
Testing framework for in-hardware verification of
the hardware modules generated using HLS
Julián Caba, Fernando Rincón, Julio Dondo, Jesús Barba, Manuel Abaldea, Juan Carlos López

University of Castilla-La Mancha, 13071 Ciudad Real, Spain,
email: julian.caba@uclm.es

Abstract—High-Level Synthesis (HLS) allows Field Pro-
grammable Gate Array (FPGA) developers to easily implement
complex applications in silicon, addressing the ever-growing size
and complexity of modern embedded reconfigurable systems.
Unfortunately, in spite of these advancements, new non-negligible
verification problems arise. For instance, the co-simulation strat-
egy may not provide trustworthy results due to the variable accu-
racy of simulation, or hardware synthesis issues (e.g. those related
to signal routing) which are not detectable in the simulation.
Hence, developers need new verification mechanisms to reduce
the gap between the technology and the verification needs. In
this paper, we propose a testing framework and a hardware
verification platform based on FPGA technology in order to
improve the verification accuracy and enable effortless and fully
automatic in-hardware system validation. For instance, one of
the mechanisms is the inclusion of physical configuration macros
(e.g., clock rate configuration macro) and test assertions based on
physical parameters in the verification environment (e.g., timing
assertions). Experiment results demonstrate our approach in the
context of a case study remaining the same testing technology
independently of the module abstraction level.

Index Terms—Design for testability, testing framework, in-
hardware verification, debug, high-level synthesis, FPGA

I. INTRODUCTION

Evolution of System-On-Chip (SoC) requires new design
tools to make optimal use of new devices in order to reduce
the design gap, as well as to handle efficiently the complexity
of the hardware design process [1]. So, High-Level Synthesis
(HLS) tools provide designers with the ability to speed up their
applications or build their own platform components (i.e. Intel-
lectual Property or IP) using algorithms written in a high-level
programming language (HLL) such as C, C++ or SystemC.
The use of these languages is becoming widespread in the
hardware realm since engineers can work at higher abstraction
levels when the requirements can be fulfilled without the low-
level manual hardware design. Thus, engineers are able to
adapt software legacy algorithms providing some goodness
such as adaptability to changes, capability of quickening the
design space exploration process or shorter time-to-market [2].

Unfortunately, in spite of hardware digital design advance-
ments, there is still a significant gap between technology
capabilities and verification needs. Latest studies affirm hard-
ware verification is the bottleneck in the majority of hardware
projects and up to 70% of design time is spent in tasks related
to verification [3]. The situation is exacerbated by the use
of HLS tools because of their limitations which have not
been solved yet. 1) A co-simulation strategy is included by

most HLS tools in order to check the correctness of hardware
designs described in an HLL, reusing the prior software func-
tional tests. However, sometimes the synthesized RTL code
does not work in a real device because of the co-simulation
environment does not take into account some physical aspects
(e.g., routing paths, resource locations). Therefore, engineers
may work at several levels (high-level description, RTL, etc.).
Each level needs a test rewrite because test cases described
for a particular abstraction level are not compatible with other
abstraction levels. 2) The HLS report is not fully accurate since
it always reports the worst case and, perhaps, it is not a realistic
scenario. Thus, hardware designs could work with higher clock
frequencies, for example. 3) Engineer’s experience plays an
important role to generate desired circuits or solutions using
some techniques provided by HLS vendors, such as pragmas.

Therefore, current HLS tools do not meet the verification
engineer needs and neither can they ensure the designs cor-
rectness once they are deployed on real device. Tests must
be re-written which is an error-prone task because of its
manual nature and a design specific hardware verification
platform must be built in order to validate the implementation.
Moreover, the validation of hardware designs introduces new
demands in addition to the mere correctness of the functional
behavior via the comparison of the outputs against a golden
model. For instance, to ensure that the latency of each sub-
block that compose a hardware design is within a range.

In this paper, we propose a hardware verification framework
based on software testing techniques for hardware modules
generated using HLS tools. Our proposal considers the veri-
fication of a design once it has been deployed on the actual
execution platform as part of the process. Thus, we propose
a response to those challenges concerning the validation of
systems explained above. To achieve our main objective our
approach provides the following aspects:

• A testing framework to check Design Under Test (DUT)
behavior using macro assertions and enabling sub-block
testing or grey-box verification.

• Bring some of the physical parameters into the veri-
fication flow using some configuration macros, which
allow engineers to configure the hardware verification
platform in accordance with the profiling of HLS tools
or overclocking the solution generated by these tools.

