the hardware components being used
by the application (e.g. radio, sensors, memory), and on the
application execution model of the IoT platform. For instance,
a platform may integrate a (low-power) microcontroller that
runs a single application (e.g. Arduino, Tmote) or, alternatively,
a microprocessor holding a traditional operating system able to
run concurrently several applications (e.g. Raspberry PI). For
the sake of simplicity, the energy cost due to the execution of
an application on each particular platform may be computed
as the sum of the consumptions when the platform keeps in an
active state Iactive, which represents the average energy cost
(in mA) to run some application plus a consumption in a sleep
or standby mode Iidle, which represents the average energy
cost (also in mA) when the platform is idle, i.e. it is not running
any application. This approach is consistent with the fact that
a certain operation has a different energy cost depending on
the platform where it is executed. In order to compute the cost
of a task on each one of the platforms considered, given its
duty cycle, our simulator assumes the next average values of
current in active and idle state: for RPI Iactive=230 mA and
Iidle=100 mA2; for Arduino Iactive=50 mA and Iidle=30 mA3;
for Tmote Iactive=22 mA and Iidle=0.021 mA4.

Our simulator generates a sufficiently large set of A = 50
applications, each one composed of a set of n ∈ [6, 10] tasks
T . Remind that each ti performs a functionality with a certain
degree of quality, thus, ti is defined by the tuple ti = 〈qi, ci〉,
where qi is its quality (qi ∈ [1, 100]) and ci is its energy cost. In
order to define its ci, i.e. its energy cost in a specific platform,
we first generate a duty cycle of the task dci ∈ [0.01, 0.5]
(expressed on a per unit basis) that is common to all platforms,
and compute its cost per hour in each platform, expressed in
mAh, as ci = dci × Iactive + (1− dci)× Iidle, where Iactive
and Iidle correspond to the currents in active and idle state,
respectively, of the platform where ti is executed. The cost
of the task in mAh per slot is then easily computed as ci

k .

2http://www.raspberrypi.org/help/faqs/#powerReqs
3https://www.gadgetmakersblog.com/arduino-power-consumption/ and https:

//www.arduino.cc/en/Tutorial/ArduinoZeroPowerConsumption
4http://www.eecs.harvard.edu/~konrad/projects/shimmer/references/tmote-

sky-datasheet.pdf

It should be noted that, given two tasks t1 = 〈q1, c1〉 and
t2 = 〈q2, c2〉, if q1 < q2 and c1 ≥ c2, then t1 is inefficient
and it can be excluded a priori. For this reason we assume
that, without loss of the generality, the higher the quality level,
the higher cost. A summary of the parameters used by our
simulator is presented in Table II.

24 48 72 96 120 144 240 288
Number of slots

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
v

g
. 

e
x

e
cu

ti
o

n
 t

im
e

 (
se

co
n
d
s)

Arduino-C

Raspberry PI-C

Linux/x86_64-C

Figure 1. Average execution time of the optimization algorithm on Arduino,
RPI and Linux platforms.

A. Execution Times

We have computed the average execution times taken by
our optimization algorithm running on a Raspberry PI (RPI),
an Arduino, and on a Linux/x86_64 platform, for a set of
A applications. To this end, we developed a C version of
our Python simulator to be run on the three platforms, since
Arduino and Tmote do not support Python (note that Tmote
does not support C but one of its dialects, nesC). Figure 1
depicts the average execution time in RPI and Linux for an
increasing number of slots in a day K ∈ [24, 288] and for
a subset of the slots K = {24, 48, 96} in Arduino, due to
its strong memory constraints (2 KB of SRAM and 1 KB of
EEPROM [41]). As observed, the average computation time
grows linearly with the number of slots in all platforms. The
execution times shown obey to the clock speed of each platform:
the ATmega328 microcontroller of Arduino uses a 16 Mhz
clock, RPI uses a 900 MHz quad-core ARM Cortex-A7 and the
Linux system uses 4 2.4Ghz quad-core Intel processor. Note
that, even for the maximum execution time, the overload due
to the execution of our algorithm is very small: in the worst
case, which is given by Arduino with 96 slots or 4 slots per
hour of 15 minutes, the execution time is 0.8 seconds; this
means a practically negligible overload of 0.08% with respect
to the duration of the slot. The increase of the number of slots
results into a larger execution time but contrasts with a growing
quality (as we show in the next subsections), which pose a
tradeoff between execution time and quality.
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Table II
SUMMARY OF THE PARAMETERS USED IN OUR SIMULATIONS. (∗) SEE DETAILS OF THE TASKS IN TABLE III. FOR THE SIMULATIONS OF Execution time AND

Tasks Allocation ONLY ARE SHOWN THE PARAMETERS THAT DIFFER FROM Quality.