• A dynamic hardware verification platform to handle the
verification process, enabling self configuration from soft-
ware by configuration macros. This platform is remotely



accessible through a network and decouples the testing
framework from the hardware prototype.

This paper is organized as follows. Section 2 describes the
current progress in hardware verification. Section 3 describes
the proposed hardware testing framework, which is imple-
mented on the architecture presented in Section 4. In Section
5, we present a case study with some experimental results
using our approach. Finally, Section 6 summarizes this paper
and proposes directions for future work.

II. RELATED WORK

In-hardware verification of system components has recently
attracted a lot of attention from the research community on
reconfigurable technology. Most of the works reviewed aimed
to provide partial solutions to the verification problem, mainly
focusing on the development of the testing infrastructure once
the IP has been implemented. Therefore, works such as [4] [5]
[6] propose several FPGA-based testing platforms with spe-
cial emphasis to the communication infrastructure. However,
unlike our approach, these solutions are quite dependent on
the FPGA technology and the tool chain, making it difficult
their reusability in other reconfigurable embedded platforms.

Some works try to follow a more holistic approach to the
verification challenge of FPGA-based systems and offer solu-
tions that go beyond the mere implementation level, extending
the functionality of the testing platform and spanning across
more than one design abstraction levels. For example, [7]
leverages the use high-level artifacts, already present in System
Verilog and SystemC, allowing the functional verification of
the design through co-simulation in pure software domain,
and then verified through co-emulation after implementation
of hardware part onto a specific hardware emulator.

The use of emulation platforms, as it is stated in [8], can also
support the verification of FPGA designs at different concre-
tion levels (e.g., bus functional models versus the actual system
bus) for both the DUT and other system components. However,
the use of emulators implies an important effort overhead when
it comes to the development and maintainability of the testing
framework.

The solution presented in this article shares the UVM
(Universal Verification Methodology) vision which advocates
for a neat separation between the generator of the input test
vectors (stimuli) and the verification environment. This means
that the interface between the DUT and the rest of the testing
infrastructure is kept unmodified, regardless the stage of the
design, enabling the reusability of the testbed. Some works
such as [9] [10] propose in-hardware verification environments
inspired on the principles of UVM. The automated generation
of the verification environment, an interesting feature which is
also supported by our solution, is also proposed by Podivinski
et al. in [11].

Nevertheless, it is claimed that one of the entry barriers for
UVM to be adopted is its complexity and dependability on
an experienced verification engineer. So, several works such
as [12] and [13] pursuit to simplify the operation effort of
UVM-inspired solutions by promoting the reutilization of the

tests through the entire verification flow, independently of the
abstraction level.

One of the major challenges of in-hardware verification of
HLS-generated designs is to provide a mean to increase signal
visibility beyond the barrier which represents the top-level
function or entry point to the design. Therefore, the design
must be instrumented so that the designer can actually see what
is happening behind the scenes. Goeders et al. describes in [14]
a comprehensive hardware monitoring system that traces a set
of signals once the HLS circuit has been synthesized. Though
the functionality of the monitoring infrastructure exposes
interesting features and it is highly optimized, instrumentation
at such low level handicaps understandability and traceability
of the root cause of the problem back to the high level model.
For this reason, [15] and [16] proposes a monitoring strategy
at HLS level, allowing an easier method to identify when
are where a mismatch between the expected and reference
values occurs. However, the price to be paid comes in the
form of an resource and latency overhead as a consequence
of the modification of the original HLS code compared to
HDL-based monitoring methods. [16] performs worse in this
aspect since it forces the inclusion memories and logic to
store and retrieved the signal values. Contrarily, [15] follows
an approach less intrusive, similar to the one implemented
in the solution described in this work, where the probes are
implemented as output stream channels and drove outside the
component. Later, an external component will be in charge to
store, analyze or send out the data to the test manager. The
use of source-to-source transformation techniques by [15] to
free the designer from any extra effort related to the code
refactoring process.

Finally, It is worth mentioning a family of works devoted
to support Assertion-based Verification (ABV) for reconfig-
urable designs by the implementations of HLS techniques
to efficiently support in-circuit assertions [17]. These works
extend the functionality of the hardware monitors so as to
perform on-line value checking of the overseen variables.
Memory requirements are reduced since it is only needed the
registration of the mismatch events.

III. RC-UNITY TESTING FRAMEWORK

In order to lead the whole verification process by means of
the use of a single testing framework, Unity is proposed as the
reference verification environment. The different artifacts and
tools, devoted to validate software programs, will be applied
to HLS designs and adapted to fulfil the new requirements
resulting from the nature of hardware developments [18].
Notice that our proposal verifies hardware designs described
in an HLL, although testing frameworks allow to check the
correctness of individual functions which compose a hardware
design, we only consider those tests that exercise the top-
function.