Evaluation criteria Platform Symbol Description Value

Quality Arduino, RPI, Tmote A Number of applications simulated 50
n Number of alternative tasks per application [6, 10]

q Range of quality for the tasks [1, 100]

dc Range of duty cycle for the tasks [1, 50] (%)
K Range of slots per day {24, 48, 72, 96, 120, 144, 240, 288}
B Range of battery levels [200, 2000] (mAh)

Execution Time Arduino K Range of slots per day {24, 48, 96}
A Number of applications simulated 30
B Range of battery levels [0, 50] (mAh)

RPI, Linux K Range of slots per day {24, 48, 72, 96, 120, 144, 240, 288}
A Number of applications simulated 30

Tasks Allocation Arduino, RPI, Tmote n Number of tasks 7∗

B. Quality

With the aim of balancing scalability against performance,
we evaluate here the quality achieved by our optimization
algorithm. Our simulator returns the average quality obtained
by the scheduling of a set of A = 50 applications on an RPI, an
Arduino, and a Tmote platform, with their corresponding task
energy consumptions computed as described before, assuming
the same battery boundaries Bmin and Bmax, a certain solar
production, and a variable number of slots. For each application,
the algorithm finds the energy-neutral assignment of tasks-
to-slots such that its overall quality is maximum. Since the
amount of solar energy that is daily generated impacts on
the assignment of tasks-to-slots and, in turn, on the overall
quality, we evaluate twelve different scenarios of generation
corresponding to the twelve months of the year.
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Figure 2. Solar energy distribution for 24 slots in a day and for all months
of the year.

Figure 2 shows the hourly energy distributions among K =
24 slots when the KL-SUN3W solar panel is used as energy
harvester and installed in Madrid. Although the amount of solar
energy that is generated is based on the KL-SUN3W panel
specifications, in order to guarantee the execution of the whole

set of A in the three platforms, i.e. to schedule the task of
lowest duty cycle of each A (therefore, with the minimum cost
and minimum quality), we had to resize the panel accordingly
to each platform. To this end, we proceed to find the lowest
integer factor such that A becomes feasible in all platforms.
In the case of RPI and Arduino we had to scale the size S
multiplying by a factor of 7 and 2, respectively; however, for
supporting the execution of A in Tmote we were able to reduce
S by a factor of 10.

Figure 3 on the left shows the average quality delivered
for the simulation of A applications assuming a RPI platform,
working in all months of the year, with different number of
slots per day K = {24, 48, 72, 96, 120, 144, 240, 288}, with
values ranging between [70, 100]. Regardless the number of
slots, the larger energy production, the higher quality. Thus,
June and July, the months with the largest production provide
the largest quality whilst December, with the lowest production,
provides the lowest quality. The effect of increasing the number
of slots is shown in this figure. Quality grows with the number
of slots up to converge into the overall maximum quality
with the larger value of K, regardless the solar production. In
general, a larger number of slots results into more assignments
of tasks-to-slots, where the tasks assigned execute for less
time and the production per slot will be less with regard to a
larger number of slots, if we assume that E(h) is uniformly
distributed between all the slots in an hour. Thus, when we
increase the number of slots we reduce in the same proportion
the energy production per slot and the cost of the execution of
the task, which depends on the duration of the slot. This means
that, at least, we can keep running the same task previously
assigned and, alternatively, to exploit the choice of selecting a
new better application, therefore with higher cost and higher
quality, subject to energy neutrality and feasibility conditions.
Since the energy neutrality condition is checked at the last slot
(e.g. BK+1 ≥ B1), in each intermediate assignment of task-to-
slot the algorithm may select a not energy-neutral application
with regard to the individual slot and with higher cost, which
results into a larger average quality. Consider the next simple
example where we have three tasks t1 = 〈80, 2〉, t2 = 〈85, 4〉
and t3 = 〈100, 6〉, an only slot with production p1 = 4 and
an initial battery B1 = 5, Bmin = 0 and Bmax = 30. Under
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Figure 3. Simulation results of a RPI platform: average quality for a different number of slots K (on the left) and the corresponding average remaining battery
level (on the right).
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Figure 4. Simulation results of an Arduino platform: average quality for a different number of slots K (on the left) and the corresponding average remaining
battery level (on the right).
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Figure 5. Simulation results of a Tmote platform: average quality for a different number of slots K (on the left) and the corresponding average remaining
battery level (on the right).

these conditions, the best choice is to select for execution t2, which generates a residual battery of B1 + p1 − c2 = 5 and
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Table III
TEST APPLICATIONS FOR RASPBERRY PI, ARDUINO, AND TMOTE.