Firstly, engineers must verify the high-level code which
describes their hardware design, exercising the Design Un-
der Test (DUT) from the top-function. We propose Unity
testing framework, as the reference for RC-Unity, to check



the behavior of hardware modules using HLS. Unity is fairly
portable across unalike platforms, such as 8-bit microcon-
trollers or 64-bit processors, because of it is written in ANSI
C. Unity, and most frameworks, has a variety of assertions
which can be placed in the test to verify the production code.
For instance, the TEST_ASSERT_EQUAL(expected,
current) macro checks the equality between two values:
expected and current.

Once the high-level description of the hardware design is
tested in a purely software domain, the HLS tool translates the
high-level code into RTL code. In this work we use Vivado
HLS from Xilinx. At this stage, we can run the tests (software)
over the RTL model without any change (co-simulation stage).

The last stage generates the configuration file and deploys it
to the hardware verification platform. Therefore engineers have
to build on handmade a custom hardware verification platform
to exercise their hardware designs, however, in this paper, we
propose a hardware verification platform which is configurable
from software (see Section IV). To facilitate the configuration
tasks we have extended the Unity testing framework with the
inclusion of a number of configuration macros (see Table I).
For instance, the tests can annotate the physical parameters,
such as the clock rate to be used or the number of cycles
the clock enable must be set active in order to configure the
proposed hardware verification platform. Moreover, RC-Unity
framework allows engineers to retrieve information about the
latency of the execution test.
RCUNITY_RESET sets the DUT to a well-known ini-

tial state and RCUNITY_CONF_CLK_EN configures a
timer that establishes the operation time of the DUT.
RCUNITY_CONF_CLK_RATE configures the clock rate of the
area where the DUT will be deployed. RCUNITY START
makes the DUT active, starting an internal counter and waiting
for the DUT to complete its operation unless a limit of time
had been established using RCUNITY_CONF_CLK_EN. By
default, the test manager measures the time for an operation
taking as the reference the start signal of the first FU block
(start time) and the first done signal of the first FU block (stop
time) issued by the DUT. This behavior can be modified by
verification engineers, which are given the possibility to al-
ter the standard behavior (RCUNITY_CONF_FU_INPUT and
RCUNITY_CONF_FU_OUTPUT macros) as to the moment the
begin and end counters are started/stopped. Last but not least,
the macros TEST_ASSERT_TIME compares the elapsed time
(retrieved from the platform) against the value of the macro
parameter which expresses clock cycles. Several comparison
operators are available in RC-Unity such as EQ (equal than),
LT (less than), GT (greater than), LE (less or equal than) and
GE (greater or equal than).

Listing 1 shows an example of a test with RC-Unity frame-
work. Firstly, verification engineers configure the hardware
verification platform through the configuration macros, hence
engineers set the clock rate which the DUT works, here
one is able to observe the DUT behavior under overclock-
ing/underclocking conditions, and the number of cycles that
the clock enable is in active high mode (lines 4 and 5 of

Listing 1). Configuration macros are lazy operations, they
take effect after the RCUNITY_START macro is executed
(line 6 of Listing 1). Once the configuration annotations are
executed, the DUT might be set in a well-known state with
the RCUNITY_RESET macro (line 7 of Listing 1). At this
moment, verification engineers can exercise the DUT as a
black box, thus they invoke the top-function (line 8 of Listing
1). This invocation really is a fake invocation because the
DUT is running on hardware and the test runs on software
domain, hence the invocation bridges both domains. Finally,
verification engineers can assert the time elapsed by the test
(line 9 of Listing 1).

Listing 1: Example of a test with RC-Unity testing framework
1 void
2 test_module(){
3 #ifdef HW_TEST
4 RCUNITY_CONF_CLK_RATE(100); // 100MHz
5 RCUNITY_CONF_CLK_EN(200); // 200 cycles active-high
6 RCUNITY_START(); // Configure HW platform
7 RCUNITY_RESET(); // Reset Module
8 result = moduleDUT(stimuli)
9 TEST_ASSERT_TIME_LT(750); // Checking time

10 #else
11 result = moduleDUT(stimuli);
12 #endif
13 for(int i=0; i!=16; i++)
14 TEST_ASSERT_EQ(reference[i], result[i]);
15 }

A. Grey-Box Verification

In Listing 1, we do not use RCUNITY_CONF_FU_INPUT
and RCUNITY_CONF_FU_OUTPUT macros because the hard-
ware design or DUT has been described into a single func-
tion which plays the role of the top-function. Nevertheless,
engineers usually encapsulate their hardware designs into
a top-function which calls upon other functions, hence the
top-function contains nested functions whose functionality is
usually verified as a unique module (black-box verification).
Nevertheless, verifying each function individually enables to
delimit potential bugs, these nested functions are seen as
black-boxes but the overall view of the hardware-module’s
architecture is known by engineers (grey-box verification).

Following the translation process done by HLS tools, nested
functions are translated into functional units (FUs) and are
linked between them to perform the desired behavior. In soft-
ware domain, engineers are able to check the behavior of each
nested function individually, also in a co-simulation domain,
verification engineers only have to change the top-function
to choose the correct nested-function under test and select
the properly test case(s). Unfortunately, in hardware domain,
engineers do not have good solutions to check the behavior
of each FU that compose a hardware design increasing their
visibility, because engineers include some debug artifacts that
do not appear in the final release of their hardware modules.
These debug artifacts can disturb the behavior of hardware
designs.

To increase the verification visibility and to verify the
behavior of FUs chain, we propose to modify the control
data flow graph (CDFG) of the original hardware design. We



Table I: Macros of RC-Unity testing framework

Macro Description

RCUNITY_RESET Sets the DUT to a well-known state
RCUNITY_CONF_CLK_EN(time) Configures the time available to perform a operation. By default 0 (it means no limit

of time)
RCUNITY_START Enables the DUT during the time depicted in RCUNITY_CONF_CLK_EN macro
RCUNITY_CONF_CLK_RATE(rate) Configures the clock rate to perform a operation. By default 100 MHz
RCUNITY_CONF_FU_INPUT(num) Modifies the moment to start the internal counter that measures the time elapsed by

a operation. By default 1
RCUNITY_CONF_FU_OUTPUT(num) Modifies the moment to stop the internal counter that measures the time elapsed by

a operation. By default 1
RCUNITY_CONF_FU(num) Modifies the moment to start and stop the internal counter that measures the time

elapsed by a operation. By default 1
TEST_ASSERT_TIME_XX(expected) Compares the time obtained and expected value in accordance with the comparison

operator

IN IN

OUTOUT

FU_A

FU_B

FU_C

T T'

FU_A

FU_B

FU_C

start_FU_A

start_FU_B

start_FU_C

done_FU_A

done_FU_B

done_FU_C

data_FU_A

data_FU_B

Figure 1: Original DUT vs Modified DUT

duplicate the output of each sub-block (or FU) which contain
a DUT and route that output to the module interface and to
the next FU in order to not disturb the original path (see
Figure 1). Therefore, our proposal exercises the DUT from the
original entry point, but the output point changes in accordance
with the FU under test. Figure 1 shows an example related to
verification of FUs. This example is based on a top-function
(T) which contains three nested FUs (FU_A, FU_B and FU_C),
note each FU depends on the previous one. Thus, if one wants
to verify the intermediate FU_B block, he should include some
extra code to bridge the output of FU_B block to the output
point (right side of Figure 1). Our solution duplicates the
output of each FU except the last FU and adds two additional
signals, start and done, at the beginning and ending of each FU
respectively. Start signal is activated during one cycle before
executing the FU’s tasks, whereas done signal is activated
during one cycle when FU ends its tasks.

Therefore, verification engineers can check intermediate
FUs, but the return values of the FU under test must be
routed to outside and manage them. To manage the new signals
which contain the hardware design, we provide an adapter
that is directly connected to those extra signals and to a
hardware component (Test Manager component, see Section
IV) enabling hardware introspection. Figure 2 illustrates a

IN

T'

FU_A

FU_B

FU_C

start_FU_?

done_FU_?

data_FU_?

agStart

agDone

OUT

adapter

selFU

Figure 2: Overview of generated adapter and the communication with the
original DUT

general overview of the communication between the modified
DUT (T’) and the generated adapter. The start and done
signals are grouped by OR gates while data signals (output data
of each FU) are selected by a multiplexer in accordance with
the selFU signal. Notice that the adapter is more complex
and the figure shows an abstraction of its behavior, moreover,
the adapter is generated automatically from HLS tools.