Platform/Task T0 T1 T2 T3 T4 T5 T6

dci (%) 2 13 22 29 31 45 47

RPI 〈69,103〉 〈81,117〉 〈88,129〉 〈90,138〉 〈94,141〉 〈96,159〉 〈100,162〉
Arduino 〈69,31〉 〈81,33〉 〈88,35〉 〈90,36〉 〈94,37〉 〈96,39〉 〈100,40〉
Tmote 〈69,1〉 〈81,3〉 〈88,5〉 〈90,7〉 〈94,7〉 〈96,10〉 〈100,11〉

a quality of 85%. Energy neutrality and feasibility conditions
hold. Equivalently, for the same period we could have two
slots with the half production p1 = 2 and p2 = 2, where the
previously selected application runs and delivers an average
quality of 85%. However, a best solution would be to assign
t3 to p1 and t1 to p2, since the battery level at the end of the
first slot is B2 = B1 + p1 − c3 = 4 and at the end of the
second slot is B3 = B2 + p2 − c1 = 5, which keeps energy
neutrality condition and also provides a best average quality of
90%, thus improving the quality achieved with a single slot.

Correspondingly, Figure 3 on the right shows the average
remaining battery in the last slot BK+1 after simulating A
applications. The average remaining battery keeps within the
limits given by B1 and Bmax, which means that energy neutral
solutions were found for A with the different curves of solar
production and for the different configurations of slots evaluated.
The average residual battery level is lower in the months of
lower production, which means that most of the budget is
destined to the applications execution. The residual battery
tends to grow slightly with K; this is another effect of the
division into more slots. The tight deviation between B1 and
the average residual battery in December indicates how close
is the solution to the limit of energy neutrality in this case.

The simulation results of the Arduino platform are repre-
sented in Figure 4. On the left, it is shown the average quality
obtained after scheduling the same A applications for any
K ∈ [24, 288]. In this case, most of the solar productions with
the exception of December and January provide the maximal
quality. On the right, the corresponding average remaining
battery after simulation is shown. Both results confirm the
observations described for RPI. As observed, the average
residual battery is larger than the obtained one on the RPI
platform (the lowest battery corresponds to the two months
indicated), which means that in Arduino we may schedule A
with the maximum quality and we have still also an excess
of battery, which pose the possibility to run more expensive
applications (with highest quality) than those used on the RPI
platform or, alternatively, to resize the solar module. Finally,
the simulation results on the Tmote platform are presented in
Figure 5: on the left, it shows the optimal quality achieved by
the scheduling of the same A applications and, on the right,
it shows the corresponding average remaining battery values,
which are closer to B1 in this case.

Finally, a note about the accuracy of the quality results
provided. The average quality results on the three platforms,
all the months of the year, and for all K, presented a 95%
confidence interval of ±α, with α=0.87 for RPI, α=0.56 for
Arduino, and α=0.44 for Tmote, where α is the maximum

deviation found for each platform and whose values correspond
to the simulation of the month of December with K = 24
slots.

C. Comparison Against Upgrade/Downgrade Strategy

This subsection compares our optimization algorithm with
respect to our upgrade/downgrade strategy (hereafter U/D
strategy) previously proposed in [8]. This latter approach
is based on determining the energy-neutral scheduling that
maximizes the overall quality from an initial assignment, where
the most efficient application, i.e. the one with the highest ratio
between quality and cost, is assigned to all slots. After such
initial scheduling, the algorithm may greedily both increase
(e.g. upgrade) and decrease the quality (e.g. downgrade) by
assigning slot-by-slot the next application less efficient but with
higher quality (in the first case) or the application with the next
lower cost (in the second case). For comparison purposes, we
have randomly generated a single test application composed
of n = 7 tasks with different costs and qualities, where cost
is computed from the duty cycle of the task (see details in
Table III). Next, we report the comparison results in terms of
quality and assignments provided by both scheduling strategies.