Now, one can exercise the DUT delimiting the FU un-
der test. Listing 2 shows a new test which verifies the
FU_B block instead of the whole DUT. In accordance with
Figure 2, green arrows are analyzed during the execution
of the test that listed in Listing 2, while red arrows are
ignored and they do not interfere in this test. The config-
uration macros are similar that the previous test (Listing
2), but in this case we use RCUNITY_CONF_FU macro to
measure the time elapsed by the FU_B block, this macro
annotate the value 2 (line 5 of Listing 2), because FU B
block is the second block to be executed and we check the
time elapsed in that FU during the test (line 9 of Listing
2). Further, we can use RCUNITY_CONF_FU_INPUT and
RCUNITY_CONF_FU_OUTPUT macros with the values 1 and
2 respectively to measure the time elapsed by FU_A and
FU_B blocks, thus we are able to retrieve the latency from



the beginning of the stimulation to the end of FU_B block
execution. In this scenario, the moduleDUT invocation returns
the values related to the FU_B block, thus we might compare
them with some golden intermediate values (line 10 of Listing
2).

Listing 2: Example of a test for FU_B (using RC-Unity testing framework)
1 void
2 test_FU_B(){
3 RCUNITY_CONF_CLK_RATE(100); // 100MHz
4 RCUNITY_CONF_CLK_EN(200); // 200 cycles active-high
5 RCUNITY_CONF_FU(2); // Set 2nd FU under test
6 RCUNITY_START(); // Configure HW platform
7 RCUNITY_RESET(); // Reset Module
8 result_FU_B = moduleDUT(stimuli)
9 TEST_ASSERT_TIME_LT(50); // Checking time

10 TEST_ASSERT_EQ(reference_FU_B, result_FU_B);
11 }

Our proposal contains an important restriction. It is limited
to those solutions whose chain of FUs is a Directed Acyclic
Graph (DAG). A DAG contains some vertices directed by
edges, but there is not any path to start from particular vertex
and return to that vertex. Therefore, loops between FUs are
not supported at all in our proposal. We only can measure
the time between one FU and other or even the same FU
but verification engineers must know the position of each FU.
For instance, imagine our three FUs are placed inside a loop
and we want to measure the time elapsed by FU_B block
from the beginning to the second iteration. In this case, we
might use RCUNITY_CONF_FU_INPUT with the value 1 and
RCUNITY_CONF_FU_OUTPUT with the value 5.

IV. HARDWARE VERIFICATION PLATFORM

Nowadays, most HLS developers has to build their own cus-
tom hardware verification platform for verifying the modules
generated by HLS tools on handmade. In order to allow an
in-hardware verification or on-board verification which is one
of our goals, we provide a hardware verification platform. Our
verification platform relies on a SoC platform which integrates
an FPGA and a hardcore-processor in the same device (hybrid
FPGAs). An overview of that platform is shown in Figure 3, in
our case, we use a ZedBoard from Xilinx. In addition, Figure 3
shows the communication between the hardware verification
platform and a developers workstation. Both actors exchange
messages using zeroC Ice communication middleware.

The ZedBoard device allows an easy communication be-
tween the FPGA logic part and the hardcore-processor using
standard communication mechanisms. In our case, an AXI
bus connects PS and PL sides, tunneling a master-slave
communication, where PS is the master and the components
programmed in PL are slaves. In addition, this device is
connected to a computer network via Ethernet in order to share
the verification platform, thus we convert a hybrid FPGA into
a remote testing service.

A. Programmable Logic Architecture

Figure 3 (right side) illustrates the Programmable Logic
(PL) architecture layout of our hardware verification platform
in the ZedBoard. The DUT is deployed in this side and it

is connected with the Processing System (PS) side through
two FIFO channels which bridge the AXI data between the
DUT and the PS whenever hardware address matches with
the address where the dpr bridge component is mapped, thus
the data is stored into an input FIFO when the operation is
a write. On the other side, when the operation is a read, the
dpr bridge component retrieves data from the output FIFO and
sends it through the AXI bus. This communication mechanism
is a typical configuration of most accelerators where they
read a stream of input data and produce an output data
stream. Anyway, this interface could be replaced by another
protocol/interface such as AXI-Stream or AXI-Lite, or we could
even add our own protocol over a streaming channel. Thus,
tests can run in software domain and exercise the DUT from
that domain.

In order to reuse the verification platform in future projects
(reusability challenge), the DUT is deployed on a dynamic
reconfigurable area while the rest of the layout does not
change, thus the verification platform uses Dynamic Partial
Reconfiguration feature (DPR). Hence the PL layout is divided
into two parts, a static one which contains those components
that do not change independently of the DUT and the DUT,
which can be part of a vision algorithm, voice filter, crypto-
graphic algorithm, etc. One advantages of the use of DPR is
that it reduces the synthesis process and improves synthesis
tasks [19] due to working with partial bitstreams. Furthermore,
it is possible to adapt an FPGA to different scenarios, by just
modifying the functionality or the performance of some related
tasks [19], enabling the reusability of our verification platform.