Figure 6 on the left shows the quality delivered by both
strategies for the test application described in the third row
of Table III, in the months of March, July, September, and
December, with K ∈ [24, 288] slots. As observed, the quality
delivered by the optimization algorithm is always higher than
the one provided by the U/D strategy regardless the solar
production. Note that the U/D strategy does not report an
energy-neutral solution for the production of December and
for any K. On the right, the corresponding assignments of
tasks-to-slots are presented for K = 96 slots. In this figure,
the y axis represents the task (from T0 to T6) and the x axis
represents the assignment slot (from 1 to 96). Remind that the
larger index of the task, the higher quality. As shown, the most
expensive assignment (with highest quality) corresponds to the
month of July with our optimization strategy (T6 with quality
100% is assigned to all K), whilst the less expensive one (with
lowest quality) corresponds to December in our strategy (T0

and T1 with qualities 69% and 81%, respectively, are assigned).
These two assignments provide the largest quality deviation
(27%).

The same experiment is repeated assuming the Arduino
platform for the test application shown in the fourth row of
Table III. Figure 7 on the left compares the quality achieved
by the optimization strategy against the obtained one by the
U/D strategy. As in the RPI simulation, the quality achieved
by the optimization algorithm is higher than or equal to the
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Figure 7. Quality achieved by the Arduino application shown in Table III, and scheduled according to the optimization algorithm and the U/D strategy (on the
left) and the corresponding assignment of tasks-to-slots (on the right). Legend: OPT: Optimization strategy. U/D: Upgrade/Downgrade strategy.
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Figure 8. Quality achieved by the Tmote application shown in Table III, and scheduled according to the optimization algorithm and the U/D strategy (on the
left) and the corresponding assignment of tasks-to-slots (on the right). Legend: OPT: Optimization strategy. U/D: Upgrade/Downgrade strategy.

one provided by U/D; and as in the RPI simulation no solution
is found by U/D for the production of December. In July,
with both strategies, and during the months of March and

September with the optimization algorithm, the maximum
quality is achieved (100%) regardless K. Note that the
lowest quality corresponds to the month of lowest production
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(December) with our optimization algorithm for only a subset
of K = {24, 48, 72, 96, 120} whilst that for the remaining
values of K, it corresponds to the month of March with the U/D
algorithm. This fact shows that our algorithm better exploits the
choice of the number of slots K to deliver a larger quality even
with a lower solar production. The corresponding assignments
of tasks-to-slots for K = 96 slots can be viewed in Figure 7 on
the right. The best schedule delivers a highest quality of 100%
and assigns T6 to K slots: this schedule corresponds to the
month of July in both strategies and to the months of March
and September with our optimization algorithm). Finally, in
Figure 8 on the left we present the results for the application
executed on a Tmote (see fifth row of Table III). Similarly to
the RPI and Arduino tests, the optimization algorithm achieves
always a higher (or equal) quality than U/D strategy. For
K = 96 slots, the two approaches generate the assignments of
tasks-to-slots presented in Figure 8 on the right.

D. Continue Optimization

Our optimization algorithm uses estimations of the solar
energy that is produced in each slot of time to compute the
optimal scheduling in advance. However, during the real energy-
harvesting system execution it could be observed an excess (or
deficit) of production with regard to the estimation. In such
situations, where the energy that is really harvested differs
from the energy estimated in a certain slot of time, the schedul-
ing originally computed may become invalid or inefficient.
Therefore, a re-optimization is necessary to compute a new
assignment targeted to the new conditions. This subsection
explains how our algorithm behaves under the event of re-
optimization.

The real solar energy production during a day has been
measured to analyze the effect of the divergences from the
estimated one by using the solar module KL-SUN3W, which
is described in Section III. The location chosen is the city
of Ciudad Real in Spain (latitude 38.98◦) and the day was
the 27th of March 2017, which was characterized by frequent
intervals of clouds, resulting in a rather challenging scenario
in terms of solar production deviations, as it can be seen in
Figure 9. The methodology adopted to obtain the measurements
was to measure the short-circuit current (Isc) of the KL-
SUN3W photovoltaic panel every minute by using a digital
multimeter with data-logging functionality (see Figure 10).
The photovoltaic panel was oriented towards the South (i.e. 0◦

azimuth angle) and a tilt angle of 39◦ equal to the latitude of
Ciudad Real. The DC current measurement accuracy of the
Keysight U1242C digital multimeter is 0.1%+2 counts. The
solar irradiance can be derived from Isc, since they are highly
correlated and almost proportional [43]. This is a simple, but
yet effective way of measuring the solar irradiance without
the use of expensive instrumentation (i.e. pyranometers), and
serves for the purposes of this analysis. Assuming that the
short-circuit current and the irradiance are proportional and
neglecting the effect of temperature, the irradiance value
that corresponds to the current measurement can be obtained
multiplying the latter by the constant 1818 W/Am2, which
is obtained from the quotient between the standard condition
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Figure 9. Measured irradiance on the 27th of March 2017 in Ciudad Real
(Spain).