To perform deployment tasks, the verification platform
needs a reconfiguration engine: the zipFactory component.
This component programs a partial bitstream (new DUT)
into the dynamic reconfigurable area available in our verifi-
cation platform without microprocessor intervention. Firstly,
bitstream data should be stored into a memory address of
the DDR and then the zipFactory component retrieves with
an internal DMA these data which is stored into an inter-
nal small buffer, handling them as batched data. The ICAP
bandwidth is 32-bits, which matches the internal buffer width.
The component knows the type of 32-bit word sent to the
ICAP at each transaction, thus when the 32-bit word is the
desynchronization word the reconfiguration process is finished,
although we attach some NOPs to flush the command pipeline
properly.

The Test Manager component performs a variety of hard-
ware tasks which are not feasible from software or result in
a poor accuracy where they are performed in the software
domain. Each hardware tasks is directed from software using
the macros listed in Table I.

• It resets the dynamic area (or DUT) in order to assure
that the DUT starts from a well-known state.

• It manages the clock enable signal during the cycles
depicted in the macro related to this task. The clock
enable signal is active-low until RCUNITY_START is
invoked. To active-high this signal all time we annotate
a 0 value.



Figure 3: Overview of our hardware verification platform

• It sets the clock rate of the dynamic part and those mod-
ules that interact with it. The available clock speed rates
are: 33MHz, 66MHz, 100MHz, 200MHz and 400MHz.
This feature provides a flexible environment allowing
engineers to reuse the verification platform in future
projects, also when an amount of versions of a particular
module generated by an HLS tool works at different clock
rate. Therefore, verification engineers do not need to build
a new verification platform o synthesize the whole design
in accordance with the profiling clock rate, hence they
have only to annotate which clock rate will be used.

• It measures the time elapsed by each FU or between FUs.
The Test Manager component observes the start and done
signal of each FU and determines the number of cycles
to complete an FU or several consecutive FUs. It works
increasing an internal counter which plays the role of
a chronometer. The internal counter is triggered by start
signals of FUs, whereas it is stopped by done signals. The
RC-Unity testing framework allows engineers to set the
FU under test in order to measure the number of cycles
that takes to complete its tasks or set the initial and final
FU in order to measure the number of cycles that takes
to complete the tasks done between both FUs.

• It configures the DUT’s datapath in order to route the
return values of an FU to the output point.

B. Processing System

Figure 3 (left side) shows the PS architecture of our hard-
ware verification platform. The PS contains an ARM processor
which runs an embedded operating system, Linaro Ubuntu
distribution. To use the internal components of the verification
platform, we deploy three services based on ZeroC Ice over
this OS. For instance, when a partial bitstream is ready we can
send its data to the FPGA using the transfer service which
stores the data in a memory address. Then we can use the dpr
service to deploy the partial bitstream on the dynamic area.
Therefore, we provide the mechanism to share transparently
our hardware verification platform, increasing its availability
and accessibility. Finally, we may run the test on-board mode

(step 3 of flow proposed), in this case the GCommand service
translates the communication messages into AXI messages
whose hardware address matches that of the DUT.

From outside of the verification platform, one may use some
wrappers of these three services in order to marshall and
unmarshall the data into ZeroC Ice messages. These services
are shown as functions from the testing framework point of
view. Indeed, the moduleDUT function in Listings 1 and 2
serializes stimuli into zeroC Ice messages and deserializes data
retrieved from the FPGA too. Notice that stimuli and result
are streaming data that will be retrieved and stored from the
input FIFO and to the output FIFO respectively.

V. EXPERIMENTAL RESULTS

Our experiment results have been obtained under a
GNU/Linux environment using a Xilinx ZedBoard platform
to implement our approach. By default, the platform works
at 100 MHz, but the dynamic area and other components
can modify this clock speed rate at runtime. As a case
study in this paper, we select one based on the histogram of
oriented gradients (HOG). The HOG is a feature descriptor
used in computer vision and image processing for object
detection, particularly suited for human detection in images.
The algorithm implementation is divided into different steps:
gamma and color normalization, gradient computation, block
normalization among other. In our case study, the step chosen
is the vector normalization block with l2-norm normalization
factor [20]. The solution has been developed in the C pro-
gramming language using Vivado HLS v15.4 [21].

The input and output of l2-norm factor is 16 pixels, a
4x4 window. The l2norm layout is divided into three FUs
like our previous example, but in this case their names are
FU_sum, FU_scale, FU_mult. These FUs are sequentially
executed and each one depends on the previous FU, thus it
forms up a DAG with three vertices and two edges. Applying
our approach the original DUT is converted into four vertices
(one per FU plus the adapter) and five edges, the two original
edges plus an edge from each FU to the adapter vertex.
Figure 4 shows the signal waveforms of l2-norm algorithm



Figure 4: Waveform of l2-norm test and timing comparison

in a complete co-simulation and a comparison of timing
results (depicted in cycles) obtained from co-simulation and
in-hardware domain applying our solution. In the in-hardware
scenario, the timing penalty introduced by our solution is
substracted, displaying accurate timing results.

Firstly, before exercising the DUT an unmarshalling task
takes place, as well as datapath configuration task, thus the
design does not need evaluate at runtime if the data goes
to the next FU or to output point. The unmarshalling task
is performed independently of our approach because of the
custom interface used. Note the interface of our dynamic area
is modelled with two FIFOs which is the most popular inter-
face in hardware accelerators. Then, the first FU (FU_sum) is
exercised and the flagStart signal is high activated during
one cycle. Once FU_sum block finishes its execution, the
signalDone is high activated annotating that moment, at
the same cycle the signalStart is high activated because
the second FU (FU_scale) starts an so on with the rest of
FUs. Finally, the result values are marshalled before send it.
This last operation is done with or without our approach.

Unfortunately, our approach includes an overhead. The
hardware overhead incurred by hardware introspection gen-
erated by the approach proposed in this paper is analyzed
according to the original DUT. Table II shows the resource
overhead of our approach. In addition, we compare the profil-
ing generated by Vivado HLS tool with the report provided by
Vivado P&R tools. We can observe the profiling of the HLS
tool contains some inaccuracies. About latency overhead, we
can conclude that our approach introduces one cycle per each
FU because the management of start and done signals. Note
that the latency values have been retrieved from HLS report
and our hardware verification platform.

VI. CONCLUSION

This paper has presented a hardware testing framework, RC-
Unity, for in-hardware verification of the hardware modules
generated by HLS tools, considering both functionality and
timing issues. Our approach is well-suite for software or
hardware developers. We propose the use of a variety of
configuration/control macros to program physical parameters,

Table II: Comparison between Vivado HLS and After Place & Route
reports (l2-norm algorithm)

Vivado HLS tool After P&R phase

Original RC-Unity Original RC-Unity

BRAM 0 4 0 1
DSP 13 13 13 13
FF 1316 2116 1107 1778
LUT 1928 2415 1095 1607

Latency1 255 258 249 252
Max. Freq.2 123 114 121 109

1In clock cycles. 2In MHz.

such as operating clock frequency, of our verification platform.
Moreover, RC-Unity framework provides some timing macros
to check the time elapsed by the hardware design and allows
engineers to make hardware introspection, checking interme-
diate results, or in other words the return values of an FU
and the time that takes that specific FU to perform its tasks.
RC-Unity framework is able to check the time elapsed from
an FU to another later FU.

In addition, our proposal provides a remote and transparent
dynamic verification service. Engineers can exercise a DUT
remotely, breaking down the test from the hardware prototype.
The verification platform uses DPR feature of FPGAs which
enables its reusability in future projects. Thus, engineers only
need to configure the verification platform in accordance with
the DUTs requirements, either engineers can verify hardware
designs in the context of an overclocking or underclocking
environments.

Future work will be targeted to take out intermediate re-
sults from software simulations and integrate them into the
verification process automatically. In addition, we will raise
the visibility of internal signals using synthesizable hardware
assertions, because RTL description generated by HLS tools
exacerbated the trace of signals in a simulator.

ACKNOWLEDGMENTS

This work is supported in part by Spanish Government
under projects REBECCA (TEC2014-58036-C4-1R) and
PLATINO (TEC2017-86722-C4-4-R).



REFERENCES

[1] A. Canis, J. Choi, B. Fort, R. Lian, Q. Huang, N. Calagar, M. Gort,
J. J. Qin, M. Aldham, T. Czajkowski, S. Brown, and J. Anderson,
“From software to accelerators with LegUp high-level synthesis,” in
2013 International Conference on Compilers, Architecture and Synthesis
for Embedded Systems (CASES), Sept 2013, pp. 1–9.

[2] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang,
“High-Level Synthesis for FPGAs: From Prototyping to Deployment,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 30, no. 4, pp. 473–491, April 2011.