Figure 10. Measurements setup employing the KL-SUN3W PV panel and a
Keysight U1242C with data logger functionality.

irradiance 1000 W/m2 and the Isc value 0.55 A. Power is
finally obtained by multiplying the calculated irradiance by the
effective area and efficiency of the panel.

Figure 11 compares the curves of real and estimated solar
production on 27th March, distributed among K = 24, 144
slots. We have calculated the quality obtained by the execution
of an application on the three platforms of study, when re-
optimization is applied, i.e., we assume the real production
shown in Figure 11. The application is composed of n = 7
tasks whose duty cycles range between [13, 46] and qualities
range between [51, 93]. In this specific case, in which the
real production is lower than the estimations, the algorithm
selects a less expensive scheduling to keep the system energy-
neutral. The results of the simulation are shown in Figure 12.
The re-optimization process adjusts the assignment by means
of a new scheduling whose quality is not always lower than
the ideal scheduling based on estimations, in spite of the
real energy harvested is lower than the energy estimated.
Indeed, as observed in the figure, the qualities delivered by the
optimization algorithm in both cases are very close or even
equal (e.g. Arduino) in all configurations of slots. This means
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Figure 11. Distributions of the real vs. estimated solar production (in mAh) measured on the 27th of March 2017 in Ciudad Real between K = 24, 144 slots.
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Figure 12. Ideal (based on estimations) and real quality achieved by the
optimization algorithm in conditions of underproduction, for an application
executed on RPI, Arduino and Tmote platforms.

that, in case of underproduction, the optimization algorithm
may still, in some case, achieve the same quality than the one
obtained with the expected energy production.

VII. CONCLUSIONS

A new generation of IoT devices, equipped with more and
more sensing, processing, and communication resources, is
now available to support complex and expensive tasks. In
many outdoor IoT scenarios, such as smart cities and smart
agriculture, the problem of empowering such devices may be
faced by means of energy-harvesters, which provide an endless
energy source to sustain the device’s operations, since the
energy is naturally extracted from their surroundings. However,
the energy produced by these energy-harvesting systems, as
the ones based on solar cells, is not controllable. Hence it is
needed to adequately manage the cycles of available energy
and the energy consumption of the applications to maximize
the application utility while ensuring energy-neutrality of the

devices. This paper deals with the optimality of the task
scheduling in solar panel-based energy harvesting systems,
i.e. with the problem of finding the optimal assignment of
tasks along a time frame discretized in a certain number of
slots, such that the overall quality of the tasks executed in a day
is maximized and the device is energy neutral. After proving
this problem to be NP-Hard, we offer a dynamic programming
algorithm able to solve it with pseudo-polynomial complexity
on the number of slots and on the number of levels representing
the battery charge. Note that, in principle, this complexity
does not guarantee an efficient implementation, because the
algorithm has to explore the entire space of possible solutions
to find the optimum. However, we show that, in practical
conditions the space of solutions is limited (since both the
battery levels and the number of slots per day are limited)
and then the algorithm can be implemented efficiently even
in low-power platforms such as Arduino, Tmote or Raspberry
PI. On the contrary, the existing algorithm that are based on
greedy algorithms (and that are efficient in terms of time of
computation) does not find, in general, the energy neutral
scheduling of the tasks which has the optimum quality.

We have implemented our dynamic programming algorithm
in Python to simulate the execution of a large number of
applications on three real-world IoT platforms: Raspberry PI,
Arduino, and Tmote, all equipped with a photovoltaic panel,
and we also have implemented the algorithm in C to test its
execution times in the three platforms. The execution tests on
the real platform showed that the algorithm can be used in
all the three platforms with a small overhead. Concerning the
simulations, they were done with different configurations of
slots, tasks (cost and quality) and solar energy productions.
The results demonstrate that the maximum quality is achieved
with the largest number of slots evaluated, regardless the
solar production, even under the event of re-optimization
(i.e. real production diverges from the expectations). The
optimization strategy is also compared against our previously
published greedy upgrade/downgrade strategy: the results have
demonstrated that the dynamic approach outperforms the greedy
approach. As future works, there are some research line that
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we intend to pursue. The first concerns the evaluation of our
optimization algorithm with real, long-lasting IoT applications
in challenging scenarios of real solar production. A second line
of research concerns the extension of our approach to devices
equipped with several energy-harvesters able to collect energy
from different natural sources (e.g. solar, wind, movement, etc.)
and with the ability of using them in an alternative way when
available.
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