[3] W. Chen, S. Ray, J. Bhadra, M. Abadir, and L. C. Wang, “Challenges and
Trends in Modern SoC Design Verification,” IEEE Design Test, vol. 34,
no. 5, pp. 7–22, Oct 2017.

[4] L. D. Luna and Z. Zalewski, “FPGA level in-hardware verification for
DO-254 compliance,” in 2011 IEEE/AIAA 30th Digital Avionics Systems
Conference, Oct 2011, pp. 7D5–1–7D5–5.

[5] X. Cheng, A. W. Ruan, Y. B. Liao, P. Li, and H. C. Huang, “A run-time
RTL debugging methodology for FPGA-based co-simulation,” in 2010
International Conference on Communications, Circuits and Systems
(ICCCAS), July 2010, pp. 891–895.

[6] A. Wicaksana, A. Prost-Boucle, O. Muller, F. Rousseau, and
A. Sasongko, “On-board non-regression test of HLS tools targeting
FPGA,” in 2016 International Symposium on Rapid System Prototyping
(RSP), Oct 2016, pp. 1–7.

[7] M. K. You and G. Y. Song, “Case study : Co-simulation and co-
emulation environments based on System; SystemVerilog,” in TENCON
2009 - 2009 IEEE Region 10 Conference, Jan 2009, pp. 1–4.

[8] L. Feng, Z. Dai, W. Li, and J. Cheng, “Design and application of reusable
SoC verification platform,” in 2011 9th IEEE International Conference
on ASIC, Oct 2011, pp. 957–960.

[9] A. Organization, “Standard Universal Verification Methodology Class
Reference Manual, Release 1.1,” Accellera, Tech. Rep., 2011.

[10] Y. N. Yun, J. B. Kim, N. D. Kim, and B. Min, “Beyond UVM for prac-
tical SoC verification,” in 2011 International SoC Design Conference,
Nov 2011, pp. 158–162.

[11] J. Podivinsky, M. imkov, O. Cekan, and Z. Kotsek, “FPGA Prototyping
and Accelerated Verification of ASIPs,” in 2015 IEEE 18th International
Symposium on Design and Diagnostics of Electronic Circuits Systems,
April 2015, pp. 145–148.

[12] H. Zhaohui, A. Pierres, H. Shiqing, C. Fang, P. Royannez, E. P. See, and
Y. L. Hoon, “Practical and efficient SOC verification flow by reusing IP
testcase and testbench,” in 2012 International SoC Design Conference
(ISOCC), Nov 2012, pp. 175–178.

[13] R. Edelman and R. Ardeishar, “UVM SchmooVM - I want my c tests!”
in 2014 Design and Verification Conference and Exhibition (DVCON),
March 2014, pp. 1–10.

[14] J. Goeders and S. J. E. Wilton, “Signal-Tracing Techniques for In-
System FPGA Debugging of High-Level Synthesis Circuits,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 36, no. 1, pp. 83–96, Jan 2017.

[15] Y. K. Choi and J. Cong, “HLScope: High-Level Performance Debugging
for FPGA Designs,” in 2017 IEEE 25th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), April
2017, pp. 125–128.

[16] J. P. Pinilla and S. J. E. Wilton, “Enhanced source-level instrumentation
for FPGA in-system debug of High-Level Synthesis designs,” in 2016
International Conference on Field-Programmable Technology (FPT),
Dec 2016, pp. 109–116.

[17] J. Curreri, G. Stitt, and A. D. George, “High-level synthesis techniques
for in-circuit assertion-based verification,” in 2010 IEEE International
Symposium on Parallel Distributed Processing, Workshops and Phd
Forum (IPDPSW), April 2010, pp. 1–8.

[18] M. Karlesky, M. VanderVoord, and G. Williams, “A simple Unit
Test Framework for Embedded C,” Unity Project, Tech. Rep.,
2012, https://fenix.tecnico.ulisboa.pt/downloadFile/845043405431090/
Unity%20Summary.pdf; last accessed 18-Mar-22.

[19] W. Lie and W. Feng-yan, “Dynamic Partial Reconfiguration in FPGAs,”
in 2009 Third International Symposium on Intelligent Information Tech-
nology Application, vol. 2, Nov 2009, pp. 445–448.

[20] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05), vol. 1, June 2005, pp. 886–
893 vol. 1.

[21] Xilinx, “Vivado Design Suite User Guide: High-Level Synthesis
(UG902),” Xilinx Inc., Tech. Rep., 2017.


